예제 #1
0
 def test_seed_below_seafloor(self):
     o = OpenOil3D(loglevel=20)
     reader_norkyst = reader_netCDF_CF_generic.Reader(o.test_data_folder() + '14Jan2016_NorKyst_z_3d/NorKyst-800m_ZDEPTHS_his_00_3Dsubset.nc')
     o.add_reader([reader_norkyst])
     o.fallback_values['land_binary_mask'] = 0
     o.fallback_values['x_wind'] = 0
     o.fallback_values['y_wind'] = 0
     o.fallback_values['x_sea_water_velocity'] = 0
     o.fallback_values['y_sea_water_velocity'] = 0
     lon = 4.5; lat = 62.0
     o.seed_elements(lon, lat, z=-5000, time=reader_norkyst.start_time,
                     density=1000)
     o.set_config('processes:turbulentmixing', True)
     o.set_config('turbulentmixing:verticalresolution', 1)  # m
     o.set_config('turbulentmixing:timestep', 1)  # s
     o.set_config('input:spill:droplet_diameter_min_subsea', 0.005)
     o.set_config('input:spill:droplet_diameter_max_subsea', 0.005)
     o.run(steps=3, time_step=300, time_step_output=300)
     z, status = o.get_property('z')
     self.assertAlmostEqual(z[0,0], -151.7, 1)  # Seeded at seafloor depth
     self.assertAlmostEqual(z[-1,0], -91.3, 1)  # After some rising
예제 #2
0
 def test_droplet_distribution(self):
     for droplet_distribution in ['Johansen et al. (2015)',
                                  'Exponential']:
         o = OpenOil3D(loglevel=50, weathering_model='noaa')
         o.set_config('wave_entrainment:droplet_size_distribution',
                      droplet_distribution)
         o.seed_elements(lon=4.8, lat=60, number=100,
                         time=datetime.now(), oiltype='SKRUGARD')
         o.fallback_values['land_binary_mask'] = 0
         o.fallback_values['x_wind'] = 8
         o.fallback_values['y_wind'] = 0
         o.fallback_values['x_sea_water_velocity'] = 0
         o.fallback_values['y_sea_water_velocity'] = .3
         o.run(duration=timedelta(hours=1), time_step=1800)
         d = o.elements.diameter
         # Suspicious, Sintef-param should give larer droplets
         if droplet_distribution == 'Exponential':
             self.assertAlmostEqual(d.mean(), 0.000849, 2)
         elif droplet_distribution == 'Johansen et al. (2015)':
             #self.assertAlmostEqual(d.mean(), 0.000072158)
             self.assertAlmostEqual(d.mean(), 0.000653, 2)
예제 #3
0
 def test_seed_outside_coverage(self):
     """Test seeding"""
     o = OpenOil3D(loglevel=0)
     norkyst = reader_netCDF_CF_generic.Reader(
         o.test_data_folder() +
         '14Jan2016_NorKyst_z_3d/NorKyst-800m_ZDEPTHS_his_00_3Dsubset.nc')
     basemap = reader_basemap_landmask.Reader(llcrnrlon=4,
                                              llcrnrlat=60,
                                              urcrnrlon=6,
                                              urcrnrlat=64,
                                              resolution='c',
                                              projection='merc')
     o.add_reader([basemap, norkyst])
     o.fallback_values['x_wind'] = 0
     o.fallback_values['y_wind'] = 0
     o.seed_elements(5,
                     63,
                     number=5,
                     time=norkyst.start_time - 24 * timedelta(hours=24))
     with self.assertRaises(ValueError):
         o.run(steps=3, time_step=timedelta(minutes=15))
예제 #4
0
    def test_seed_above_seafloor(self):
        o = OpenOil3D(loglevel=20)
        reader_norkyst = reader_netCDF_CF_generic.Reader(o.test_data_folder() + '14Jan2016_NorKyst_z_3d/NorKyst-800m_ZDEPTHS_his_00_3Dsubset.nc')
        o.fallback_values['land_binary_mask'] = 0
        o.fallback_values['x_wind'] = 0
        o.fallback_values['y_wind'] = 0
        o.fallback_values['x_sea_water_velocity'] = 0
        o.fallback_values['y_sea_water_velocity'] = 0
        o.add_reader([reader_norkyst])
        lon = 4.5; lat = 62.0
        # Seed elements 50 meters above seafloor:
        o.seed_elements(lon, lat, z='seafloor+50', time=reader_norkyst.start_time,
                        density=1000)
        o.set_config('processes:turbulentmixing', True)

        o.set_config('turbulentmixing:timestep', 1)  # s
        o.run(steps=3, time_step=300, time_step_output=300)
        #o.plot_property('z')
        z, status = o.get_property('z')
        self.assertAlmostEqual(z[0,0], -101.7, 1)  # Seeded at seafloor depth
        self.assertAlmostEqual(z[-1,0], -44.3, 1)  # After some rising
예제 #5
0
 def test_seed_below_reader_coverage(self):
     o = OpenOil3D(loglevel=0)
     reader_norkyst = reader_netCDF_CF_generic.Reader(
         o.test_data_folder() +
         '14Jan2016_NorKyst_z_3d/NorKyst-800m_ZDEPTHS_his_00_3Dsubset.nc')
     o.fallback_values['land_binary_mask'] = 0
     o.add_reader([reader_norkyst])
     lon = 5.0
     lat = 64.0
     o.seed_elements(lon,
                     lat,
                     z=-350,
                     time=reader_norkyst.start_time,
                     density=1000)
     #o.set_config('turbulentmixing:TSprofiles', True)
     o.set_config('processes:turbulentmixing', True)
     o.set_config('turbulentmixing:verticalresolution', 1)  # m
     o.set_config('turbulentmixing:timestep', 1)  # s
     o.set_config('input:spill:droplet_diameter_min_subsea', 0.005)
     o.set_config('input:spill:droplet_diameter_max_subsea', 0.005)
     o.run(steps=3, time_step=300, time_step_output=300)
     z, status = o.get_property('z')
     self.assertAlmostEqual(z[-1, 0], -307.0, 2)  # After some rising
예제 #6
0
 def test_vertical_mixing_plantoil(self):
     #######################################################
     # 2.5m Hs, 10 mum radius (PlantOil)
     # Benchmark test from Jones et al. (2016)
     # NB: Entrainment length scale is not varied as in paper
     o = OpenOil3D(loglevel=30, weathering_model='default')
     o.fallback_values['land_binary_mask'] = 0
     o.fallback_values['sea_surface_wave_period_at_variance_spectral_density_maximum'] = 5.8
     o.fallback_values['sea_surface_wave_significant_height'] = 2.5
     o.fallback_values['x_wind'] = 10
     o.fallback_values['y_wind'] = 0
     o.fallback_values['x_sea_water_velocity'] = 0
     o.fallback_values['y_sea_water_velocity'] = 0
     o.seed_elements(4, 60, number=1000, diameter=0.00002,  # r = 10 micron
                     density=865, time=datetime.now(),
                     entrainment_length_scale=0.01)
     o.set_config('turbulentmixing:timestep', 4)
     o.run(duration=timedelta(hours=2), time_step_output=900, time_step=900)
     #o.plot_property('z')
     #o.plot_vertical_distribution()
     #o.animation_profile()
     # Check minimum depth
     self.assertAlmostEqual(o.elements.z.min(), -46.4, 1)
예제 #7
0
 def test_seed_outside_coverage(self):
     """Test seeding"""
     o = OpenOil3D(loglevel=0)
     norkyst = reader_netCDF_CF_generic.Reader(
         o.test_data_folder() +
         '14Jan2016_NorKyst_z_3d/NorKyst-800m_ZDEPTHS_his_00_3Dsubset.nc')
     landmask = reader_global_landmask.Reader(llcrnrlon=4,
                                              llcrnrlat=60,
                                              urcrnrlon=6,
                                              urcrnrlat=64)
     o.add_reader([landmask, norkyst])
     o.fallback_values['x_wind'] = 0
     o.fallback_values['y_wind'] = 0
     o.set_config('seed:oil_type', 'SNORRE B')
     o.seed_elements(5,
                     63,
                     number=5,
                     time=norkyst.start_time - 24 * timedelta(hours=24))
     # Check that the oiltype is taken from config
     self.assertEqual(o.oil_name, o.get_config('seed:oil_type'))
     self.assertEqual(o.oil_name, 'SNORRE B')
     with self.assertRaises(ValueError):
         o.run(steps=3, time_step=timedelta(minutes=15))
예제 #8
0
    def run_opendrift(self):
        sys.stdout.write('running OpenDrift')
        try:
            self.budgetbutton.destroy()
        except Exception as e:
            print(e)
            pass
        month = np.int(self.months.index(self.monthvar.get()) + 1)
        start_time = datetime(np.int(self.yearvar.get()), month,
                              np.int(self.datevar.get()),
                              np.int(self.hourvar.get()),
                              np.int(self.minutevar.get()))
        emonth = np.int(self.months.index(self.emonthvar.get()) + 1)
        end_time = datetime(np.int(self.eyearvar.get()), emonth,
                            np.int(self.edatevar.get()),
                            np.int(self.ehourvar.get()),
                            np.int(self.eminutevar.get()))
        sys.stdout.flush()
        lon = np.float(self.lon.get())
        lat = np.float(self.lat.get())
        radius = np.float(self.radius.get())
        elon = np.float(self.elon.get())
        elat = np.float(self.elat.get())
        eradius = np.float(self.eradius.get())
        if lon != elon or lat != elat or start_time != end_time:
            lon = [lon, elon]
            lat = [lat, elat]
            radius = [radius, eradius]
            start_time = [start_time, end_time]
            cone = True
        else:
            cone = False
        if self.model.get() == 'Leeway':
            o = Leeway(loglevel=0)
            for ln, lc in enumerate(self.leewaycategories):
                if self.oljetype.get() == lc.strip().replace('>', ''):
                    print('Leeway object category: ' + lc)
                    break
            o.seed_elements(lon=lon,
                            lat=lat,
                            number=5000,
                            radius=radius,
                            time=start_time,
                            objectType=ln + 1)
        if self.model.get() == 'OpenOil':
            o = OpenOil3D(weathering_model='noaa', loglevel=0)
            o.seed_elements(lon=lon,
                            lat=lat,
                            number=5000,
                            radius=radius,
                            time=start_time,
                            cone=cone,
                            oiltype=self.oljetype.get())

