예제 #1
0
파일: test.py 프로젝트: timebridge/pcraster
    def testNonSpatialConversions(self):
        nonSpatialValue = pcraster.mapmaximum(
            pcraster.readmap("map2asc_PCRmap.map"))
        # Ordinal.
        nonSpatial = pcraster.ordinal(nonSpatialValue)
        self.assertEqual(bool(nonSpatial), True)
        self.assertEqual(int(nonSpatial), 124)
        self.assertEqual(float(nonSpatial), 124.0)

        # Nominal.
        nonSpatial = pcraster.nominal(nonSpatialValue)
        self.assertEqual(bool(nonSpatial), True)
        self.assertEqual(int(nonSpatial), 124)
        self.assertEqual(float(nonSpatial), 124)

        # Boolean.
        nonSpatial = pcraster.boolean(nonSpatialValue)
        self.assertEqual(bool(nonSpatial), True)
        self.assertEqual(int(nonSpatial), 1)
        self.assertEqual(float(nonSpatial), 1.0)

        # Scalar.
        nonSpatial = pcraster.scalar(pcraster.mapmaximum("abs_Expr.map"))
        self.assertEqual(bool(nonSpatial), True)
        self.assertEqual(int(nonSpatial), 14)
        self.assertEqual(float(nonSpatial), 14.0)
예제 #2
0
파일: test.py 프로젝트: gaoshuai/pcraster
  def testNonSpatialConversions(self):
    nonSpatialValue = pcraster.mapmaximum(pcraster.readmap("map2asc_PCRmap.map"))
    # Ordinal.
    nonSpatial = pcraster.ordinal(nonSpatialValue)
    self.assertEqual(bool(nonSpatial), True)
    self.assertEqual(int(nonSpatial), 124)
    self.assertEqual(float(nonSpatial), 124.0)

    # Nominal.
    nonSpatial = pcraster.nominal(nonSpatialValue)
    self.assertEqual(bool(nonSpatial), True)
    self.assertEqual(int(nonSpatial), 124)
    self.assertEqual(float(nonSpatial), 124)

    # Boolean.
    nonSpatial = pcraster.boolean(nonSpatialValue)
    self.assertEqual(bool(nonSpatial), True)
    self.assertEqual(int(nonSpatial), 1)
    self.assertEqual(float(nonSpatial), 1.0)

    # Scalar.
    nonSpatial = pcraster.scalar(pcraster.mapmaximum("abs_Expr.map"))
    self.assertEqual(bool(nonSpatial), True)
    self.assertEqual(int(nonSpatial), 14)
    self.assertEqual(float(nonSpatial), 14.0)
예제 #3
0
파일: test.py 프로젝트: xuexianwu/pcraster
 def testCellValueNonSpatial(self):
   raster = pcraster.readmap("abs_Expr.map")
   value, isValid = pcraster.cellvalue(pcraster.mapmaximum(raster), 1, 1)
   self.assertEqual(isValid, True)
   self.assert_(isinstance(value, types.FloatType))
   self.assertEqual(value, 14.0)
   value, isValid = pcraster.cellvalue(pcraster.mapmaximum(raster), 1)
   self.assertEqual(isValid, True)
   self.assert_(isinstance(value, types.FloatType))
   self.assertEqual(value, 14.0)
예제 #4
0
 def testCellValueNonSpatial(self):
     raster = self._read_set_clone("abs_Expr.map")
     value, isValid = pcraster.cellvalue(pcraster.mapmaximum(raster), 1, 1)
     self.assertEqual(isValid, True)
     self.assertTrue(isinstance(value, float))
     self.assertEqual(value, 14.0)
     value, isValid = pcraster.cellvalue(pcraster.mapmaximum(raster), 1)
     self.assertEqual(isValid, True)
     self.assertTrue(isinstance(value, float))
     self.assertEqual(value, 14.0)
예제 #5
0
파일: test.py 프로젝트: pcraster/pcraster
 def testCellValueNonSpatial(self):
   raster = pcraster.readmap("abs_Expr.map")
   value, isValid = pcraster.cellvalue(pcraster.mapmaximum(raster), 1, 1)
   self.assertEqual(isValid, True)
   self.assert_(isinstance(value, types.FloatType))
   self.assertEqual(value, 14.0)
   value, isValid = pcraster.cellvalue(pcraster.mapmaximum(raster), 1)
   self.assertEqual(isValid, True)
   self.assert_(isinstance(value, types.FloatType))
   self.assertEqual(value, 14.0)
예제 #6
0
def boundingBox(pcrmap):
    ''' derive the bounding box for a map, return xmin,ymin,xmax,ymax '''
    bb = []
    xcoor = pcr.xcoordinate(pcrmap)
    ycoor = pcr.ycoordinate(pcrmap)
    xmin  = pcr.cellvalue(pcr.mapminimum(xcoor), 1, 1)[0]
    xmax  = pcr.cellvalue(pcr.mapmaximum(xcoor), 1, 1)[0]
    ymin  = pcr.cellvalue(pcr.mapminimum(ycoor), 1, 1)[0]
    ymax  = pcr.cellvalue(pcr.mapmaximum(ycoor), 1, 1)[0]
    return [math.floor(xmin), math.floor(ymin), math.ceil(xmax), math.ceil(ymax)]
예제 #7
0
 def test_07(self):
     """ cellvalue_by_index NonSpatial """
     raster = self._read_set_clone("abs_Expr.map")
     value, isValid = pcraster.cellvalue_by_indices(pcraster.mapmaximum(raster), 0, 0)
     self.assertEqual(isValid, True)
     self.assertTrue(isinstance(value, float))
     self.assertEqual(value, 14.0)
     value, isValid = pcraster.cellvalue_by_index(pcraster.mapmaximum(raster), 0)
     self.assertEqual(isValid, True)
     self.assertTrue(isinstance(value, float))
     self.assertEqual(value, 14.0)
예제 #8
0
def checkerboard(mapin, fcc):
    """
    checkerboard create a checkerboard map with unique id's in a
    fcc*fcc cells area. The resulting map can be used
    to derive statistics for (later) upscaling of maps (using the fcc factor)

