def test_ltsa_eigendecomps(): N = 10 X, color = datasets.samples_generator.make_s_curve(N, random_state=0) n_components = 2 G = geom.Geometry(adjacency_method = 'brute', adjacency_kwds = {'radius':2}) G.set_data_matrix(X) mm_ltsa_ref, err_ref = ltsa.ltsa(G, n_components, eigen_solver=EIGEN_SOLVERS[0]) for eigen_solver in EIGEN_SOLVERS[1:]: mm_ltsa, err = ltsa.ltsa(G, n_components, eigen_solver=eigen_solver) assert(_check_with_col_sign_flipping(mm_ltsa, mm_ltsa_ref, 0.05))
def test_ltsa_with_sklearn(): N = 10 X, color = datasets.samples_generator.make_s_curve(N, random_state=0) n_components = 2 n_neighbors = 3 knn = NearestNeighbors(n_neighbors + 1).fit(X) G = geom.Geometry() G.set_data_matrix(X) G.set_adjacency_matrix(knn.kneighbors_graph(X, mode = 'distance')) sk_Y_ltsa = manifold.LocallyLinearEmbedding(n_neighbors, n_components, method = 'ltsa', eigen_solver = 'arpack').fit_transform(X) (mm_Y_ltsa, err) = ltsa.ltsa(G, n_components, eigen_solver = 'arpack') assert(_check_with_col_sign_flipping(sk_Y_ltsa, mm_Y_ltsa, 0.05))