        o.add_readers_from_file(o.test_data_folder() +
                                '../../opendrift/scripts/data_sources.txt')
        o.set_config('general:basemap_resolution', 'h')

        time_step = 1800  # Half hour
        duration = int(self.durationhours.get()) * 3600 / time_step
        if self.directionvar.get() == 'backwards':
            time_step = -time_step
        if self.has_diana is True:
            extra_args = {
                'outfile':
                self.outputdir + '/opendrift_' + self.model.get() +
                o.start_time.strftime('_%Y%m%d_%H%M.nc')
            }
        else:
            extra_args = {}

        mapres = self.mapresvar.get()[0]
        o.set_config('general:basemap_resolution', mapres)

        o.run(steps=duration,
              time_step=time_step,
              time_step_output=time_step,
              **extra_args)
        print(o)

        if self.has_diana is True:
            diana_filename = self.dianadir + '/opendrift_' + \
                self.model.get() + o.start_time.strftime(
                                '_%Y%m%d_%H%M.nc')
            o.write_netcdf_density_map(diana_filename)
            tk.Button(self.master,
                      text='Show in Diana',
                      command=lambda: os.system('diana &')).grid(row=8,
                                                                 column=2,
                                                                 sticky=tk.W,
                                                                 pady=4)
        tk.Button(self.master, text='Animation',
                  command=o.animation).grid(row=8,
                                            column=3,
                                            sticky=tk.W,
                                            pady=4)
        if self.model.get() == 'OpenOil':
            self.budgetbutton = tk.Button(self.master,
                                          text='Oil Budget',
                                          command=o.plot_oil_budget)
            self.budgetbutton.grid(row=8, column=4, sticky=tk.W, pady=4)
예제 #9
0
import matplotlib.pyplot as plt
import numpy as np
from opendrift.models.openoil3D import OpenOil3D

number = 10000
timestep = timedelta(minutes=10)
timestep_output = timedelta(minutes=60)
duration = timedelta(hours=20)
mass_oil = 2000  # mass oil per particle
oiltype = '*GENERIC DIESEL'
#oiltype = '*GENERIC BUNKER C'

####################################################
# First run, where surface oil thickness is updated
####################################################
o1 = OpenOil3D(loglevel=30, weathering_model='noaa')
# Northwards wind, eastwards current
o1.fallback_values['land_binary_mask'] = 0
o1.fallback_values['x_wind'] = 0
o1.fallback_values['y_wind'] = 7
o1.fallback_values['sea_surface_wave_stokes_drift_x_velocity'] = 0
o1.fallback_values['sea_surface_wave_stokes_drift_y_velocity'] = .3
o1.fallback_values['x_sea_water_velocity'] = .1
o1.fallback_values['y_sea_water_velocity'] = 0
# Using Johansen droplet spectrum, which depends on oil film thickness
o1.set_config('wave_entrainment:droplet_size_distribution',
              'Johansen et al. (2015)')
o1.set_config('drift:wind_uncertainty', 2)
o1.set_config('drift:current_uncertainty', .1)
o1.set_config('processes:dispersion', False)
o1.set_config('processes:update_oilfilm_thickness', True)
예제 #10
0
print('\n')

print('Test 1: generation of landmask instance at full resolution')
print('  54.0 seconds on reference machine.')
start_time = datetime.now()
reader_landmask = reader_global_landmask.Reader(llcrnrlon=5,
                                                llcrnrlat=59.8,
                                                urcrnrlon=5.5,
                                                urcrnrlat=60.3)
time_spent = datetime.now() - start_time
print('%6.1f seconds on this machine' % time_spent.total_seconds())

print('------------------------------------------------')
print('Test 2: Reading from netCDF file')
print('  0.05 seconds on reference machine.')
o = OpenOil3D(loglevel=50)  # Quiet
reader_arctic = reader_netCDF_CF_generic.Reader(
    o.test_data_folder() + '2Feb2016_Nordic_sigma_3d/Arctic20_1to5Feb_2016.nc')
x = reader_arctic.x[10:12]
y = reader_arctic.y[10:12]
z = np.array([-20, -10])
variables = [
    'sea_surface_elevation', 'sea_ice_area_fraction',
    'barotropic_sea_water_x_velocity', 'y_sea_water_velocity',
    'sea_floor_depth_below_sea_level', 'sea_water_salinity',
    'x_sea_water_velocity', 'barotropic_sea_water_y_velocity',
    'sea_water_temperature', 'sea_ice_thickness'
]
reader_arctic.buffer = 1000  # read all
reader_arctic.verticalbuffer = 1000  # read all
start_time = datetime.now()
예제 #11
0
#!/usr/bin/env python
"""
Oil budget (NOAA)
==================================
"""

from datetime import datetime
from opendrift.readers import reader_netCDF_CF_generic
from opendrift.models.openoil3D import OpenOil3D

o = OpenOil3D(loglevel=20, weathering_model='noaa')

# Using constand wind and current
#o.fallback_values['x_wind'] = 7
#o.fallback_values['x_sea_water_velocity'] = .7
#o.fallback_values['y_sea_water_velocity'] = .3
#o.fallback_values['land_binary_mask'] = 0

# Arome atmospheric model
reader_arome = reader_netCDF_CF_generic.Reader(o.test_data_folder() + '16Nov2015_NorKyst_z_surface/arome_subset_16Nov2015.nc')
# Norkyst ocean model
reader_norkyst = reader_netCDF_CF_generic.Reader(o.test_data_folder() + '16Nov2015_NorKyst_z_surface/norkyst800_subset_16Nov2015.nc')

o.add_reader([reader_arome, reader_norkyst])

#%%
# Seeding some particles
#oiltype='GULLFAKS, EXXON'
#oiltype='ALGERIAN CONDENSATE'
oiltype='MARTIN LINGE CRUDE 2016'
o.seed_elements(lon=4.88, lat=60.1, z=0, radius=3000, number=500,
예제 #12
0
    def run_opendrift(self):
        sys.stdout.write('running OpenDrift')
        try:
            self.budgetbutton.destroy()
        except Exception as e:
            print(e)
            pass
        month = np.int(self.months.index(self.monthvar.get()) + 1)
        start_time = datetime(np.int(self.yearvar.get()), month,
                              np.int(self.datevar.get()),
                              np.int(self.hourvar.get()),
                              np.int(self.minutevar.get()))
        emonth = np.int(self.months.index(self.emonthvar.get()) + 1)
        end_time = datetime(np.int(self.eyearvar.get()), emonth,
                            np.int(self.edatevar.get()),
                            np.int(self.ehourvar.get()),
                            np.int(self.eminutevar.get()))
        sys.stdout.flush()
        lon = np.float(self.lon.get())
        lat = np.float(self.lat.get())
        radius = np.float(self.radius.get())
        elon = np.float(self.elon.get())
        elat = np.float(self.elat.get())
        eradius = np.float(self.eradius.get())
        if lon != elon or lat != elat or start_time != end_time:
            lon = [lon, elon]
            lat = [lat, elat]
            radius = [radius, eradius]
            start_time = [start_time, end_time]
            cone = True
        else:
            cone = False

        if self.model.get() == 'Leeway':
            self.o = Leeway(loglevel=0)
            #for ln, lc in enumerate(self.leewaycategories):
            #    if self.oljetype.get() == lc.strip().replace('>', ''):
            #        print('Leeway object category: ' + lc)
            #        break
            #extra_seed_args = {'objectType': ln + 1}
        elif self.model.get() == 'OpenOil':
            self.o = OpenOil3D(weathering_model='noaa', loglevel=0)
            #extra_seed_args = {'oiltype': self.oljetype.get()}
        elif self.model.get() == 'ShipDrift':
            self.o = ShipDrift(loglevel=0)

        extra_seed_args = {}
        for se in self.seed_input:
            if se == 'ocean_only':
                continue  # To be fixed/removed
            val = self.seed_input[se].get()
            try:
                extra_seed_args[se] = np.float(val)
            except:
                extra_seed_args[se] = val
            self.o.set_config('seed:' + se, val)
        if 'object_type' in extra_seed_args:
            extra_seed_args['objectType'] = extra_seed_args['object_type']
            del extra_seed_args['object_type']

        extra_seed_args = {}
        self.o.seed_elements(lon=lon,
                             lat=lat,
                             number=5000,
                             radius=radius,
                             time=start_time,
                             cone=cone,
                             **extra_seed_args)

        self.o.add_readers_from_file(
            self.o.test_data_folder() +
            '../../opendrift/scripts/data_sources.txt')