    .. warning: use with unitcell to get most reliable results!

    Input:
        - map (used to determine coordinates)
        - fcc (size of the areas in cells)

    Output:
        - checkerboard type map
    """
    msker = pcr.defined(mapin)
    ymin = pcr.mapminimum(pcr.ycoordinate(msker))
    yc = (pcr.ycoordinate((msker)) - ymin) / pcr.celllength()
    yc = pcr.rounddown(yc / fcc)
    # yc = yc/fcc
    xmin = pcr.mapminimum(pcr.xcoordinate((msker)))
    xc = (pcr.xcoordinate((msker)) - xmin) / pcr.celllength()
    xc = pcr.rounddown(xc / fcc)
    # xc = xc/fcc

    yc = yc * (pcr.mapmaximum(xc) + 1.0)

    xy = pcr.ordinal(xc + yc)

    return xy
예제 #9
0
파일: wflow_lib.py 프로젝트: ninjach/wflow
def checkerboard(mapin, fcc):
    """
    checkerboard create a checkerboard map with unique id's in a
    fcc*fcc cells area. The resulting map can be used
    to derive statistics for (later) upscaling of maps (using the fcc factor)

    .. warning: use with unitcell to get most reliable results!

    Input:
        - map (used to determine coordinates)
        - fcc (size of the areas in cells)

    Output:
        - checkerboard type map
    """
    msker = pcr.defined(mapin)
    ymin = pcr.mapminimum(pcr.ycoordinate(msker))
    yc = (pcr.ycoordinate((msker)) - ymin) / pcr.celllength()
    yc = pcr.rounddown(yc / fcc)
    # yc = yc/fcc
    xmin = pcr.mapminimum(pcr.xcoordinate((msker)))
    xc = (pcr.xcoordinate((msker)) - xmin) / pcr.celllength()
    xc = pcr.rounddown(xc / fcc)
    # xc = xc/fcc

    yc = yc * (pcr.mapmaximum(xc) + 1.0)

    xy = pcr.ordinal(xc + yc)

    return xy
예제 #10
0
def getMinMaxMean(mapFile,ignoreEmptyMap=False):
    mn = pcr.cellvalue(pcr.mapminimum(mapFile),1)[0]
    mx = pcr.cellvalue(pcr.mapmaximum(mapFile),1)[0]
    nrValues = pcr.cellvalue(pcr.maptotal(pcr.scalar(pcr.defined(mapFile))), 1 ) [0] #/ getNumNonMissingValues(mapFile)
    if nrValues == 0.0 and ignoreEmptyMap: 
        return 0.0,0.0,0.0
    else:
        return mn,mx,(getMapTotal(mapFile) / nrValues)
예제 #11
0
def getMinMaxMean(mapFile,ignoreEmptyMap=False):
    mn = pcr.cellvalue(pcr.mapminimum(mapFile),1)[0]
    mx = pcr.cellvalue(pcr.mapmaximum(mapFile),1)[0]
    nrValues = pcr.cellvalue(pcr.maptotal(pcr.scalar(pcr.defined(mapFile))), 1 ) [0] #/ getNumNonMissingValues(mapFile)
    if nrValues == 0.0 and ignoreEmptyMap: 
        return 0.0,0.0,0.0
    else:
        return mn,mx,(getMapTotal(mapFile) / nrValues)
예제 #12
0
    def __init__(self, tssFilename, model, idMap=None, noHeader=False):
        """

    """

        if not isinstance(tssFilename, str):
            raise Exception(
                "timeseries output filename must be of type string")

        self._outputFilename = tssFilename
        self._maxId = 1
        self._spatialId = None
        self._spatialDatatype = None
        self._spatialIdGiven = False
        self._userModel = model
        self._writeHeader = not noHeader
        # array to store the timestep values
        self._sampleValues = None

