def DegreeNetAlgs(undirected=False, startdeg=10, enddeg=10): for i in range(startdeg, enddeg + 1): print i count = 0 for key, value in data.iteritems(): count += 1 print count, i mats = value[1] corr = mats['corr'] lcorr = mats['lcorr'] lacorr = mats['lacorr'] if undirected: corr += transpose(corr) lcorr += transpose(lcorr) lacorr += transpose(lacorr) corr = corr > findThresh(corr, i) lcorr = lcorr > findThresh(lcorr, i) lacorr = lacorr > findThresh(lacorr, i) corr = myallmeasures(nx.DiGraph(corr)) lcorr = myallmeasures(nx.DiGraph(lcorr)) lacorr = myallmeasures(nx.DiGraph(lacorr)) for k in range(len(corr[0])): measure = corr[0][k] value[0][(measure, 'corr')] = corr[1][k] value[0][(measure, 'lcorr')] = lcorr[1][k] value[0][(measure, 'lacorr')] = lacorr[1][k] dump(convert('AD', i), open('totalD_AD_D' + str(i) + '.pkl', 'wb')) dump(convert('NL', i), open('totalD_NL_D' + str(i) + '.pkl', 'wb')) dump(convert('MCI', i), open('totalD_MCI_D' + str(i) + '.pkl', 'wb')) dump(convert('CONVERT', i), open('totalD_CONVERT_D' + str(i) + '.pkl', 'wb'))
def DegreeNetAlgs(undirected = False,startdeg = 10,enddeg = 10): for i in range(startdeg,enddeg+1): print i count = 0 for key, value in data.iteritems(): count += 1 print count, i mats = value[1] corr = mats['corr'] lcorr = mats['lcorr'] lacorr = mats['lacorr'] if undirected: corr += transpose(corr) lcorr += transpose(lcorr) lacorr += transpose(lacorr) corr = corr > findThresh(corr,i) lcorr = lcorr > findThresh(lcorr,i) lacorr = lacorr > findThresh(lacorr,i) corr = myallmeasures(nx.DiGraph(corr)) lcorr = myallmeasures(nx.DiGraph(lcorr)) lacorr = myallmeasures(nx.DiGraph(lacorr)) for k in range(len(corr[0])): measure = corr[0][k] value[0][(measure,'corr')] = corr[1][k] value[0][(measure,'lcorr')] = lcorr[1][k] value[0][(measure,'lacorr')] = lacorr[1][k] dump(convert('AD',i),open('totalD_AD_D'+str(i)+'.pkl','wb')) dump(convert('NL',i),open('totalD_NL_D'+str(i)+'.pkl','wb')) dump(convert('MCI',i),open('totalD_MCI_D'+str(i)+'.pkl','wb')) dump(convert('CONVERT',i),open('totalD_CONVERT_D'+str(i)+'.pkl','wb'))
def RandomDegrees(undirected=False, startdeg=10, enddeg=10): for des in range(startdeg, enddeg + 1): print des count = 0 anslist = [] orderedans = [] for nn in range(100): x = random.rand(88, 88) x -= diag(diag(x)) if undirected: x = triu(x, 1) x += x.T x = x > findThresh(x, des) patientGraph = nx.DiGraph(x) m = myallmeasures(patientGraph) anslist.append(m[1]) if nn % 10 == 0: print nn, des mnames = m[0] for j in range(len(mnames)): measure = [i[j] for i in anslist] measure = [i for i in measure if i != None] orderedans.append(measure) corr = zip(mnames, orderedans) g = lambda n: n[0] corr.sort(key=g) dump([mnames, orderedans], open("ufinal_rand_D" + str(des) + ".pkl", "wb"))
def RandomDegrees(undirected = False,startdeg = 10, enddeg = 10): for des in range(startdeg,enddeg + 1): print des count = 0 anslist = [] orderedans = [] for nn in range(100): x = random.rand(88,88) x -= diag(diag(x)) if undirected: x = triu(x,1) x += x.T x = x > findThresh(x, des) patientGraph = nx.DiGraph(x) m = myallmeasures(patientGraph) anslist.append(m[1]) if nn % 10 == 0: print nn, des mnames = m[0]; for j in range(len(mnames)): measure = [i[j] for i in anslist] measure = [i for i in measure if i != None] orderedans.append(measure) corr = zip(mnames,orderedans) g = lambda n: n[0] corr.sort(key = g) dump([mnames,orderedans], open("ufinal_rand_D"+str(des)+".pkl","wb"))
def RunNetAlgs(dumpData=True): for key, value in data.iteritems(): print key mats = value[1] corr = myallmeasures(nx.DiGraph(mats['tcorr'])) lcorr = myallmeasures(nx.DiGraph(mats['tlcorr'])) lacorr = myallmeasures(nx.DiGraph(mats['tlacorr'])) for i in range(len(corr[0])): measure = corr[0][i] value[0][(measure, 'corr')] = corr[1][i] value[0][(measure, 'lcorr')] = lcorr[1][i] value[0][(measure, 'lacorr')] = lacorr[1][i] if dumpData: dump(data, open('computed_data', 'wb')) dump(convert('AD'), open('final_AD.pkl', 'wb')) dump(convert('NL'), open('final_NL.pkl', 'wb')) dump(convert('MCI'), open('final_MCI.pkl', 'wb')) dump(convert('CONVERT'), open('final_CONVERT.pkl', 'wb'))
def RunNetAlgs(dumpData = True): for key, value in data.iteritems(): print key mats = value[1] corr = myallmeasures(nx.DiGraph(mats['tcorr'])) lcorr = myallmeasures(nx.DiGraph(mats['tlcorr'])) lacorr = myallmeasures(nx.DiGraph(mats['tlacorr'])) for i in range(len(corr[0])): measure = corr[0][i] value[0][(measure,'corr')] = corr[1][i] value[0][(measure,'lcorr')] = lcorr[1][i] value[0][(measure,'lacorr')] = lacorr[1][i] if dumpData: dump(data,open('computed_data','wb')) dump(convert('AD'),open('final_AD.pkl','wb')) dump(convert('NL'),open('final_NL.pkl','wb')) dump(convert('MCI'),open('final_MCI.pkl','wb')) dump(convert('CONVERT'),open('final_CONVERT.pkl','wb'))