def save(self, fn): d = dict(orders=self.orders, wvl_list=[], x_list=[], y_list=[]) for o in self.orders: zd = self.zdata[o] d["wvl_list"].append(zd.wvl) d["x_list"].append(zd.x) d["y_list"].append(zd.y) from json_helper import json_dump json_dump(d, open(fn, "w"))
def save(self, mastername, masterhdu=None): fn, ext = os.path.splitext(mastername) dict_to_save = dict() for k, d in self.items(): if hasattr(d, "shape") and (d.shape == masterhdu.data.shape): if d.dtype == bool: d = d.astype("i8") if masterhdu is not None: hdu = pyfits.PrimaryHDU(header=masterhdu.header, data=d) else: hdu = pyfits.PrimaryHDU(data=d) fn0 = "".join([fn, ".", k, ".fits"]) hdu.writeto(fn0, clobber=True) dict_to_save[k + ".fits"] = os.path.basename(fn0) else: dict_to_save[k] = d if dict_to_save: json_dump(dict_to_save, open(mastername, "w"))
def save(self, mastername, masterhdu=None): fn, ext = os.path.splitext(mastername) dict_to_save = dict() for k, d in self.items(): if hasattr(d, "shape") and (d.shape == masterhdu.data.shape): if d.dtype == bool: d = d.astype("i8") if masterhdu is not None: hdu = pyfits.PrimaryHDU(header=masterhdu.header, data=d) else: hdu = pyfits.PrimaryHDU(data=d) fn0 = "".join([fn, ".", k, ".fits"]) hdu.writeto(fn0, clobber=True) dict_to_save[k+".fits"] = os.path.basename(fn0) else: dict_to_save[k] = d if dict_to_save: json_dump(dict_to_save, open(mastername, "w"))
d = dict(wvl_list=[], ref_indices_list=[], pixpos_list=[], orders=orders, ref_name=ref_name) for wvl, s, _ in zip(wvl_sol, s_list, ddd_list): wvl_reference_filtered, matched_indices, centroids = _ d["wvl_list"].append(wvl_reference_filtered) d["ref_indices_list"].append(matched_indices) d["pixpos_list"].append(centroids) from json_helper import json_dump json_dump( d, open("%s_IGRINS_identified_%s_%s.json" % (REF_TYPE, band, utdate), "w")) for wvl, s, _ in zip(wvl_sol, s_list, ddd_list): wvl_reference_filtered, matched_indices, centroids = _ fig = figure() ax = fig.add_subplot(111) draw_one(wvl, s, wvl_reference_filtered, centroids, ax=ax) if 0: json.dump([[(s[0], list(s[1])) for s in ss] for ss, d in matched_list2], open("thar_identified_%s_%s.json" % (band, date), "w")) i = 20 clf()
if 1: band = "K" utdate = "20140525" import json s_list = json.load(open("arc_spec_sky_%s_%s.json" % (band, utdate))) wvl_sol = json.load(open("wvl_sol_phase0_%s_%s.json" \ % (band, utdate))) bootstrap_name = "hitran_bootstrap_K_20140316.json" bootstrap = json.load(open(bootstrap_name)) sol_sol = reidentify(wvl_sol, s_list, bootstrap) from json_helper import json_dump if 1: json_dump(sol_sol, open("hitran_reidentified_%s_%s.json" % (band, utdate), "w"), ) if 0: if 0: import matplotlib.pyplot as plt plt.clf() ax = plt.subplot(311) ax.plot(wvl_igr, s_igr_m) ax.plot(wvl1, ss) for ll, sol in zip(hitrans_detected[i], sol_list): xx = sol[0][0]+np.array(ll)-ll[0] ax.vlines(xx, ymin=0, ymax=sol[0][2]) ax.hlines(sol[0][2]*0.5,
def store(self, fn, masterhdu): json_dump(self, open(fn, "w"))
def store(self, fn, masterhdu=None): json_dump(self, open(fn, "w"))
if 1: band = "K" utdate = "20140525" import json s_list = json.load(open("arc_spec_sky_%s_%s.json" % (band, utdate))) wvl_sol = json.load(open("wvl_sol_phase0_%s_%s.json" \ % (band, utdate))) bootstrap_name = "hitran_bootstrap_K_20140316.json" bootstrap = json.load(open(bootstrap_name)) sol_sol = reidentify(wvl_sol, s_list, bootstrap) from json_helper import json_dump if 1: json_dump( sol_sol, open("hitran_reidentified_%s_%s.json" % (band, utdate), "w"), ) if 0: if 0: import matplotlib.pyplot as plt plt.clf() ax = plt.subplot(311) ax.plot(wvl_igr, s_igr_m) ax.plot(wvl1, ss) for ll, sol in zip(hitrans_detected[i], sol_list): xx = sol[0][0] + np.array(ll) - ll[0] ax.vlines(xx, ymin=0, ymax=sol[0][2]) ax.hlines(sol[0][2] * 0.5, xmin=xx - sol[0][1],
_ = ddd(wvl, s, wvl_reference) ddd_list.append(_) d = dict(wvl_list=[], ref_indices_list=[], pixpos_list=[], orders=orders, ref_name=ref_name) for wvl, s, _ in zip(wvl_sol, s_list, ddd_list): wvl_reference_filtered, matched_indices, centroids = _ d["wvl_list"].append(wvl_reference_filtered) d["ref_indices_list"].append(matched_indices) d["pixpos_list"].append(centroids) from json_helper import json_dump json_dump(d, open("%s_IGRINS_identified_%s_%s.json" % (REF_TYPE, band, utdate),"w")) for wvl, s, _ in zip(wvl_sol, s_list, ddd_list): wvl_reference_filtered, matched_indices, centroids = _ fig = figure() ax = fig.add_subplot(111) draw_one(wvl, s, wvl_reference_filtered, centroids, ax=ax) if 0: json.dump([[(s[0], list(s[1])) for s in ss] for ss, d in matched_list2], open("thar_identified_%s_%s.json" % (band, date),"w"))
def save(self, fn): from json_helper import json_dump json_dump(self.data, open(fn, "w"))
def save(self, fn): from json_helper import json_dump json_dump(self.data, open(fn,"w"))