        _idMap = False
        if isinstance(idMap, str) or isinstance(idMap,
                                                pcraster._pcraster.Field):
            _idMap = True

        nrRows = self._userModel.nrTimeSteps() - self._userModel.firstTimeStep(
        ) + 1

        if _idMap:
            self._spatialId = idMap
            if isinstance(idMap, str):
                self._spatialId = pcraster.readmap(idMap)

            _allowdDataTypes = [
                pcraster.Nominal, pcraster.Ordinal, pcraster.Boolean
            ]
            if self._spatialId.dataType() not in _allowdDataTypes:
                raise Exception(
                    "idMap must be of type Nominal, Ordinal or Boolean")

            if self._spatialId.isSpatial():
                self._maxId, valid = pcraster.cellvalue(
                    pcraster.mapmaximum(pcraster.ordinal(self._spatialId)), 1)
            else:
                self._maxId = 1

            # cell indices of the sample locations
            self._sampleAddresses = []
            for cellId in range(1, self._maxId + 1):
                self._sampleAddresses.append(self._getIndex(cellId))

            self._spatialIdGiven = True
            nrCols = self._maxId
            self._sampleValues = [[Decimal("NaN")] * nrCols
                                  for _ in [0] * nrRows]
        else:
            self._sampleValues = [[Decimal("NaN")] * 1 for _ in [0] * nrRows]
예제 #13
0
    def sample(self, expression):
        """
    Sampling the current values of 'expression' at the given locations for the current timestep
    """

        arrayRowPos = self._userModel.currentTimeStep(
        ) - self._userModel.firstTimeStep()

        #if isinstance(expression, float):
        #  expression = pcraster.scalar(expression)

        try:
            # store the data type for tss file header
            if self._spatialDatatype == None:
                self._spatialDatatype = str(expression.dataType())
        except AttributeError as e:
            datatype, sep, tail = str(e).partition(" ")
            msg = "Argument must be a PCRaster map, type %s given. If necessary use data conversion functions like scalar()" % (
                datatype)
            raise AttributeError(msg)

        if self._spatialIdGiven:
            if expression.dataType() == pcraster.Scalar or expression.dataType(
            ) == pcraster.Directional:
                tmp = pcraster.areaaverage(pcraster.spatial(expression),
                                           pcraster.spatial(self._spatialId))
            else:
                tmp = pcraster.areamajority(pcraster.spatial(expression),
                                            pcraster.spatial(self._spatialId))

            col = 0
            for cellIndex in self._sampleAddresses:
                value, valid = pcraster.cellvalue(tmp, cellIndex)
                if not valid:
                    value = Decimal("NaN")

                self._sampleValues[arrayRowPos][col] = value
                col += 1
        else:
            if expression.dataType() == pcraster.Scalar or expression.dataType(
            ) == pcraster.Directional:
                tmp = pcraster.maptotal(pcraster.spatial(expression))\
                      / pcraster.maptotal(pcraster.scalar(pcraster.defined(pcraster.spatial(expression))))
            else:
                tmp = pcraster.mapmaximum(pcraster.maptotal(pcraster.areamajority(pcraster.spatial(expression),\
                      pcraster.spatial(pcraster.nominal(1)))))

            value, valid = pcraster.cellvalue(tmp, 1)
            if not valid:
                value = Decimal("NaN")

            self._sampleValues[arrayRowPos] = value

        if self._userModel.currentTimeStep() == self._userModel.nrTimeSteps():
            self._writeTssFile()
예제 #14
0
def pointPerClass(classMap):
    """ Select a single random point from each class in classMap"""
    rand1 = 100 * pcr.uniform(pcr.boolean(classMap))
    rand2 = 100 * pcr.uniform(pcr.boolean(classMap))
    rand3 = 100 * pcr.uniform(pcr.boolean(classMap))

    randomMap = pcr.scalar(classMap) * rand1 * rand2 * rand3
    pointMap = pcr.ifthen(randomMap == pcr.areaminimum(randomMap, classMap),
                          classMap)
    nrPointsPerClass = pcr.areatotal(pcr.scalar(pcr.boolean(pointMap)),
                                     classMap)
    assert pcr.cellvalue(pcr.mapmaximum(nrPointsPerClass), 0)[0] == 1
    return pointMap
예제 #15
0
def area_total_value(values, area_class):
    """Calculate the total value over the area class.

    values: map with values
    area_class: project area of the measure

    Returns a float with the total value over the area class.
    """
    area_total = pcr.areatotal(pcr.scalar(values), pcr.nominal(area_class))
    total_value, _ = pcr.cellvalue(pcr.mapmaximum(area_total), 1, 1)
    if total_value <= -3.40282346638e+38:  # return 0 if only missing values
        total_value = 0
    return total_value
예제 #16
0
    def readTopo(self, iniItems, optionDict):

