예제 #1
0
def train(model, samples, label):
    num_layers = 9
    num_samples = samples.shape[-1]
    fc_shape = [512, num_samples]

    acts = [None] * num_layers
    sens = [None] * num_layers
    weightgrad = [None] * len(model.weights)
    biasgrad = [None] * len(model.bias)

    acts[0] = samples
    acts[1] = ele.relu(model.convs[0].ff(acts[0], model.weights[0], model.bias[0]))
    acts[2] = model.poolings[0].ff(acts[1])
    acts[3] = ele.relu(model.convs[1].ff(acts[2], model.weights[1], model.bias[1]))
    acts[4] = model.poolings[1].ff(acts[3])
    acts[5] = model.weights[2] * acts[4].reshape(fc_shape) + model.bias[2]

    out = conv.softmax(acts[5], conv.soft_op.instance)

    sens[5] = out - label
    sens[4] = (model.weights[2].trans() * sens[5]).reshape(acts[4].shape)
    sens[3] = ele.relu_back(model.poolings[1].bp(sens[4], acts[4], acts[3]), acts[3])
    sens[2] = model.convs[1].bp(sens[3], model.weights[1])
    sens[1] = ele.relu_back(model.poolings[0].bp(sens[2], acts[2], acts[1]), acts[1])

    weightgrad[2] = sens[5] * acts[4].reshape(fc_shape).trans()
    biasgrad[2] = sens[5].sum(1)
    weightgrad[1] = model.convs[1].weight_grad(sens[3], acts[2])
    biasgrad[1] = model.convs[1].bias_grad(sens[3])
    weightgrad[0] = model.convs[0].weight_grad(sens[1], acts[0])
    biasgrad[0] = model.convs[0].bias_grad(sens[1])

    return (out, weightgrad, biasgrad)
예제 #2
0
def bpprop(model, samples, label):
    num_layers = 6
    num_samples = samples.shape[-1]
    fc_shape = [512, num_samples]

    acts = [None] * num_layers
    errs = [None] * num_layers
    weightgrad = [None] * len(model.weights)
    biasgrad = [None] * len(model.bias)

    acts[0] = samples
    acts[1] = ele.relu(model.convs[0].ff(acts[0], model.weights[0], model.bias[0]))
    acts[2] = model.poolings[0].ff(acts[1])
    acts[3] = ele.relu(model.convs[1].ff(acts[2], model.weights[1], model.bias[1]))
    acts[4] = model.poolings[1].ff(acts[3])
    acts[5] = model.weights[2] * acts[4].reshape(fc_shape) + model.bias[2]

    out = conv.softmax(acts[5], conv.soft_op.instance)

    errs[5] = out - label
    errs[4] = (model.weights[2].trans() * errs[5]).reshape(acts[4].shape)
    errs[3] = ele.relu_back(model.poolings[1].bp(errs[4], acts[4], acts[3]), acts[3])
    errs[2] = model.convs[1].bp(errs[3], acts[2], model.weights[1])
    errs[1] = ele.relu_back(model.poolings[0].bp(errs[2], acts[2], acts[1]), acts[1])

    weightgrad[2] = errs[5] * acts[4].reshape(fc_shape).trans()
    biasgrad[2] = errs[5].sum(1)
    weightgrad[1] = model.convs[1].weight_grad(errs[3], acts[2], model.weights[1])
    biasgrad[1] = model.convs[1].bias_grad(errs[3])
    weightgrad[0] = model.convs[0].weight_grad(errs[1], acts[0], model.weights[0])
    biasgrad[0] = model.convs[0].bias_grad(errs[1])
    return (out, weightgrad, biasgrad)
예제 #3
0
파일: net.py 프로젝트: zuiwufenghua/minerva
 def forward(self, from_btm, to_top, phase):
     to_top[self.top_names[0]] = co.softmax(from_btm[self.btm_names[0]], co.soft_op.instance)
     self.ff_y = to_top[self.top_names[0]]
     #turn label into matrix form
     nplabel = np.zeros([self.ff_y.shape[1], self.ff_y.shape[0]], dtype=np.float32)
     self.strlabel = from_btm[self.btm_names[1]]
     
     for i in range(len(self.strlabel)):
         nplabel[i, self.strlabel[i]] = 1
     self.y = owl.from_numpy(nplabel)
예제 #4
0
    def run(self):
        (train_data,
         test_data) = mnist_io.load_mb_from_mat(self.data_file, self.mb_size)
        np.set_printoptions(linewidth=200)
        num_test_samples = test_data[0].shape[0]
        (test_samples,
         test_labels) = map(lambda npdata: owl.from_numpy(npdata), test_data)
        count = 1
        owl.set_device(self.gpu)
        for epoch in range(self.num_epochs):
            print '---Start epoch #%d' % epoch
            # train
            for (mb_samples, mb_labels) in train_data:
                num_samples = mb_samples.shape[0]

                a1 = owl.from_numpy(mb_samples)
                target = owl.from_numpy(mb_labels)