        #time_step = o.get_config('general:time_step_minutes')*60
        time_step = 900  # 15 minutes
        time_step_output = timedelta(minutes=30)
        duration = int(self.durationhours.get()) * 3600 / time_step
        if self.directionvar.get() == 'backwards':
            time_step = -time_step
        if self.has_diana is True:
            extra_args = {
                'outfile':
                self.outputdir + '/opendrift_' + self.model.get() +
                self.o.start_time.strftime('_%Y%m%d_%H%M.nc')
            }
        else:
            extra_args = {}

        mapres = self.mapresvar.get()[0]
        self.o.set_config('general:basemap_resolution', mapres)
        self.simulationname = 'opendrift_' + self.model.get() + \
            self.o.start_time.strftime('_%Y%m%d_%H%M')

        # Starting simulation run
        self.o.run(steps=duration,
                   time_step=time_step,
                   time_step_output=time_step_output,
                   **extra_args)
        print(self.o)

        self.results.destroy()
        self.results = tk.Frame(self.seed,
                                bd=2,
                                relief=tk.FLAT,
                                padx=5,
                                pady=0)
        self.results.grid(row=7, column=3, columnspan=1, sticky='ew')
        tk.Button(self.results,
                  text='Show animation',
                  command=lambda: self.handle_result('showanimation')).grid(
                      row=1, column=1)
        tk.Button(self.results,
                  text='Save animation',
                  command=lambda: self.handle_result('saveanimation')).grid(
                      row=2, column=1)
        tk.Button(self.results,
                  text='Show plot',
                  command=lambda: self.handle_result('showplot')).grid(
                      row=3, column=1)
        tk.Button(self.results,
                  text='Save plot',
                  command=lambda: self.handle_result('saveplot')).grid(
                      row=4, column=1)
        if self.model.get() == 'OpenOil':
            tk.Button(
                self.results,
                text='Save oil budget',
                command=lambda: self.handle_result('saveoilbudget')).grid(
                    row=5, column=1)
            tk.Button(
                self.results,
                text='Show oil budget',
                command=lambda: self.handle_result('showoilbudget')).grid(
                    row=6, column=1)

        if self.has_diana is True:
            diana_filename = self.dianadir + self.simulationname + '.nc'
            self.o.write_netcdf_density_map(diana_filename)
            tk.Button(self.results,
                      text='Show in Diana',
                      command=lambda: os.system('diana &')).grid(row=8,
                                                                 column=1)
예제 #13
0
    def test_vertical_mixing(self):
        """Testing vertical mixing scheme

        The OpenOil3D model is run with various wind speeds,
        oil droplet diameters and time steps.
        The maximum depth of the particles is checked for sanity."""

        ########################################################
        # No wind/waves (i.e. no mixing)
        o = OpenOil3D(loglevel=20, weathering_model='default')
        o.fallback_values['land_binary_mask'] = 0
        o.seed_elements(4, 60, number=100, time=datetime.now())
        o.set_config('turbulentmixing:timestep', 5)
        o.run(steps=4 * 2, time_step_output=3600, time_step=900)
        self.assertEqual(o.elements.z.min(), 0)  # No entrainment
        ########################################################

        ########################################################
        ## 2.5m Hs, 50 mum droplet radius (Oil Emulsion)
        ## Benchmark test from Jones et al. (2016)
        ## NB: Entrainment length scale is not varied as in paper
        ## entrainment_length_scale (L)
        ## L = 0.01  for Plant oil, and L = 0.1 for Emulsion
        #o = OpenOil3D(loglevel=0, weathering_model='default')
        #o.fallback_values['land_binary_mask'] = 0
        #o.fallback_values['sea_surface_wave_period_at_variance_spectral_density_maximum'] = 5.8
        #o.fallback_values['sea_surface_wave_significant_height'] = 2.5
        #o.seed_elements(4, 60, number=1000, diameter=0.0001, # r = 50 micron
        #                density=865, time=datetime.now())
        #o.set_config('turbulentmixing:verticalresolution', 2)
        #o.set_config('turbulentmixing:timestep', 4)
        #o.run(duration=timedelta(hours=2), time_step_output=900, time_step=900)
        ##o.plot_property('z')
        ##o.plot_vertical_distribution()
        ##o.animation_profile()
        ## Check minimum depth
        #self.assertAlmostEqual(o.elements.z.min(), -46.0, 1)
        ########################################################

        #######################################################
        # 2.5m Hs, 10 mum radius (PlantOil)
        # Benchmark test from Jones et al. (2016)
        # NB: Entrainment length scale is not varied as in paper
        o = OpenOil3D(loglevel=20, weathering_model='default')
        o.fallback_values['land_binary_mask'] = 0
        o.fallback_values[
            'sea_surface_wave_period_at_variance_spectral_density_maximum'] = 5.8
        o.fallback_values['sea_surface_wave_significant_height'] = 2.5
        o.seed_elements(
            4,
            60,
            number=1000,
            diameter=0.00002,  # r = 10 micron
            density=865,
            time=datetime.now(),
            entrainment_length_scale=0.01)
        o.set_config('turbulentmixing:verticalresolution', 2)
        o.set_config('turbulentmixing:timestep', 4)
        o.run(duration=timedelta(hours=2), time_step_output=900, time_step=900)
        #o.plot_property('z')
        #o.plot_vertical_distribution()
        #o.animation_profile()
        # Check minimum depth
        self.assertAlmostEqual(o.elements.z.min(), -58, 1)
        #######################################################

        #######################################################
        # Same as above, but parameterising waves from wind
        o = OpenOil3D(loglevel=20, weathering_model='default')
        o.fallback_values['land_binary_mask'] = 0
        o.fallback_values['x_wind'] = 10
        o.seed_elements(
            4,
            60,
            number=1000,
            diameter=0.00002,  # r = 10 micron
            density=865,
            time=datetime.now(),
            entrainment_length_scale=0.01)
        o.set_config('turbulentmixing:verticalresolution', 2)
        o.set_config('turbulentmixing:timestep', 4)
        o.run(duration=timedelta(hours=2), time_step_output=900, time_step=900)
        #o.plot_vertical_distribution()
        self.assertAlmostEqual(o.elements.z.min(), -52.0, 1)
        #######################################################

        ########################################################
        ## Repeating last run, but with larger major (outer) time step
        ## Max mixing depth is expected to be same, but is slightly different
        ## This test is made to pass, but results should be checked
        o = OpenOil3D(loglevel=20, weathering_model='default')
        o.fallback_values['land_binary_mask'] = 0
        o.fallback_values['x_wind'] = 10
        o.seed_elements(
            4,
            60,
            number=1000,
            diameter=0.00002,  # r = 10 micron
            density=865,
            time=datetime.now(),
            entrainment_length_scale=0.01)
        o.set_config('turbulentmixing:verticalresolution', 2)
        o.set_config('turbulentmixing:timestep', 4)
        o.run(duration=timedelta(hours=2),
              time_step_output=1800,
              time_step=1800)
        #o.plot_vertical_distribution()
        self.assertAlmostEqual(o.elements.z.min(), -60.0, 1)
예제 #14
0
from datetime import datetime, timedelta
from opendrift.models.openoil3D import OpenOil3D
from opendrift.readers import reader_netCDF_CF_generic

if __name__ == '__main__':

    if len(sys.argv) == 1:
        mode = 'fast'
    if len(sys.argv) == 2:
        mode = sys.argv[1]
        if mode not in ['fast', 'slow']:
            sys.exit('Usage: %s [fast|slow]' % sys.argv[0])
    if len(sys.argv) > 2:
        sys.exit('Usage: %s [fast|slow]' % sys.argv[0])