        # a dictionary/section of options that will be used
        if optionDict == None: optionDict = iniItems._sections["landSurfaceOptions"]

        # maps of elevation attributes: 
        topoParams = ['tanslope','slopeLength','orographyBeta']
        if optionDict['topographyNC'] == str(None):
            for var in topoParams:
                input = configget(iniItems,"landSurfaceOptions",str(var),"None")
                vars(self)[var] = vos.readPCRmapClone(input,self.cloneMap,
                                                self.tmpDir,self.inputDir)
                if var != "slopeLength": vars(self)[var] = pcr.cover(vars(self)[var], 0.0)
        else:
            topoPropertiesNC = vos.getFullPath(\
                               optionDict['topographyNC'],
                                                self.inputDir)

            for var in topoParams:
                vars(self)[var] = vos.netcdf2PCRobjCloneWithoutTime(\
                                    topoPropertiesNC,var, \
                                    cloneMapFileName = self.cloneMap)
                if var != "slopeLength": vars(self)[var] = pcr.cover(vars(self)[var], 0.0)

        #~ self.tanslope = pcr.max(self.tanslope, 0.00001)              # In principle, tanslope can be zero. Zero tanslope will provide zero TCL (no interflow)

        # covering slopeLength with its maximum value 
        self.slopeLength = pcr.cover(self.slopeLength, pcr.mapmaximum(self.slopeLength))
        
        # maps of relative elevation above flood plains 
        dzRel = ['dzRel0001','dzRel0005',
                 'dzRel0010','dzRel0020','dzRel0030','dzRel0040','dzRel0050',
                 'dzRel0060','dzRel0070','dzRel0080','dzRel0090','dzRel0100']
        if optionDict['topographyNC'] == str(None):
            for i in range(0, len(dzRel)):
                var = dzRel[i]
                input = optionDict[str(var)]
                vars(self)[var] = vos.readPCRmapClone(input,self.cloneMap,
                                                self.tmpDir,self.inputDir)
                vars(self)[var] = pcr.cover(vars(self)[var], 0.0)
                if i > 0: vars(self)[var] = pcr.max(vars(self)[var], vars(self)[dzRel[i-1]])
        else:
            for i in range(0, len(dzRel)):
                var = dzRel[i]
                vars(self)[var] = vos.netcdf2PCRobjCloneWithoutTime(\
                                    topoPropertiesNC,var, \
                                    cloneMapFileName = self.cloneMap)
                vars(self)[var] = pcr.cover(vars(self)[var], 0.0)
                if i > 0: vars(self)[var] = pcr.max(vars(self)[var], vars(self)[dzRel[i-1]])
예제 #17
0
  def sample(self, expression):
    """
    Sampling the current values of 'expression' at the given locations for the current timestep
    """

    arrayRowPos = self._userModel.currentTimeStep() - self._userModel.firstTimeStep()

    #if isinstance(expression, float):
    #  expression = pcraster.scalar(expression)

    try:
      # store the data type for tss file header
      if self._spatialDatatype == None:
        self._spatialDatatype = str(expression.dataType())
    except AttributeError as e:
      datatype, sep, tail = str(e).partition(" ")
      msg = "Argument must be a PCRaster map, type %s given. If necessary use data conversion functions like scalar()" % (datatype)
      raise AttributeError(msg)

    if self._spatialIdGiven:
      if expression.dataType() == pcraster.Scalar or expression.dataType() == pcraster.Directional:
        tmp = pcraster.areaaverage(pcraster.spatial(expression), pcraster.spatial(self._spatialId))
      else:
        tmp = pcraster.areamajority(pcraster.spatial(expression), pcraster.spatial(self._spatialId))

      col = 0
      for cellIndex in self._sampleAddresses:
        value, valid = pcraster.cellvalue(tmp, cellIndex)
        if not valid:
          value = Decimal("NaN")

        self._sampleValues[arrayRowPos][col] = value
        col += 1
    else:
      if expression.dataType() == pcraster.Scalar or expression.dataType() == pcraster.Directional:
         tmp = pcraster.maptotal(pcraster.spatial(expression))\
               / pcraster.maptotal(pcraster.scalar(pcraster.defined(pcraster.spatial(expression))))
      else:
         tmp = pcraster.mapmaximum(pcraster.maptotal(pcraster.areamajority(pcraster.spatial(expression),\
               pcraster.spatial(pcraster.nominal(1)))))

      value, valid = pcraster.cellvalue(tmp, 1)
      if not valid:
        value = Decimal("NaN")

      self._sampleValues[arrayRowPos] = value

    if self._userModel.currentTimeStep() == self._userModel.nrTimeSteps():
       self._writeTssFile()
예제 #18
0
파일: test.py 프로젝트: gaoshuai/pcraster
  def testReportNonSpatial(self):
    raster = pcraster.readmap("abs_Expr.map")
    max1 = pcraster.mapmaximum(raster)
    value, isValid = pcraster.cellvalue(max1, 1)
    self.assertTrue(isinstance(value, float))
    self.assertEqual(isValid, True)
    self.assertEqual(value, 14.0)
    pcraster.report(max1, "maximum.map")
    max2 = pcraster.readmap("maximum.map")