                # ff
                a2 = ele.relu(self.w1 * a1 + self.b1)
                a3 = self.w2 * a2 + self.b2
                # softmax & error
                out = co.softmax(a3)
                s3 = out - target
                # bp
                s2 = self.w2.trans() * s3
                s2 = ele.relu_back(s2, a2)
                # grad
                gw1 = s2 * a1.trans() / num_samples
                gb1 = s2.sum(1) / num_samples
                gw2 = s3 * a2.trans() / num_samples
                gb2 = s3.sum(1) / num_samples
                # update
                self.w1 -= self.eps_w * gw1
                self.w2 -= self.eps_w * gw2
                self.b1 -= self.eps_b * gb1
                self.b2 -= self.eps_b * gb2

                if (count % 40 == 0):
                    correct = out.argmax(0) - target.argmax(0)
                    val = correct.to_numpy()
                    print 'Training error:', float(
                        np.count_nonzero(val)) / num_samples
                count = count + 1

            # test
            a1 = test_samples
            a2 = ele.relu(self.w1 * a1 + self.b1)
            a3 = self.w2 * a2 + self.b2
            correct = a3.argmax(0) - test_labels.argmax(0)
            val = correct.to_numpy()
            #print val
            print 'Testing error:', float(
                np.count_nonzero(val)) / num_test_samples
            print '---Finish epoch #%d' % epoch
예제 #5
0
 def test(self):
     base = np.asarray([40.0,20.0,30.0,10.0])
     max = np.max(base)
     base = np.reshape(base, [1,1,1,4])
     owlarray = owl.from_numpy(base)
     expected = np.exp(base - max)
     expected = expected / np.sum(expected)
     test = conv.softmax(owlarray)
     #print 'Expected\n',expected
     #print "Actual\n",test.to_numpy()
     self.assertTrue(np.allclose(expected, test.to_numpy()))
예제 #6
0
파일: net.py 프로젝트: uwroute/minerva
    def forward(self, from_btm, to_top, phase):
        to_top[self.top_names[0]] = co.softmax(from_btm[self.btm_names[0]],
                                               co.soft_op.instance)
        self.ff_y = to_top[self.top_names[0]]
        #turn label into matrix form
        nplabel = np.zeros([self.ff_y.shape[1], self.ff_y.shape[0]],
                           dtype=np.float32)
        self.strlabel = from_btm[self.btm_names[1]]

        for i in range(len(self.strlabel)):
            nplabel[i, self.strlabel[i]] = 1
        self.y = owl.from_numpy(nplabel)
예제 #7
0
파일: mnist_mlp.py 프로젝트: AI42/minerva
    def run(self):
        (train_data, test_data) = mnist_io.load_mb_from_mat(self.data_file, self.mb_size)
        np.set_printoptions(linewidth=200)
        num_test_samples = test_data[0].shape[0]
        (test_samples, test_labels) = map(lambda npdata : owl.from_numpy(npdata), test_data)
        count = 1
        owl.set_device(self.gpu)
        for epoch in range(self.num_epochs):
            print '---Start epoch #%d' % epoch
            # train
            for (mb_samples, mb_labels) in train_data:
                num_samples = mb_samples.shape[0]

                a1 = owl.from_numpy(mb_samples)
                target = owl.from_numpy(mb_labels)