    o = OpenOil3D(weathering_model='default')

    readers_thredds = [  # Note that order (priority) is important!
        'https://thredds.met.no/thredds/dodsC/metusers/knutfd/thredds/case_1_mar_2017/NorKyst-800m_ZDEPTHS_his_00_1March2017.nc',
        'https://thredds.met.no/thredds/dodsC/metusers/knutfd/thredds/case_1_mar_2017/Nordic-4km_ZDEPTHS_avg_00.nc',
        'https://thredds.met.no/thredds/dodsC/metusers/knutfd/thredds/case_1_mar_2017/meps_mbr0_pp_2_5km_20170301T00Z.nc',
        'https://thredds.met.no//thredds/dodsC/metusers/knutfd/thredds/case_1_mar_2017/MyWave_wam4_WAVE_20170301T00Z.nc',
        'https://thredds.met.no//thredds/dodsC/metusers/knutfd/thredds/case_1_mar_2017/MyWave_wam4_RAD_20170301T00Z.nc',
        ]

    readers_local = [  # Note that order (priority) is important!
        o.test_data_folder() + '16Nov2015_NorKyst_z_surface/norkyst800_subset_16Nov2015.nc',
        o.test_data_folder() + '16Nov2015_NorKyst_z_surface/arome_subset_16Nov2015.nc']


    if mode == 'slow':
예제 #15
0
파일: newgui.py 프로젝트: vsoch/opendrift
    def run_opendrift(self):
        sys.stdout.write('running OpenDrift')
        try:
            self.budgetbutton.destroy()
        except Exception as e:
            print e
            pass
        month = np.int(self.months.index(self.monthvar.get()) + 1)
        start_time = datetime(np.int(self.yearvar.get()), month,
                              np.int(self.datevar.get()),
                              np.int(self.hourvar.get()),
                              np.int(self.minutevar.get()))
        emonth = np.int(self.months.index(self.emonthvar.get()) + 1)
        end_time = datetime(np.int(self.eyearvar.get()), emonth,
                            np.int(self.edatevar.get()),
                            np.int(self.ehourvar.get()),
                            np.int(self.eminutevar.get()))
        sys.stdout.flush()
        lon = np.float(self.lon.get())
        lat = np.float(self.lat.get())
        radius = np.float(self.radius.get())
        elon = np.float(self.elon.get())
        elat = np.float(self.elat.get())
        eradius = np.float(self.eradius.get())
        if lon != elon or lat != elat or start_time != end_time:
            lon = [lon, elon]
            lat = [lat, elat]
            radius = [radius, eradius]
            start_time = [start_time, end_time]
            cone = True
        else:
            cone = False
        if self.model.get() == 'Leeway':
            o = Leeway(loglevel=0)
            for ln, lc in enumerate(self.leewaycategories):
                if self.oljetype.get() == lc.strip().replace('>', ''):
                    print 'Leeway object category: ' + lc
                    break
            o.seed_elements(lon=lon,
                            lat=lat,
                            number=5000,
                            radius=radius,
                            time=start_time,
                            objectType=ln + 1)
        if self.model.get() == 'OpenOil':
            o = OpenOil3D(weathering_model='noaa', loglevel=0)
            o.seed_elements(lon=lon,
                            lat=lat,
                            number=5000,
                            radius=radius,
                            time=start_time,
                            cone=cone,
                            oiltype=self.oljetype.get())

        readers = [  # Note that order (priority) is important!
            '/lustre/storeA/project/copernicus/sea/romsnorkyst/zdepths1h/*fc*.nc',
            'http://thredds.met.no/thredds/dodsC/sea/norkyst800m/1h/aggregate_be',
            '/lustre/storeA/project/copernicus/sea/romsnordic/zdepths1h/roms_nordic4_ZDEPTHS_hr.fc.*.nc',
            'http://thredds.met.no/thredds/dodsC/sea/nordic4km/zdepths1h/aggregate_be',
            '/lustre/storeA/project/metproduction/products/meps/symlinks/thredds/meps_det_pp_2_5km_latest.nc',
            'http://thredds.met.no/thredds/dodsC/meps25files/meps_det_pp_2_5km_latest.nc',
            '/lustre/storeA/project/metproduction/products/arome2_5_arctic/thredds/arome_arctic_pp_2_5km_latest.nc',
            'http://thredds.met.no/thredds/dodsC/aromearcticlatest/arome_arctic_pp_2_5km_latest.nc',
            '/lustre/storeA/project/copernicus/sea/mywavewam4/*fc*.nc',
            'http://thredds.met.no/thredds/dodsC/sea/mywavewam4/mywavewam4_be',
            'http://tds.hycom.org/thredds/dodsC/GLBu0.08/expt_91.2/uv3z',
            'http://oos.soest.hawaii.edu/thredds/dodsC/hioos/model/atm/ncep_global/NCEP_Global_Atmospheric_Model_best.ncd'
        ]
        o.add_readers_from_list(readers)
        o.set_config('general:basemap_resolution', 'h')

        time_step = 1800  # Half hour
        duration = int(self.durationhours.get()) * 3600 / time_step
        if self.directionvar.get() == 'backwards':
            time_step = -time_step
        if self.has_diana is True:
            extra_args = {
                'outfile':
                self.outputdir + '/opendrift_' + self.model.get() +
                o.start_time.strftime('_%Y%m%d_%H%M.nc')
            }
        else:
            extra_args = {}

        mapres = self.mapresvar.get()[0]
        o.set_config('general:basemap_resolution', mapres)

        o.run(steps=duration,
              time_step=time_step,
              time_step_output=time_step,
              **extra_args)
        print o

        if self.has_diana is True:
            diana_filename = self.dianadir + '/opendrift_' + \
                self.model.get() + o.start_time.strftime(
                                '_%Y%m%d_%H%M.nc')
            o.write_netcdf_density_map(diana_filename)
            tk.Button(self.seed,
                      text='Show in Diana',
                      command=lambda: os.system('diana &')).grid(row=8,
                                                                 column=2,
                                                                 sticky=tk.W,
                                                                 pady=4)
        tk.Button(self.seed, text='Animation',
                  command=o.animation).grid(row=8,
                                            column=3,
                                            sticky=tk.W,
                                            pady=4)
        if self.model.get() == 'OpenOil':
            self.budgetbutton = tk.Button(self.seed,
                                          text='Oil Budget',
                                          command=o.plot_oil_budget)
            self.budgetbutton.grid(row=8, column=4, sticky=tk.W, pady=4)
예제 #16
0
파일: newgui.py 프로젝트: vsoch/opendrift
    def set_model(self, model):
        if model == 'OpenOil':
            self.categoryLabel['text'] = 'Oil type'
            self.oljetype.set('')
            self.o = OpenOil3D(weathering_model='noaa', location='NORWAY')
            self.categorydrop['values'] = self.o.oiltypes
            self.oljetype.set(self.o.oiltypes[0])
        elif model == 'Leeway':
            self.categoryLabel['text'] = 'Object type'
            self.oljetype.set('')
            self.o = Leeway()
            self.leewaycategories = [
                self.o.leewayprop[c]['Description'].strip().replace('>', '')
                for c in self.o.leewayprop
            ]
            self.categorydrop['values'] = self.leewaycategories
            self.oljetype.set(self.leewaycategories[0])
        elif model == 'ShipDrift':
            self.categoryLabel['text'] = 'Object type'
            self.oljetype.set('')
            self.o = ShipDrift()

        print dir(self.config)
        for con in self.config.winfo_children():
            con.destroy()
        self.con = tk.Label(self.config, text="\n\nConfiguration\n\n")
        self.con.grid(row=0, column=1, rowspan=1)
        print dir(self.config)
        for i, cs in enumerate(self.o._config_hashstrings()):
            tk.Label(self.config, text=cs).grid(row=i, column=1, rowspan=1)