    for i in range(1, 8):
      value, isValid = pcraster.cellvalue(max2, i)
      self.assertEqual(isValid, True)
      self.assertTrue(isinstance(value, float))
      self.assertEqual(value, 14.0)
예제 #19
0
파일: test.py 프로젝트: timebridge/pcraster
    def testReportNonSpatial(self):
        raster = pcraster.readmap("abs_Expr.map")
        max1 = pcraster.mapmaximum(raster)
        value, isValid = pcraster.cellvalue(max1, 1)
        self.assertTrue(isinstance(value, float))
        self.assertEqual(isValid, True)
        self.assertEqual(value, 14.0)
        pcraster.report(max1, "maximum.map")
        max2 = pcraster.readmap("maximum.map")

        for i in range(1, 8):
            value, isValid = pcraster.cellvalue(max2, i)
            self.assertEqual(isValid, True)
            self.assertTrue(isinstance(value, float))
            self.assertEqual(value, 14.0)
예제 #20
0
  def __init__(self, tssFilename, model, idMap=None, noHeader=False):
    """

    """

    if not isinstance(tssFilename, str):
      raise Exception("timeseries output filename must be of type string")

    self._outputFilename = tssFilename
    self._maxId = 1
    self._spatialId = None
    self._spatialDatatype = None
    self._spatialIdGiven = False
    self._userModel = model
    self._writeHeader = not noHeader
    # array to store the timestep values
    self._sampleValues = None

    _idMap = False
    if isinstance(idMap, str) or isinstance(idMap, pcraster._pcraster.Field):
      _idMap = True

    nrRows = self._userModel.nrTimeSteps() - self._userModel.firstTimeStep() + 1

    if _idMap:
      self._spatialId = idMap
      if isinstance(idMap, str):
        self._spatialId = pcraster.readmap(idMap)

      _allowdDataTypes = [pcraster.Nominal,pcraster.Ordinal,pcraster.Boolean]
      if self._spatialId.dataType() not in _allowdDataTypes:
        raise Exception("idMap must be of type Nominal, Ordinal or Boolean")

      if self._spatialId.isSpatial():
        self._maxId, valid = pcraster.cellvalue(pcraster.mapmaximum(pcraster.ordinal(self._spatialId)), 1)
      else:
        self._maxId = 1

      # cell indices of the sample locations
      self._sampleAddresses = []
      for cellId in range(1, self._maxId + 1):
        self._sampleAddresses.append(self._getIndex(cellId))

      self._spatialIdGiven = True
      nrCols = self._maxId
      self._sampleValues = [[Decimal("NaN")]  * nrCols for _ in [0] * nrRows]
    else:
      self._sampleValues = [[Decimal("NaN")]  * 1 for _ in [0] * nrRows]
예제 #21
0
def find_outlet(ldd):
    """
    Tries to find the outlet of the largest catchment in the Ldd

    Input:
        - Ldd

    Output:
        - outlet map (single point in the map)
    """
    largest = pcr.mapmaximum(pcr.catchmenttotal(pcr.spatial(pcr.scalar(1.0)), ldd))
    outlet = pcr.ifthen(
        pcr.catchmenttotal(1.0, ldd) == largest, pcr.spatial(pcr.scalar(1.0))
    )

    return outlet
예제 #22
0
파일: wflow_lib.py 프로젝트: ninjach/wflow
def find_outlet(ldd):
    """
    Tries to find the outlet of the largest catchment in the Ldd

    Input:
        - Ldd

    Output:
        - outlet map (single point in the map)
    """
    largest = pcr.mapmaximum(pcr.catchmenttotal(pcr.spatial(pcr.scalar(1.0)), ldd))
    outlet = pcr.ifthen(
        pcr.catchmenttotal(1.0, ldd) == largest, pcr.spatial(pcr.scalar(1.0))
    )

    return outlet
    def correction_per_aquifer(self, id):
        
        id = float(id); print id
        
        # identify aquifer mask  
        aquifer_landmask = pcr.ifthen(self.margat_aquifer_map == pcr.nominal(id), pcr.boolean(1))
        
        # obtain the logarithmic value of Margat value
        exp_margat_thick = pcr.cellvalue(\
                           pcr.mapmaximum(\
                           pcr.ifthen(aquifer_landmask, pcr.ln(self.margat_aquifer_thickness))), 1)[0]

        # obtain the logarithmic values of 'estimated thickness'
        exp_approx_thick = pcr.ifthen(aquifer_landmask, pcr.ln(self.approx_thick)) 
                       
        exp_approx_thick_array = pcr.pcr2numpy(exp_approx_thick, vos.MV)
        exp_approx_thick_array = exp_approx_thick_array[exp_approx_thick_array <> vos.MV]
        exp_approx_thick_array = exp_approx_thick_array[exp_approx_thick_array < 1000000.]
        