                # ff
                a2 = ele.relu(self.w1 * a1 + self.b1)
                a3 = self.w2 * a2 + self.b2
                # softmax & error
                out = co.softmax(a3)
                s3 = out - target
                # bp
                s2 = self.w2.trans() * s3
                s2 = ele.relu_back(s2, a2)
                # grad
                gw1 = s2 * a1.trans() / num_samples
                gb1 = s2.sum(1) / num_samples
                gw2 = s3 * a2.trans() / num_samples
                gb2 = s3.sum(1) / num_samples
                # update
                self.w1 -= self.eps_w * gw1
                self.w2 -= self.eps_w * gw2
                self.b1 -= self.eps_b * gb1
                self.b2 -= self.eps_b * gb2

                if (count % 40 == 0):
                    correct = out.max_index(0) - target.max_index(0)
                    val = correct.to_numpy()
                    print 'Training error:', float(np.count_nonzero(val)) / num_samples
                count = count + 1

            # test
            a1 = test_samples
            a2 = ele.relu(self.w1 * a1 + self.b1)
            a3 = self.w2 * a2 + self.b2
            correct = a3.max_index(0) - test_labels.max_index(0)
            val = correct.to_numpy()
            #print val
            print 'Testing error:', float(np.count_nonzero(val)) / num_test_samples
            print '---Finish epoch #%d' % epoch
예제 #8
0
def bpprop(model, samples, label):
    num_layers = model.layers
    num_samples = samples.shape[-1]
    fc_shape = [model.convolution_output_size, num_samples]

    acts = [None] * num_layers
    errs = [None] * num_layers
    weightgrad = [None] * len(model.weights)
    biasgrad = [None] * len(model.bias)

    acts[0] = samples
    acts[1] = ele.relu(model.convs[0].ff(acts[0], model.weights[0], model.bias[0]))
    acts[2] = model.poolings[0].ff(acts[1])
    acts[3] = ele.relu(model.convs[1].ff(acts[2], model.weights[1], model.bias[1]))
    acts[4] = model.poolings[1].ff(acts[3])
    acts[5] = model.weights[2] * acts[4].reshape(fc_shape) + model.bias[2]
    acts[6] = model.weights[3] * acts[5] + model.bias[3]

    out = conv.softmax(acts[6], conv.soft_op.instance)

    errs[6] = out - label
    errs[5] = (model.weights[3].trans() * errs[6]).reshape(acts[5].shape)
    errs[4] = (model.weights[2].trans() * errs[5]).reshape(acts[4].shape)
    errs[3] = ele.relu_back(model.poolings[1].bp(errs[4], acts[4], acts[3]), acts[3])
    errs[2] = model.convs[1].bp(errs[3], acts[2], model.weights[1])
    errs[1] = ele.relu_back(model.poolings[0].bp(errs[2], acts[2], acts[1]), acts[1])

    weightgrad[3] = errs[6] * acts[5].trans()
    biasgrad[3] = errs[6].sum(1)  
    weightgrad[2] = errs[5] * acts[4].reshape(fc_shape).trans()
    biasgrad[2] = errs[5].sum(1)
    weightgrad[1] = model.convs[1].weight_grad(errs[3], acts[2], model.weights[1])
    biasgrad[1] = model.convs[1].bias_grad(errs[3])
    weightgrad[0] = model.convs[0].weight_grad(errs[1], acts[0], model.weights[0])
    biasgrad[0] = model.convs[0].bias_grad(errs[1])
    return (out, weightgrad, biasgrad)
예제 #9
0
 def ff(self, x):
     self.ff_y = co.softmax(x, co.soft_op.instance)
     return self.ff_y
예제 #10
0
    def train_one_mb(self, data, label, dropout_rate):
        num_samples = data.shape[-1]
        num_layers = 12
        acts = [None] * num_layers
        sens = [None] * num_layers
        weightsgrad = [None] * self.num_weights
        biasgrad = [None] * self.num_weights

        # FF
        acts[0] = data
        acts[1] = ele.relu(self.convs[0].ff(acts[0], self.weights[0],
                                            self.bias[0]))  # conv1
        acts[2] = self.poolings[0].ff(acts[1])  # pool1
        acts[3] = ele.relu(self.convs[1].ff(acts[2], self.weights[1],
                                            self.bias[1]))  # conv2
        acts[4] = self.poolings[1].ff(acts[3])  # pool2
        acts[5] = ele.relu(self.convs[2].ff(acts[4], self.weights[2],
                                            self.bias[2]))  # conv3
        acts[6] = ele.relu(self.convs[3].ff(acts[5], self.weights[3],
                                            self.bias[3]))  # conv4
        acts[7] = ele.relu(self.convs[4].ff(acts[6], self.weights[4],
                                            self.bias[4]))  # conv5
        acts[8] = self.poolings[2].ff(acts[7])  # pool5
        re_acts8 = acts[8].reshape([np.prod(acts[8].shape[0:3]), num_samples])
        acts[9] = ele.relu(self.weights[5] * re_acts8 + self.bias[5])  # fc6
        mask6 = owl.randb(acts[9].shape, dropout_rate)
        acts[9] = ele.mult(acts[9], mask6)  # drop6
        acts[10] = ele.relu(self.weights[6] * acts[9] + self.bias[6])  # fc7
        mask7 = owl.randb(acts[10].shape, dropout_rate)
        acts[10] = ele.mult(acts[10], mask7)  # drop7
        acts[11] = self.weights[7] * acts[10] + self.bias[7]  # fc8