        print 'Setting model: ' + model
        print self.o.list_configspec()
        #default, minimum, maximum, options = self.o.get_configspec_default_min_max('seed:oil_type')
        #print default
        sc = self.o.get_seed_config()
        print sc
        self.seed_input = {}
        self.seed_input_var = {}
        self.seed_input_label = {}
        self.seed_frame.destroy()
        self.seed_frame = tk.Frame(self.seed,
                                   bd=2,
                                   relief=tk.FLAT,
                                   padx=5,
                                   pady=0)
        self.seed_frame.grid(row=4, columnspan=8, sticky='nsew')
        # FIND
        for num, i in enumerate(sc):
            self.seed_input_label[i] = tk.Label(self.seed_frame, text=i + '\t')
            self.seed_input_label[i].grid(row=num, column=0)
            self.seed_input_var[i] = tk.StringVar()
            if type(sc[i]['options']) is list:
                self.seed_input[i] = ttk.Combobox(
                    self.seed_frame,
                    width=50,
                    textvariable=self.seed_input_var[i],
                    values=sc[i]['options'])
                self.seed_input_var[i].set(sc[i]['default'])
            else:
                self.seed_input[i] = tk.Entry(
                    self.seed_frame,
                    textvariable=self.seed_input_var[i],
                    width=6,
                    justify=tk.RIGHT)
                self.seed_input[i].insert(0, sc[i]['default'])
            self.seed_input[i].grid(row=num, column=1)
예제 #17
0
    '/lustre/storeB/project/copernicus/sea/romsnordic/zdepths1h/roms_nordic4_ZDEPTHS_hr.fc.*.nc',
    'https://thredds.met.no/thredds/dodsC/sea/nordic4km/zdepths1h/aggregate_be',
    '/lustre/storeB/project/metproduction/products/meps/symlinks/thredds/meps_lagged_6_h_latest_2_5km_latest.nc',
    'https://thredds.met.no/thredds/dodsC/mepslatest/meps_lagged_6_h_latest_2_5km_latest.nc',
    '/lustre/storeB/project/metproduction/products/arome2_5_arctic/thredds/arome_arctic_pp_2_5km_latest.nc',
    'https://thredds.met.no/thredds/dodsC/aromearcticlatest/arome_arctic_pp_2_5km_latest.nc',
    '/lustre/storeA/project/copernicus/sea/mywavewam4/*fc*.nc',
    'https://thredds.met.no/thredds/dodsC/sea/mywavewam4/mywavewam4_be',
    'https://thredds.met.no/example_of_nonexisting_url.nc',
    'example_of_nonexisting_file']

for case in ['oil', 'leeway']:  # test two models
    for timestep in [900, -900]:  # forwards and backwards
        for z in [0, -200]:  # seeding at sea surface and at 200 m depth
            if case == 'oil':
                o = OpenOil3D(weathering_model='noaa')
                args = {'oiltype': 'IVAR AASEN 2012',
                #args = {'oiltype': 'WISTING',
                        'z': z}
            else:
                if z < 0:
                    continue  # Only surface seeding for Leeway
                o = Leeway()
                args = {'objectType': 32}

            o.add_readers_from_list(readers, timeout=5)
            print(o)

            #lons=[-0.8, 0.4]; lats=[59.9, 59.95] # NorKyst border
            #lons=[4.8, 5.1]; lats=[59.9, 59.95] # Western Norway coast
            #lons=[13.11, 13.13]; lats=[67.81, 67.80] # Lofoten
예제 #18
0
#!/usr/bin/env python

from datetime import timedelta

from opendrift.readers import reader_basemap_landmask
from opendrift.readers import reader_netCDF_CF_generic
from opendrift.models.openoil3D import OpenOil3D

o = OpenOil3D(loglevel=0)

# Arome
reader_arome = reader_netCDF_CF_generic.Reader(o.test_data_folder() + 
    '16Nov2015_NorKyst_z_surface/arome_subset_16Nov2015.nc')
#reader_arome = reader_netCDF_CF_generic.Reader('http://thredds.met.no/thredds/dodsC/arome25/arome_metcoop_default2_5km_latest.nc')

# Norkyst
#reader_norkyst = reader_netCDF_CF_generic.Reader(o.test_data_folder() + 
#    '16Nov2015_NorKyst_z_surface/norkyst800_subset_16Nov2015.nc')
#reader_norkyst = reader_netCDF_CF_generic.Reader('http://thredds.met.no/thredds/dodsC/sea/norkyst800m/1h/aggregate_be')

# Landmask (Basemap)
reader_basemap = reader_basemap_landmask.Reader(
                    llcrnrlon=4, llcrnrlat=59.7,
                    urcrnrlon=7, urcrnrlat=61.5,
                    resolution='h', projection='merc')

#o.add_reader([reader_basemap, reader_norkyst, reader_arome])
o.fallback_values['x_wind'] = 7
o.fallback_values['x_sea_water_velocity'] = .7
o.fallback_values['y_sea_water_velocity'] = .3
#o.fallback_values['land_binary_mask'] = 0
예제 #19
0
    def __init__(self):

        # Available models
        self.available_models = opendrift.get_model_names()

        tk.Tk.__init__(self)

        ##################
        # Layout frames
        ##################
        self.n = ttk.Notebook(self.master)
        self.n.grid()
        self.seed = ttk.Frame(self.n)
        self.config = ttk.Frame(self.n)
        self.n.add(self.seed, text='Seeding')
        self.n.add(self.config, text='Config')

        # Top
        self.top = tk.Frame(self.seed, relief=tk.FLAT, pady=25, padx=25)
        self.top.grid(row=0, column=1, rowspan=1)
        # Config
        self.con = tk.Label(self.config, text="\n\nConfiguration\n\n")
        self.con.grid(row=0, column=1, rowspan=1)
        # Time start and end
        self.start_t = tk.Frame(self.seed, relief=tk.FLAT)
        self.start_t.grid(row=2, column=0, rowspan=1)
        self.end_t = tk.Frame(self.seed, relief=tk.FLAT)
        self.end_t.grid(row=3, column=0, rowspan=1)
        self.start = tk.Frame(self.seed,
                              bg='lightgray',
                              bd=2,
                              relief=tk.SUNKEN,
                              pady=5,
                              padx=5)
        self.start.grid(row=2, column=1, rowspan=1)
        self.end = tk.Frame(self.seed,
                            bg='gray',
                            bd=2,
                            relief=tk.SUNKEN,
                            padx=5,
                            pady=5)
        self.end.grid(row=3, column=1)
        self.coastline = tk.Frame(self.seed,
                                  bd=2,
                                  relief=tk.FLAT,
                                  padx=5,
                                  pady=0)
        self.coastline.grid(row=4, column=1)
        self.duration = tk.Frame(self.seed,
                                 bd=2,
                                 relief=tk.FLAT,
                                 padx=5,
                                 pady=5)
        self.duration.grid(row=5, column=1)
        self.output = tk.Frame(self.seed, bd=2, relief=tk.FLAT, padx=5, pady=0)
        self.output.grid(row=7, column=0, columnspan=7, sticky='nsew')

        self.results = tk.Frame(self.seed,
                                bd=2,
                                relief=tk.FLAT,
                                padx=5,
                                pady=0)
        self.results.grid(row=6, column=7, columnspan=1, sticky='ew')

        ##########################
        self.title('OpenDrift')
        self.o = OpenOil3D(weathering_model='noaa', location='NORWAY')
        try:
            img = ImageTk.PhotoImage(
                Image.open(self.o.test_data_folder() +
                           '../../docs/opendrift_logo.png'))
            panel = tk.Label(self.seed, image=img)
            panel.image = img
            panel.grid(row=0, column=0)
        except:
            pass  # Could not display logo
        #######################################################
        tk.Label(self.top, text='Simulation type').grid(row=0, column=0)
        self.model = tk.StringVar()
        models = opendrift.get_model_names()
        self.model.set(models[0])
        self.modeldrop = tk.OptionMenu(self.top,
                                       self.model,
                                       *(models),
                                       command=self.set_model)
        self.modeldrop.grid(row=0, column=1)

        help_button = tk.Button(self.top, text='Help', command=self.show_help)
        help_button.grid(row=0, column=2, padx=50)

        ##########
        # Release
        ##########
        startlabel = tk.Label(self.start_t, text="\n\nStart release\n\n")
        startlabel.grid(row=0, column=0)

        tk.Label(self.start, text='Longitude').grid(row=0, column=1)
        tk.Label(self.start, text='Latitude').grid(row=0, column=0)
        tk.Label(self.start, text='Radius [m]').grid(row=0, column=2)
        self.latvar = tk.StringVar()
        self.lonvar = tk.StringVar()
        self.radiusvar = tk.StringVar()
        self.lat = tk.Entry(self.start,
                            textvariable=self.latvar,
                            width=6,
                            justify=tk.RIGHT)
        self.lon = tk.Entry(self.start,
                            textvariable=self.lonvar,
                            width=6,
                            justify=tk.RIGHT)
        self.radius = tk.Entry(self.start,
                               width=6,
                               textvariable=self.radiusvar,
                               justify=tk.RIGHT)
        self.lon.grid(row=1, column=1)
        self.lon.insert(0, '4.5')
        self.lat.grid(row=1, column=0)
        self.lat.insert(0, '60.0')
        self.radius.grid(row=1, column=2)
        self.radius.insert(0, '1000')
        self.lonvar.trace('w', self.copy_position)
        self.latvar.trace('w', self.copy_position)
        self.radiusvar.trace('w', self.copy_position)
        ##########
        # Time
        ##########
        now = datetime.utcnow()
        tk.Label(self.start, text='Day').grid(row=2, column=0)
        tk.Label(self.start, text='Month').grid(row=2, column=1)
        tk.Label(self.start, text='Year').grid(row=2, column=2)
        tk.Label(self.start, text='Hour').grid(row=2, column=3)
        tk.Label(self.start, text='Minutes [UTC]').grid(row=2, column=4)
        self.datevar = tk.StringVar()
        self.dates = range(1, 32)
        self.datevar.set(now.day)
        self.date = tk.OptionMenu(self.start, self.datevar, *self.dates)
        self.date.grid(row=3, column=0)