        # identify percentile
        exp_approx_minim = np.percentile(exp_approx_thick_array,  2.5);
        exp_approx_maxim = np.percentile(exp_approx_thick_array, 97.5); 

        # correcting
        exp_approx_thick_correct  = ( exp_approx_thick - exp_approx_minim ) / \
                                    ( exp_approx_maxim - exp_approx_minim )   
        exp_approx_thick_correct  = pcr.max(0.0, exp_approx_thick_correct )
        exp_approx_thick_correct *= pcr.max(0.0,\
                                    ( exp_margat_thick - exp_approx_minim ) )
        exp_approx_thick_correct += pcr.min(exp_approx_minim, exp_approx_thick)

        # maximum thickness
        exp_approx_thick_correct  = pcr.min(exp_margat_thick, exp_approx_thick_correct)

        # corrected thickness
        correct_thickness = pcr.exp(exp_approx_thick_correct)
        
        return correct_thickness
예제 #24
0
def waterBalanceCheck(fluxesIn,fluxesOut,preStorages,endStorages,processName,PrintOnlyErrors,dateStr,threshold=1e-5,landmask=None):
    """ Returns the water balance for a list of input, output, and storage map files  """
    # modified by Edwin (22 Apr 2013)

    inMap   = pcr.spatial(pcr.scalar(0.0))
    outMap  = pcr.spatial(pcr.scalar(0.0))
    dsMap   = pcr.spatial(pcr.scalar(0.0))
    for fluxIn in fluxesIn:
        inMap   += fluxIn
    for fluxOut in fluxesOut:
        outMap  += fluxOut
    for preStorage in preStorages:
        dsMap   += preStorage
    for endStorage in endStorages:
        dsMap   -= endStorage

    a,b,c = getMinMaxMean(inMap + dsMap- outMap)
    if abs(a) > threshold or abs(b) > threshold:
        if PrintOnlyErrors: 
            print "WBError %s Min %f Max %f Mean %f" %(processName,a,b,c)
            print ""
            