        out = co.softmax(acts[11], co.soft_op.instance)  # prob

        sens[11] = out - label
        sens[10] = self.weights[7].trans() * sens[11]  # fc8
        sens[10] = ele.mult(sens[10], mask7)  # drop7
        sens[10] = ele.relu_back(sens[10], acts[10])  # relu7
        sens[9] = self.weights[6].trans() * sens[10]
        sens[9] = ele.mult(sens[9], mask6)  # drop6
        sens[9] = ele.relu_back(sens[9], acts[9])  # relu6
        sens[8] = (self.weights[5].trans() * sens[9]).reshape(
            acts[8].shape)  # fc6
        sens[7] = ele.relu_back(self.poolings[2].bp(sens[8], acts[8], acts[7]),
                                acts[7])  # pool5, relu5
        sens[6] = ele.relu_back(self.convs[4].bp(sens[7], self.weights[4]),
                                acts[6])  # conv5, relu4
        sens[5] = ele.relu_back(self.convs[3].bp(sens[6], self.weights[3]),
                                acts[5])  # conv4, relu3
        sens[4] = self.convs[2].bp(sens[5], self.weights[2])  # conv3
        sens[3] = ele.relu_back(self.poolings[1].bp(sens[4], acts[4], acts[3]),
                                acts[3])  # pool2, relu2
        sens[2] = self.convs[1].bp(sens[3], self.weights[1])  # conv2
        sens[1] = self.poolings[0].bp(sens[2], acts[2], acts[1])  # pool1
        sens[1] = ele.relu_back(sens[1], acts[1])  # relu1

        weightsgrad[7] = sens[11] * acts[10].trans()
        weightsgrad[6] = sens[10] * acts[9].trans()
        weightsgrad[5] = sens[9] * re_acts8.trans()
        weightsgrad[4] = self.convs[4].weight_grad(sens[7], acts[6])
        weightsgrad[3] = self.convs[3].weight_grad(sens[6], acts[5])
        weightsgrad[2] = self.convs[2].weight_grad(sens[5], acts[4])
        weightsgrad[1] = self.convs[1].weight_grad(sens[3], acts[2])
        weightsgrad[0] = self.convs[0].weight_grad(sens[1], acts[0])
        biasgrad[7] = sens[11].sum(1)
        biasgrad[6] = sens[10].sum(1)
        biasgrad[5] = sens[9].sum(1)
        biasgrad[4] = self.convs[4].bias_grad(sens[7])
        biasgrad[3] = self.convs[3].bias_grad(sens[6])
        biasgrad[2] = self.convs[2].bias_grad(sens[5])
        biasgrad[1] = self.convs[1].bias_grad(sens[3])
        biasgrad[0] = self.convs[0].bias_grad(sens[1])
        return (out, weightsgrad, biasgrad)
예제 #11
0
파일: alexnet.py 프로젝트: AI42/minerva
    def train_one_mb(self, data, label, dropout_rate):
        num_samples = data.shape[-1]
        num_layers = 12
        acts = [None] * num_layers
        sens = [None] * num_layers
        weightsgrad = [None] * self.num_weights
        biasgrad = [None] * self.num_weights

