def test_loadflat(): alist = [dict(a='one', c='three', b='two'), dict(a='one', c='three', b='two')] fd, name = mkstemp(suffix='.npz') np.savez(name,a=alist) aloaded = loadflat(name)['a'] os.unlink(name) yield assert_equal, len(aloaded), 2 yield assert_equal, sorted(aloaded[0].items()), sorted(alist[0].items()) adict = dict(a='one', c='three', b='two') fd, name = mkstemp(suffix='.npz') np.savez(name,a=adict) aloaded = loadflat(name)['a'] os.unlink(name) yield assert_true, isinstance(aloaded, dict) yield assert_equal, sorted(aloaded.items()), sorted(adict.items())
def _get_session_info(self, session_info_file): key = "session_info" data = loadflat(session_info_file) session_info = data[key] if isinstance(session_info, dict): session_info = [session_info] return session_info
def test_loadflat(): alist = [ dict(a='one', c='three', b='two'), dict(a='one', c='three', b='two') ] fd, name = mkstemp(suffix='.npz') np.savez(name, a=alist) aloaded = loadflat(name)['a'] os.unlink(name) yield assert_equal, len(aloaded), 2 yield assert_equal, sorted(aloaded[0].items()), sorted(alist[0].items()) adict = dict(a='one', c='three', b='two') fd, name = mkstemp(suffix='.npz') np.savez(name, a=adict) aloaded = loadflat(name)['a'] os.unlink(name) yield assert_true, isinstance(aloaded, dict) yield assert_equal, sorted(aloaded.items()), sorted(adict.items())
def _list_outputs(self): outputs = self._outputs().get() if not hasattr(self, "sessinfo"): # backwards compatibility data = loadflat(os.path.join(os.getcwd(), "%s_modelspec.npz" % self.inputs.subject_id)) if isinstance(data["session_info"], dict): self.sessinfo = [data["session_info"]] else: self.sessinfo = data["session_info"] outputs["session_info"] = self.sessinfo return outputs
''' Created on 8 Nov 2010 @author: filo ''' from nipype.utils.filemanip import loadflat from neuroutils import ThresholdGGMM c = loadflat("/media/data/2010reliability/workdir/pipeline/line_bisection/model/threshold_topo_ggmm/_subject_id_20100929_16849/ggmm/crash-20101116-135736-filo-_ggmm2.npz") n = c['node'] print n.inputs ggmm = ThresholdGGMM(mask_file= n.inputs.mask_file, stat_image=n.inputs.stat_image) ggmm.run()