        self.monthvar = tk.StringVar()
        self.months = [
            'January', 'February', 'March', 'April', 'May', 'June', 'July',
            'August', 'September', 'October', 'November', 'December'
        ]
        self.monthvar.set(self.months[now.month - 1])
        self.month = tk.OptionMenu(self.start, self.monthvar, *self.months)
        self.month.grid(row=3, column=1)

        self.yearvar = tk.StringVar()
        self.years = range(2015, now.year + 1)
        self.yearvar.set(now.year)
        self.year = tk.OptionMenu(self.start, self.yearvar, *self.years)
        self.year.grid(row=3, column=2)

        self.hourvar = tk.StringVar()
        self.hours = range(0, 24)
        self.hourvar.set(now.hour)
        self.hour = tk.OptionMenu(self.start, self.hourvar, *self.hours)
        self.hour.grid(row=3, column=3)

        self.minutevar = tk.StringVar()
        self.minutes = range(0, 60, 5)
        self.minutevar.set(now.minute)
        self.minute = tk.OptionMenu(self.start, self.minutevar, *self.minutes)
        self.minute.grid(row=3, column=4)

        self.datevar.trace('w', self.copy_position)
        self.monthvar.trace('w', self.copy_position)
        self.yearvar.trace('w', self.copy_position)
        self.hourvar.trace('w', self.copy_position)
        self.minutevar.trace('w', self.copy_position)

        ###############
        # Release End
        ###############
        endlabel = tk.Label(self.end_t, text="\n\nEnd release\n\n")
        endlabel.grid(row=0, column=0)
        tk.Label(self.end, text='Longitude', bg='gray').grid(row=0, column=1)
        tk.Label(self.end, text='Latitude', bg='gray').grid(row=0, column=0)
        tk.Label(self.end, text='Radius [m]', bg='gray').grid(row=0, column=2)
        self.elat = tk.Entry(self.end, width=6, justify=tk.RIGHT)
        self.elon = tk.Entry(self.end, width=6, justify=tk.RIGHT)
        self.eradius = tk.Entry(self.end, width=6, justify=tk.RIGHT)
        self.elon.grid(row=1, column=1)
        self.elon.insert(0, '4.5')
        self.elat.grid(row=1, column=0)
        self.elat.insert(0, '60.0')
        self.eradius.grid(row=1, column=2)
        self.eradius.insert(0, '1000')
        ##########
        # Time
        ##########
        now = datetime.utcnow()
        tk.Label(self.end, text='Day', bg='gray').grid(row=2, column=0)
        tk.Label(self.end, text='Month', bg='gray').grid(row=2, column=1)
        tk.Label(self.end, text='Year', bg='gray').grid(row=2, column=2)
        tk.Label(self.end, text='Hour', bg='gray').grid(row=2, column=3)
        tk.Label(self.end, text='Minutes [UTC]', bg='gray').grid(row=2,
                                                                 column=4)
        self.edatevar = tk.StringVar()
        self.edates = range(1, 32)
        self.edatevar.set(now.day)
        self.edate = tk.OptionMenu(self.end, self.edatevar, *self.edates)
        self.edate.grid(row=3, column=0)

        self.emonthvar = tk.StringVar()
        self.emonthvar.set(self.months[now.month - 1])
        self.emonth = tk.OptionMenu(self.end, self.emonthvar, *self.months)
        self.emonth.grid(row=3, column=1)

        self.eyearvar = tk.StringVar()
        self.eyears = range(2015, now.year + 1)
        self.eyearvar.set(now.year)
        self.eyear = tk.OptionMenu(self.end, self.eyearvar, *self.eyears)
        self.eyear.grid(row=3, column=2)

        self.ehourvar = tk.StringVar()
        self.ehours = range(0, 24)
        self.ehourvar.set(now.hour)
        self.ehour = tk.OptionMenu(self.end, self.ehourvar, *self.ehours)
        self.ehour.grid(row=3, column=3)

        self.eminutevar = tk.StringVar()
        self.eminutes = range(0, 60, 5)
        self.eminutevar.set(now.minute)
        self.eminute = tk.OptionMenu(self.end, self.eminutevar, *self.eminutes)
        self.eminute.grid(row=3, column=4)
        self.eyear.config(bg='gray')
        self.emonth.config(bg='gray')
        self.edate.config(bg='gray')
        self.ehour.config(bg='gray')
        self.eminute.config(bg='gray')

        # Check seeding
        check_seed = tk.Button(self.end_t,
                               text='Check seeding',
                               command=self.check_seeding)
        check_seed.grid(row=1, column=0, padx=0)

        #######################
        # Simulation duration
        #######################
        tk.Label(self.coastline, text='Coastline resolution ').grid(row=4,
                                                                    column=1)
        self.mapresvar = tk.StringVar()
        self.mapres = tk.OptionMenu(self.coastline, self.mapresvar,
                                    *['full', 'high'])
        self.mapres.grid(row=4, column=2)
        self.mapresvar.set('high')

        tk.Label(self.duration, text='Run simulation ').grid(row=5, column=0)
        self.durationhours = tk.Entry(self.duration, width=3, justify=tk.RIGHT)
        self.durationhours.grid(row=5, column=1)
        self.durationhours.insert(0, 12)
        tk.Label(self.duration, text=' hours ').grid(row=5, column=2)

        self.directionvar = tk.StringVar()
        self.directionvar.set('forwards')
        self.direction = tk.OptionMenu(self.duration, self.directionvar,
                                       'forwards', 'backwards')
        self.direction.grid(row=5, column=3)
        tk.Label(self.duration, text=' in time ').grid(row=5, column=4)

        ##############
        # Output box
        ##############
        self.text = tk.Text(self.output, wrap="word", height=18)
        self.text.grid(row=6, columnspan=6, sticky='nsw')
        self.text.tag_configure("stderr", foreground="#b22222")
        sys.stdout = TextRedirector(self.text, "stdout")
        sys.stderr = TextRedirector(self.text, "stderr")
        s = tk.Scrollbar(self)
        s.grid(row=6, column=6, sticky='ns')
        s.config(command=self.text.yview)
        self.text.config(yscrollcommand=s.set)

        # Diana
        self.dianadir = '/vol/vvfelles/opendrift/output/'
        if os.path.exists(self.dianadir):
            self.has_diana = True
            print('Diana is available!')
            self.outputdir = '/vol/vvfelles/opendrift/output_native/'
            startbutton = 'PEIS PAO'
        else:
            self.has_diana = False
            startbutton = 'START'

        ##############
        # Initialise
        ##############
        #o = OpenOil3D()
        self.set_model(self.available_models[0])

        ##########
        # RUN
        ##########
        tk.Button(self.seed,
                  text=startbutton,
                  bg='green',
                  command=self.run_opendrift).grid(row=8,
                                                   column=1,
                                                   sticky=tk.W,
                                                   pady=4)
예제 #20
0
    def run_opendrift(self):
        sys.stdout.write('running OpenDrift')
        month = np.int(self.months.index(self.monthvar.get()) + 1)
        start_time = datetime(np.int(self.yearvar.get()), month,
                              np.int(self.datevar.get()),
                              np.int(self.hourvar.get()),
                              np.int(self.minutevar.get()))
        if start_time > self.current.end_time:
            sys.stdout.write('Start time after end of current data!')
            start_time = self.current.start_time
        emonth = np.int(self.months.index(self.emonthvar.get()) + 1)
        end_time = datetime(np.int(self.eyearvar.get()), emonth,
                            np.int(self.edatevar.get()),
                            np.int(self.ehourvar.get()),
                            np.int(self.eminutevar.get()))
        sys.stdout.flush()
        lon = np.float(self.lon.get())
        lat = np.float(self.lat.get())
        radius = np.float(self.radius.get())
        elon = np.float(self.elon.get())
        elat = np.float(self.elat.get())
        eradius = np.float(self.eradius.get())
        if lon != elon or lat != elat or start_time != end_time:
            lon = [lon, elon]
            lat = [lat, elat]
            radius = [radius, eradius]
            start_time = [start_time, end_time]
            cone = True
        else:
            cone = False
        if self.model.get() == 'Leeway':
            o = Leeway(loglevel=0)
            for ln, lc in enumerate(self.leewaycategories):
                if self.oljetype.get() == lc.strip().replace('>', ''):
                    print 'Leeway object category: ' + lc
                    break
            o.seed_elements(lon=lon,
                            lat=lat,
                            number=5000,
                            radius=radius,
                            time=start_time,
                            objectType=ln + 1)
        if self.model.get() == 'OpenOil':
            o = OpenOil3D(weathering_model='noaa', loglevel=0)
            o.seed_elements(lon=lon,
                            lat=lat,
                            number=5000,
                            radius=radius,
                            time=start_time,
                            cone=cone,
                            oiltype=self.oljetype.get())