        # FF
        acts[0] = data
        acts[1] = ele.relu(self.convs[0].ff(acts[0], self.weights[0], self.bias[0])) # conv1
        acts[2] = self.poolings[0].ff(acts[1]) # pool1
        acts[3] = ele.relu(self.convs[1].ff(acts[2], self.weights[1], self.bias[1])) # conv2
        acts[4] = self.poolings[1].ff(acts[3]) # pool2
        acts[5] = ele.relu(self.convs[2].ff(acts[4], self.weights[2], self.bias[2])) # conv3
        acts[6] = ele.relu(self.convs[3].ff(acts[5], self.weights[3], self.bias[3])) # conv4
        acts[7] = ele.relu(self.convs[4].ff(acts[6], self.weights[4], self.bias[4])) # conv5
        acts[8] = self.poolings[2].ff(acts[7]) # pool5
        re_acts8 = acts[8].reshape([np.prod(acts[8].shape[0:3]), num_samples])
        acts[9] = ele.relu(self.weights[5] * re_acts8 + self.bias[5]) # fc6
        mask6 = owl.randb(acts[9].shape, dropout_rate)
        acts[9] = ele.mult(acts[9], mask6) # drop6
        acts[10] = ele.relu(self.weights[6] * acts[9] + self.bias[6]) # fc7
        mask7 = owl.randb(acts[10].shape, dropout_rate)
        acts[10] = ele.mult(acts[10], mask7) # drop7
        acts[11] = self.weights[7] * acts[10] + self.bias[7] # fc8

        out = co.softmax(acts[11], co.soft_op.instance) # prob

        sens[11] = out - label
        sens[10] = self.weights[7].trans() * sens[11] # fc8
        sens[10] = ele.mult(sens[10], mask7) # drop7
        sens[10] = ele.relu_back(sens[10], acts[10]) # relu7
        sens[9] = self.weights[6].trans() * sens[10]
        sens[9] = ele.mult(sens[9], mask6) # drop6
        sens[9] = ele.relu_back(sens[9], acts[9]) # relu6
        sens[8] = (self.weights[5].trans() * sens[9]).reshape(acts[8].shape) # fc6
        sens[7] = ele.relu_back(self.poolings[2].bp(sens[8], acts[8], acts[7]), acts[7]) # pool5, relu5
        sens[6] = ele.relu_back(self.convs[4].bp(sens[7], acts[6], self.weights[4]), acts[6]) # conv5, relu4
        sens[5] = ele.relu_back(self.convs[3].bp(sens[6], acts[5], self.weights[3]), acts[5]) # conv4, relu3
        sens[4] = self.convs[2].bp(sens[5], acts[4], self.weights[2]) # conv3
        sens[3] = ele.relu_back(self.poolings[1].bp(sens[4], acts[4], acts[3]), acts[3]) # pool2, relu2
        sens[2] = self.convs[1].bp(sens[3], acts[2], self.weights[1]) # conv2
        sens[1] = self.poolings[0].bp(sens[2], acts[2], acts[1]) # pool1
        sens[1] = ele.relu_back(sens[1], acts[1]) # relu1

        weightsgrad[7] = sens[11] * acts[10].trans()
        weightsgrad[6] = sens[10] * acts[9].trans()
        weightsgrad[5] = sens[9] * re_acts8.trans()
        weightsgrad[4] = self.convs[4].weight_grad(sens[7], acts[6], self.weights[4])
        weightsgrad[3] = self.convs[3].weight_grad(sens[6], acts[5], self.weights[3])
        weightsgrad[2] = self.convs[2].weight_grad(sens[5], acts[4], self.weights[2])
        weightsgrad[1] = self.convs[1].weight_grad(sens[3], acts[2], self.weights[1])
        weightsgrad[0] = self.convs[0].weight_grad(sens[1], acts[0], self.weights[0])
        biasgrad[7] = sens[11].sum(1)
        biasgrad[6] = sens[10].sum(1)
        biasgrad[5] = sens[9].sum(1)
        biasgrad[4] = self.convs[4].bias_grad(sens[7])
        biasgrad[3] = self.convs[3].bias_grad(sens[6])
        biasgrad[2] = self.convs[2].bias_grad(sens[5])
        biasgrad[1] = self.convs[1].bias_grad(sens[3])
        biasgrad[0] = self.convs[0].bias_grad(sens[1])
        return (out, weightsgrad, biasgrad)
예제 #12
0
파일: net.py 프로젝트: Amos-zq/minerva
 def forward(self, from_btm, to_top, phase):
     to_top[self.top_names[0]] = co.softmax(from_btm[self.btm_names[0]],
                                            co.soft_op.instance)
     self.ff_y = to_top[self.top_names[0]]
     self.y = from_btm[self.btm_names[1]]