예제 #1
0
파일: ds.py 프로젝트: gorlins/PyMVPA
    def __call__(self, dataset):
        # create the dissimilarity matrix for the data in the input dataset
        self.dset_dsm = DSMatrix(dataset.samples, self.dset_metric)

        in_vec = self.dsmatrix.getVectorForm()
        dset_vec = self.dset_dsm.getVectorForm()

        # concatenate the two vectors, send to dissimlarity function
        test_mat = N.asarray([in_vec, dset_vec])

        test_dsmatrix = DSMatrix(test_mat, self.output_metric)

        # return correct dissimilarity value
        return test_dsmatrix.getFullMatrix()[0, 1]
예제 #2
0
파일: ds.py 프로젝트: gorlins/PyMVPA
class DSMDatasetMeasure(DatasetMeasure):
    """DSMDatasetMeasure creates a DatasetMeasure object
       where metric can be one of 'euclidean', 'spearman', 'pearson'
       or 'confusion'"""

    def __init__(self, dsmatrix, dset_metric, output_metric='spearman'):
        DatasetMeasure.__init__(self)

        self.dsmatrix = dsmatrix
        self.dset_metric = dset_metric
        self.output_metric = output_metric
        self.dset_dsm = []


    def __call__(self, dataset):
        # create the dissimilarity matrix for the data in the input dataset
        self.dset_dsm = DSMatrix(dataset.samples, self.dset_metric)

        in_vec = self.dsmatrix.getVectorForm()
        dset_vec = self.dset_dsm.getVectorForm()

        # concatenate the two vectors, send to dissimlarity function
        test_mat = N.asarray([in_vec, dset_vec])

        test_dsmatrix = DSMatrix(test_mat, self.output_metric)

        # return correct dissimilarity value
        return test_dsmatrix.getFullMatrix()[0, 1]