        o.add_reader([self.current, self.wind, self.waves])
        o.set_config('general:basemap_resolution', 'h')

        time_step = 1800  # Half hour
        duration = int(self.durationhours.get()) * 3600 / time_step
        if self.directionvar.get() == 'backwards':
            time_step = -time_step
        o.run(steps=duration, time_step=time_step)
        print o

        if self.has_diana is True:
            diana_filename = self.dianadir + '/opendrift_' + \
                self.model.get() + o.start_time.strftime(
                                '_%Y%m%d_%H%M.nc')
            tk.Button(self.master,
                      text='Save to Diana',
                      command=o.write_netcdf_density_map(diana_filename)).grid(
                          row=7, column=2, sticky=tk.W, pady=4)
        tk.Button(self.master, text='Animation',
                  command=o.animation).grid(row=7,
                                            column=3,
                                            sticky=tk.W,
                                            pady=4)
        if self.model.get() == 'OpenOil':
            tk.Button(self.master,
                      text='Oil Budget',
                      command=o.plot_oil_budget).grid(row=7,
                                                      column=4,
                                                      sticky=tk.W,
                                                      pady=4)
예제 #21
0
#!/usr/bin/env python
"""
Oil spill (seafloor)
==================================
"""

from datetime import timedelta
from opendrift.readers import reader_netCDF_CF_generic
from opendrift.models.openoil3D import OpenOil3D

o = OpenOil3D(loglevel=0)  # Set loglevel to 0 for debug information

# Norkyst
reader_norkyst = reader_netCDF_CF_generic.Reader(
    o.test_data_folder() +
    '14Jan2016_NorKyst_z_3d/NorKyst-800m_ZDEPTHS_his_00_3Dsubset.nc')
#reader_norkyst = reader_netCDF_CF_generic.Reader('http://thredds.met.no/thredds/dodsC/sea/norkyst800m/1h/aggregate_be')

o.add_reader([reader_norkyst])
o.fallback_values['x_wind'] = 0
o.fallback_values['y_wind'] = 0

#%%
# Seeding some particles
lon = 4.5
lat = 62.0
time = [
    reader_norkyst.start_time, reader_norkyst.start_time + timedelta(hours=1)
]
#%%
# Seed oil elements at defined position and time
예제 #22
0
    def set_model(self, model):
        if model == 'OpenOil':
            self.o = OpenOil3D(weathering_model='noaa', location='NORWAY')
        elif model == 'Leeway':
            self.o = Leeway()
        elif model == 'ShipDrift':
            self.o = ShipDrift()

        for con in self.config.winfo_children():
            con.destroy()
        self.con = tk.Label(self.config, text="\n\nConfiguration\n\n")
        self.con.grid(row=0, column=1, rowspan=1)
        for i, cs in enumerate(self.o._config_hashstrings()):
            tk.Label(self.config, text=cs).grid(row=i, column=1, rowspan=1)
        try:
            self.results.destroy()
        except:
            pass
        try:
            # Removeing depth input boxes
            self.depthlabel.destroy()
            self.depth.destroy()
            self.seafloor.destroy()
            self.amount.destroy()
            self.amountlabel.destroy()
        except:
            pass

        print('Setting model: ' + model)
        print(self.o.list_configspec())
        sc = self.o.get_seed_config()
        print(sc)
        self.seed_input = {}
        self.seed_input_var = {}
        self.seed_input_label = {}
        self.seed_frame = tk.Frame(self.seed, bd=2,
                                   relief=tk.FLAT, padx=5, pady=0)
        self.seed_frame.grid(row=60, columnspan=8, sticky='nsew')
        # FIND
        for num, i in enumerate(sc):
            if i in ['ocean_only', 'jibeProbability']:
                continue  # workaround, should be avoided in future
            self.seed_input_label[i] = tk.Label(self.seed_frame,
                                                text=i + '\t')
            self.seed_input_label[i].grid(row=num, column=0)
            self.seed_input_var[i] = tk.StringVar()
            if type(sc[i]['options']) is list:
                self.seed_input[i] = ttk.Combobox(
                    self.seed_frame, width=50,
                    textvariable=self.seed_input_var[i],
                    values=sc[i]['options'])
                self.seed_input_var[i].set(sc[i]['default'])
            else:
                self.seed_input[i] = tk.Entry(
                    self.seed_frame, textvariable=self.seed_input_var[i],
                    width=6, justify=tk.RIGHT)
                self.seed_input[i].insert(0, sc[i]['default'])
            self.seed_input[i].grid(row=num, column=1)

        if model == 'OpenOil':  # User may be able to chose release depth
            self.depthlabel = tk.Label(self.duration, text='Spill depth [m]')
            self.depthlabel.grid(row=60, column=0)
            self.depthvar = tk.StringVar()
            self.depth = tk.Entry(self.duration, textvariable=self.depthvar,
                                  width=6, justify=tk.RIGHT)
            self.depth.grid(row=60, column=2)
            self.depth.insert(0, '0')
            self.seafloorvar = tk.IntVar()
            self.seafloor = tk.Checkbutton(self.duration, variable=self.seafloorvar,
                                           text='seafloor',
                                           command=self.seafloorbutton)
            self.seafloor.grid(row=60, column=3)

            self.amountvar = tk.StringVar()
            self.amount = tk.Entry(self.duration, textvariable=self.amountvar,
                                  width=6, justify=tk.RIGHT)
            self.amount.grid(row=60, column=4)
            self.amount.insert(0, '100')
            self.amountlabel = tk.Label(self.duration, text='m3 (per hour)')
            self.amountlabel.grid(row=60, column=5)
예제 #23
0
#!/usr/bin/env python
"""
Oil budget
==================================
"""

from datetime import timedelta
from opendrift.readers import reader_netCDF_CF_generic
from opendrift.models.openoil3D import OpenOil3D

o = OpenOil3D(loglevel=20)

# Arome
reader_arome = reader_netCDF_CF_generic.Reader(o.test_data_folder() +
    '16Nov2015_NorKyst_z_surface/arome_subset_16Nov2015.nc')
#reader_arome = reader_netCDF_CF_generic.Reader('http://thredds.met.no/thredds/dodsC/meps25files/meps_det_extracted_2_5km_latest.nc')

# Norkyst
#reader_norkyst = reader_netCDF_CF_generic.Reader(o.test_data_folder() +
#    '16Nov2015_NorKyst_z_surface/norkyst800_subset_16Nov2015.nc')
#reader_norkyst = reader_netCDF_CF_generic.Reader('http://thredds.met.no/thredds/dodsC/sea/norkyst800m/1h/aggregate_be')

#o.add_reader([reader_norkyst, reader_arome])
o.fallback_values['x_wind'] = 7
o.fallback_values['y_wind'] = 0
o.fallback_values['x_sea_water_velocity'] = .7
o.fallback_values['y_sea_water_velocity'] = .3
#o.fallback_values['land_binary_mask'] = 0
#o.add_reader([reader_landmask, reader_norkyst])

#%%
예제 #24
0
    def __init__(self):
        tk.Tk.__init__(self)
        self.title('OpenDrift')
        o = OpenOil3D(weathering_model='noaa', location='NORWAY')
        try:
            img = ImageTk.PhotoImage(
                Image.open(o.test_data_folder() +
                           '../../docs/opendrift_logo.png'))
            panel = tk.Label(self.master, image=img)
            panel.image = img
            panel.grid(row=0, column=0)
        except:
            pass  # Could not display logo

        self.top = tk.Frame(self.master, relief=tk.FLAT, pady=25, padx=25)
        self.top.grid(row=0, column=1, rowspan=1)

        tk.Label(self.top, text='Simulation type').grid(row=0, column=0)
        self.model = tk.StringVar()
        models = ['OpenOil', 'Leeway']
        self.model.set(models[0])
        self.modeldrop = tk.OptionMenu(self.top,
                                       self.model,
                                       *(models),
                                       command=self.set_model)
        self.modeldrop.grid(row=0, column=1)

        self.categoryLabel = tk.Label(self.master, text='Oil type')
        self.categoryLabel.grid(row=1, column=0)
        oljetyper = o.oiltypes
        self.oljetype = tk.StringVar()
        self.oljetype.set(oljetyper[0])
        self.categorydrop = ttk.Combobox(self.master,
                                         textvariable=self.oljetype,
                                         values=oljetyper)
        self.categorydrop.grid(row=1, column=1)