    wb = inMap + dsMap - outMap
    maxWBError = pcr.cellvalue(pcr.mapmaximum(pcr.abs(wb)), 1, 1)[0]
	def dynamic(self):
		#####################
		# * dynamic section #
		#####################
		#-evaluation of the current date: return current month and the time step used
		#-reading in fluxes over land and water area for current time step [m/d]
		# and read in reservoir demand and surface water extraction [m3]
		try:
			self.landSurfaceQ= clippedRead.get(pcrm.generateNameT(landSurfaceQFileName,self.currentTimeStep()))
		except:
			pass
		try:
			self.potWaterSurfaceQ= clippedRead.get(pcrm.generateNameT(waterSurfaceQFileName,self.currentTimeStep()))
		except:
			pass
		#-surface water extraction and reservoir demand currently set to zero, should
		# be computed automatically and updated to reservoirs
		self.potSurfaceWaterExtraction= pcr.spatial(pcr.scalar(0.))
		#self.waterBodies.demand=  #self.reservoirDemandTSS.assignID(self.waterBodies.ID,self.currentTimeStep(),0.)*self.timeSec
		#-initialization of cumulative values of actual water extractions
		self.actWaterSurfaceQ= pcr.spatial(pcr.scalar(0.))
		self.actSurfaceWaterExtraction= pcr.spatial(pcr.scalar(0.))    
		#-definition of sub-loop for routing scheme - explicit scheme has to satisfy Courant condition
		timeLimit= pcr.cellvalue(pcr.mapminimum((pcr.cover(pcr.ifthen(self.waterBodies.distribution == 0,\
			self.channelLength/self.flowVelocity),\
				self.timeSec/self.nrIterDefault)*self.timeSec/self.nrIterDefault)**0.5),1)[0]
		nrIter= int(self.timeSec/timeLimit)
		nrIter= min(nrIter,int(self.timeSec/300.))
		while float(self.timeSec/nrIter) % 1 <> 0:
			nrIter+= 1
		deltaTime= self.timeSec/nrIter
		#-sub-loop for current time step
		if self.currentDate.day == 1 or nrIter >= 24:
			print '\n*\tprocessing %s, currently using %d substeps of %d seconds\n' % \
				(self.currentDate.date(),nrIter,deltaTime)
		#-update discharge and storage
		for nrICur in range(nrIter):
			#-initializing discharge for the current sub-timestep and fill in values
			# for channels and at outlets of waterbodies
			# * channels *
			estQ= pcr.ifthenelse((self.actualStorage > 0.) & (self.waterBodies.distribution == 0) ,\
				(self.wettedArea/self.alphaQ)**(1./self.betaQ),0.)
			#estQ= pcr.ifthenelse((self.actualStorage > 0.) & (self.waterBodies.distribution == 0) ,\
				#0.5*(self.Q+(self.wettedArea/self.alphaQ)**(1./self.betaQ)),0.)
			#estQ= pcr.min(estQ,self.actualStorage/deltaTime)
			self.report(estQ,'results/qest')
			self.Q= pcr.spatial(pcr.scalar(0.))
			self.Q= pcr.ifthenelse(self.waterBodies.distribution == 0,\
				pcr.kinematic(self.channelLDD,estQ,0.,self.alphaQ,\
					self.betaQ,1,deltaTime,self.channelLength),self.Q)
			# * water bodies *
			self.waterBodies.dischargeUpdate()
			self.Q= self.waterBodies.returnMapValue(self.Q,self.waterBodies.actualQ)
			#-fluxes and resulting change in storage: first the local fluxes are evaluated
			# and aggregated over the water bodies where applicable; this includes the specific runoff [m/day/m2]
			# from input and the estimated extraction from surface water as volume per day [m3/day];
			# specific runoff from the land surface is always positive whereas the fluxes over the water surface
			# are potential, including discharge, and are adjusted to match the availabe storage; to this end,
			# surface water storage and fluxes over water bodies are totalized and assigned to the outlet;
			# discharge is updated in a separate step, after vertical fluxes are compared to the actual storage
			deltaActualStorage= ((self.landFraction*self.landSurfaceQ+\
				self.waterFraction*self.potWaterSurfaceQ)*self.cellArea-\
				self.potSurfaceWaterExtraction)*float(self.duration)/nrIter
			deltaActualStorage= pcr.ifthenelse(self.waterBodies.distribution != 0,\
				pcr.ifthenelse(self.waterBodies.location != 0,\
					pcr.areatotal(deltaActualStorage,self.waterBodies.distribution),0),\
						deltaActualStorage)   
			adjustmentRatio= pcr.ifthenelse(deltaActualStorage < 0.,\
				pcr.min(1.,-self.actualStorage/deltaActualStorage),1.)
			self.actWaterSurfaceQ+= adjustmentRatio*self.potWaterSurfaceQ
			self.actSurfaceWaterExtraction+= adjustmentRatio*self.actSurfaceWaterExtraction
			deltaActualStorage*= adjustmentRatio
			#-local water balance check
			if testLocalWaterBalance:
				differenceActualStorage= self.actualStorage
				differenceActualStorage+= deltaActualStorage
			#-overall water balance check: net input
			self.cumulativeDeltaStorage+= pcr.catchmenttotal(deltaActualStorage,self.LDD)
			#-update storage first with local changes, then balance discharge with storage and update storage
			# with lateral flow and return value to water bodies
			self.actualStorage+= deltaActualStorage
			self.actualStorage= pcr.max(0.,self.actualStorage)
			self.Q= pcr.min(self.Q,self.actualStorage/deltaTime)
			deltaActualStorage= (-self.Q+pcr.upstream(self.LDD,self.Q))*deltaTime
			deltaActualStorage= pcr.ifthenelse(self.waterBodies.distribution != 0,\
				pcr.ifthenelse(self.waterBodies.location != 0,\
					pcr.areatotal(deltaActualStorage,self.waterBodies.distribution),0),\
						deltaActualStorage)
			self.actualStorage+= deltaActualStorage
			self.actualStorage= pcr.max(0.,self.actualStorage)
			self.waterBodies.actualStorage= self.waterBodies.retrieveMapValue(self.actualStorage)
			#-flooded fraction returned
