def forwardANN(xList, struct, activ_list, cost_type): net = Net_structure(struct, [activation_dict[n] for n in activ_list], cost_dict[cost_type]) w_list = [] b_list = [] for l in range(len(struct) - 1): w_list += [ (array(range(struct[l] * struct[l + 1])).reshape(struct[l], struct[l + 1]) + float(l)) / 100.0 ] b_list += [(array(range(struct[l + 1])) - float(l)) / 100.0] net.set_w_b(w_list, b_list) return xList + list(net.net_act_forward(array(xList)))
""" This script is to manually test if a trained model feels good. """ from net_structure import Net_structure import argparse import numpy as np import util.convert_ndarr_img as img_cvt from logf.printf import printf def parse_args(): parser = argparse.ArgumentParser('evaluate the quality of trained model') parser.add_argument('checkpoint', type=str, help='path to the checkpoint file of trained net') parser.add_argument('test_img', type=str, help='path to the image to be tested') return parser.parse_args() if __name__ == '__main__': args = parse_args() net = Net_structure(None) net.import_(args.checkpoint) ip_arr = img_cvt.img_to_array(args.test_img) op = net.net_act_forward(ip_arr) printf('predicted category: {}', op.argmax(axis=1))