        ##########
        # Release
        ##########
        self.start_t = tk.Frame(self.master, relief=tk.FLAT)
        self.start_t.grid(row=2, column=0, rowspan=1)
        startlabel = tk.Label(self.start_t, text="\n\nStart release\n\n")
        startlabel.grid(row=0, column=0)
        self.start = tk.Frame(self.master,
                              bg='lightgray',
                              bd=2,
                              relief=tk.SUNKEN,
                              pady=5,
                              padx=5)
        self.start.grid(row=2, column=1, rowspan=1)

        tk.Label(self.start, text='Longitude').grid(row=0, column=0)
        tk.Label(self.start, text='Latitude').grid(row=0, column=1)
        tk.Label(self.start, text='Radius [m]').grid(row=0, column=2)
        self.lon = tk.Entry(self.start, width=6, justify=tk.RIGHT)
        self.lat = tk.Entry(self.start, width=6, justify=tk.RIGHT)
        self.radius = tk.Entry(self.start, width=6, justify=tk.RIGHT)
        self.lon.grid(row=1, column=0)
        self.lon.insert(0, '4.5')
        self.lat.grid(row=1, column=1)
        self.lat.insert(0, '60.0')
        self.radius.grid(row=1, column=2)
        self.radius.insert(0, '1000')
        ##########
        # Time
        ##########
        now = datetime.now()
        tk.Label(self.start, text='Day').grid(row=2, column=0)
        tk.Label(self.start, text='Month').grid(row=2, column=1)
        tk.Label(self.start, text='Year').grid(row=2, column=2)
        tk.Label(self.start, text='Hour').grid(row=2, column=3)
        tk.Label(self.start, text='Minutes [UTC]').grid(row=2, column=4)
        self.datevar = tk.StringVar()
        self.dates = range(1, 32)
        self.datevar.set(now.day)
        self.date = tk.OptionMenu(self.start, self.datevar, *self.dates)
        self.date.grid(row=3, column=0)

        self.monthvar = tk.StringVar()
        self.months = [
            'January', 'February', 'March', 'April', 'May', 'June', 'July',
            'August', 'September', 'October', 'November', 'December'
        ]
        self.monthvar.set(self.months[now.month - 1])
        self.month = tk.OptionMenu(self.start, self.monthvar, *self.months)
        self.month.grid(row=3, column=1)

        self.yearvar = tk.StringVar()
        self.years = range(2015, 2017)
        self.yearvar.set(now.year)
        self.year = tk.OptionMenu(self.start, self.yearvar, *self.years)
        self.year.grid(row=3, column=2)

        self.hourvar = tk.StringVar()
        self.hours = range(0, 24)
        self.hourvar.set(now.hour)
        self.hour = tk.OptionMenu(self.start, self.hourvar, *self.hours)
        self.hour.grid(row=3, column=3)

        self.minutevar = tk.StringVar()
        self.minutes = range(0, 60, 5)
        self.minutevar.set(now.minute)
        self.minute = tk.OptionMenu(self.start, self.minutevar, *self.minutes)
        self.minute.grid(row=3, column=4)

        ###############
        # Release End
        ###############
        self.end_t = tk.Frame(self.master, relief=tk.FLAT)
        endlabel = tk.Label(self.end_t, text="\n\nEnd release\n\n")
        endlabel.grid(row=0, column=0)
        self.end_t.grid(row=3, column=0, rowspan=1)

        self.end = tk.Frame(self.master,
                            bg='gray',
                            bd=2,
                            relief=tk.SUNKEN,
                            padx=5,
                            pady=5)
        self.end.grid(row=3, column=1)

        tk.Label(self.end, text='Longitude').grid(row=0, column=0)
        tk.Label(self.end, text='Latitude').grid(row=0, column=1)
        tk.Label(self.end, text='Radius [m]').grid(row=0, column=2)
        self.elon = tk.Entry(self.end, width=6, justify=tk.RIGHT)
        self.elat = tk.Entry(self.end, width=6, justify=tk.RIGHT)
        self.eradius = tk.Entry(self.end, width=6, justify=tk.RIGHT)
        self.elon.grid(row=1, column=0)
        self.elon.insert(0, '4.5')
        self.elat.grid(row=1, column=1)
        self.elat.insert(0, '60.0')
        self.eradius.grid(row=1, column=2)
        self.eradius.insert(0, '0')
        ##########
        # Time
        ##########
        now = datetime.now()
        tk.Label(self.end, text='Day').grid(row=2, column=0)
        tk.Label(self.end, text='Month').grid(row=2, column=1)
        tk.Label(self.end, text='Year').grid(row=2, column=2)
        tk.Label(self.end, text='Hour').grid(row=2, column=3)
        tk.Label(self.end, text='Minutes [UTC]').grid(row=2, column=4)
        self.edatevar = tk.StringVar()
        self.edates = range(1, 32)
        self.edatevar.set(now.day)
        self.edate = tk.OptionMenu(self.end, self.edatevar, *self.edates)
        self.edate.grid(row=3, column=0)

        self.emonthvar = tk.StringVar()
        self.emonthvar.set(self.months[now.month - 1])
        self.emonth = tk.OptionMenu(self.end, self.emonthvar, *self.months)
        self.emonth.grid(row=3, column=1)

        self.eyearvar = tk.StringVar()
        self.eyears = range(2015, 2017)
        self.eyearvar.set(now.year)
        self.eyear = tk.OptionMenu(self.end, self.eyearvar, *self.eyears)
        self.eyear.grid(row=3, column=2)

        self.ehourvar = tk.StringVar()
        self.ehours = range(0, 24)
        self.ehourvar.set(now.hour)
        self.ehour = tk.OptionMenu(self.end, self.ehourvar, *self.ehours)
        self.ehour.grid(row=3, column=3)

        self.eminutevar = tk.StringVar()
        self.eminutes = range(0, 60, 5)
        self.eminutevar.set(now.minute)
        self.eminute = tk.OptionMenu(self.end, self.eminutevar, *self.eminutes)
        self.eminute.grid(row=3, column=4)

        #######################
        # Simulation duration
        #######################
        self.duration = tk.Frame(self.master,
                                 bd=2,
                                 relief=tk.FLAT,
                                 padx=5,
                                 pady=15)
        self.duration.grid(row=4, column=1)
        tk.Label(self.duration, text='Run simulation ').grid(row=4, column=0)
        self.durationhours = tk.Entry(self.duration, width=3, justify=tk.RIGHT)
        self.durationhours.grid(row=4, column=1)
        self.durationhours.insert(0, 12)
        tk.Label(self.duration, text=' hours ').grid(row=4, column=2)

        self.directionvar = tk.StringVar()
        self.directionvar.set('forwards')
        self.direction = tk.OptionMenu(self.duration, self.directionvar,
                                       'forwards', 'backwards')
        self.direction.grid(row=4, column=3)
        tk.Label(self.duration, text=' in time ').grid(row=4, column=4)

        ##############
        # Output box
        ##############
        self.text = tk.Text(self, wrap="word", height=18)
        self.text.grid(row=5, columnspan=5, sticky='nsew')
        self.text.tag_configure("stderr", foreground="#b22222")
        sys.stdout = TextRedirector(self.text, "stdout")
        sys.stderr = TextRedirector(self.text, "stderr")
        s = tk.Scrollbar(self)
        s.grid(row=5, column=5, sticky='ns')
        s.config(command=self.text.yview)
        self.text.config(yscrollcommand=s.set)

        # Diana
        self.dianadir = '/vol/vvfelles/opendrift/output/'
        if os.path.exists(self.dianadir):
            self.has_diana = True
            print 'Diana is available!'
        else:
            self.has_diana = False

        ##############
        # Driver data
        ##############
        o = OpenOil3D()
        self.current = reader_netCDF_CF_generic.Reader(
            'http://thredds.met.no/thredds/dodsC/sea/norkyst800m/1h/aggregate_be'
        )
        #    o.test_data_folder() +
        #    '16Nov2015_NorKyst_z_surface/norkyst800_subset_16Nov2015.nc')
        self.wind = reader_netCDF_CF_generic.Reader(
            'http://thredds.met.no/thredds/dodsC/arome25/arome_metcoop_default2_5km_latest.nc'
        )
        #self.wind = reader_netCDF_CF_generic.Reader(o.test_data_folder() +
        #    '16Nov2015_NorKyst_z_surface/arome_subset_16Nov2015.nc')
        self.waves = reader_netCDF_CF_generic.Reader(
            'http://thredds.met.no/thredds/dodsC/sea/mywavewam4/mywavewam4_be')

        print '#' * 41
        print 'Current data coverage:'
        print str(self.current.start_time) + ' - ' + \
            str(self.current.end_time)
        print '#' * 41
        print 'Wind data coverage:'
        print str(self.wind.start_time) + ' - ' + \
            str(self.wind.end_time)
        print '#' * 41
        self.start_time = self.current.start_time

        ##########
        # RUN
        ##########
        tk.Button(self.master,
                  text='PEIS PAO',
                  bg='green',
                  command=self.run_opendrift).grid(row=7,
                                                   column=1,
                                                   sticky=tk.W,
                                                   pady=4)