			floodedFraction,floodedDepth,\
					self.wettedArea,self.alphaQ= self.kinAlphaComposite(self.actualStorage,self.floodplainMask)
			self.wettedArea= self.waterBodies.returnMapValue(self.wettedArea,\
				self.waterBodies.channelWidth+2.*self.waterBodies.updateWaterHeight())
			self.waterFraction= pcr.ifthenelse(self.waterBodies.distribution == 0,\
				pcr.max(self.waterFractionMask,floodedFraction),self.waterFractionMask)
			self.landFraction= pcr.max(0.,1.-self.waterFraction)
			self.flowVelocity= pcr.ifthenelse(self.wettedArea > 0,self.Q/self.wettedArea,0.)
			#-local water balance check
			if testLocalWaterBalance:
				differenceActualStorage+= deltaActualStorage
				differenceActualStorage-= self.actualStorage
				totalDifference= pcr.cellvalue(pcr.maptotal(differenceActualStorage),1)[0]
				minimumDifference= pcr.cellvalue(pcr.mapminimum(differenceActualStorage),1)[0]
				maximumDifference= pcr.cellvalue(pcr.mapmaximum(differenceActualStorage),1)[0]
				if abs(totalDifference) > 1.e-3:
					print 'water balance error: total %e; min %e; max %e' %\
						(totalDifference,minimumDifference,maximumDifference)
					if  reportLocalWaterBalance:           
						pcr.report(differenceActualStorage,'mbe_%s.map' % self.currentDate.date())
			#-overall water balance check: updating cumulative discharge and total storage [m3]
			self.totalDischarge+= self.Q*deltaTime
			self.totalStorage= pcr.catchmenttotal(self.actualStorage,self.LDD)
		#-check on occurrence of last day and report mass balance
		if self.currentDate == self.endDate:
			#-report initial maps
			pcr.report(self.Q,self.QIniMap)
			pcr.report(self.actualStorage,self.actualStorageIniMap)
			#-return relative and absolute water balance error per cell and
			# as total at basin outlets
			self.totalDischarge= pcr.ifthen((self.waterBodies.distribution == 0) | \
				(self.waterBodies.location != 0),self.totalDischarge)
			self.cumulativeDeltaStorage= pcr.ifthen((self.waterBodies.distribution == 0) | \
				(self.waterBodies.location != 0),self.cumulativeDeltaStorage)
			massBalanceError= self.totalStorage+self.totalDischarge-\
				self.cumulativeDeltaStorage
			relMassBalanceError= 1.+pcr.ifthenelse(self.cumulativeDeltaStorage <> 0.,
				massBalanceError/self.cumulativeDeltaStorage,0.)
			totalMassBalanceError= pcr.cellvalue(pcr.maptotal(pcr.ifthen(self.basinOutlet,\
				massBalanceError)),1)[0]
			totalCumulativeDeltaStorage= pcr.cellvalue(pcr.maptotal(pcr.ifthen(self.basinOutlet,\
				self.cumulativeDeltaStorage)),1)[0]
			if totalCumulativeDeltaStorage > 0:
				totalRelativeMassBalanceError= 1.+totalMassBalanceError/totalCumulativeDeltaStorage
			else:
				totalRelativeMassBalanceError= 1.
			#-report maps and echo value
			pcr.report(massBalanceError,mbeFileName)
			pcr.report(relMassBalanceError,mbrFileName)
			print '\n*\ttotal global mass balance error [m3]: %8.3g' % totalMassBalanceError
			print '\n*\trelative global mass balance error [-]: %5.3f' % totalRelativeMassBalanceError     
			#-echo to screen: total mass balance error and completion of run
			print '\trun completed'
		#-end of day: return states and fluxes
		#-get surface water attributes?
		if getSurfaceWaterAttributes:
			#-compute the following secondary variables:
			# surface water area [m2]: area given dynamic surface water fraction
			# residence time [days]: volume over discharge, assigned -1 in case discharge is zero
			# surface water depth [m], weighed by channel and floodplain volume
			surfaceWaterArea= self.waterFraction*self.cellArea
			surfaceWaterArea= pcr.ifthenelse(self.waterBodies.distribution != 0,\
					pcr.ifthenelse(self.waterBodies.location != 0,\
						pcr.areatotal(surfaceWaterArea,self.waterBodies.distribution),0),\
							surfaceWaterArea)     
			surfaceWaterResidenceTime= pcr.ifthenelse(self.Q > 0.,self.actualStorage/(self.Q*self.timeSec),-1)
			surfaceWaterDepth= pcr.ifthenelse(self.actualStorage > 0.,\
				pcr.max(0.,self.actualStorage-self.channelStorageCapacity)**2/\
					(self.actualStorage*surfaceWaterArea),0.)
			surfaceWaterDepth+= pcr.ifthenelse(self.actualStorage > 0.,\
				pcr.min(self.channelStorageCapacity,self.actualStorage)**2/(self.waterFractionMask*\
				self.cellArea*self.actualStorage),0.)
			#-reports: values at outlet of lakes or reservoirs are assigned to their full extent
			self.report(pcr.ifthenelse(self.waterBodies.distribution != 0,\
				pcr.areamaximum(surfaceWaterArea,self.waterBodies.distribution),surfaceWaterArea),\
					surfaceWaterAreaFileName)   
			self.report(pcr.ifthenelse(self.waterBodies.distribution != 0,\
				pcr.areamaximum(surfaceWaterResidenceTime,self.waterBodies.distribution),surfaceWaterResidenceTime),\
					surfaceWaterResidenceTimeFileName)
			self.report(pcr.ifthenelse(self.waterBodies.distribution != 0,\
				pcr.areamaximum(surfaceWaterDepth,self.waterBodies.distribution),surfaceWaterDepth),\
					surfaceWaterDepthFileName)
		#-reports on standard output: values at outlet of lakes or reservoirs are assigned to their full extent
		self.report(pcr.ifthenelse(self.waterBodies.distribution != 0,
			pcr.areamaximum(self.flowVelocity,self.waterBodies.distribution),self.flowVelocity),flowVelocityFileName)
		self.report(pcr.ifthenelse(self.waterBodies.distribution != 0,
			pcr.areamaximum(self.Q,self.waterBodies.distribution),self.Q),QFileName)
		self.report(pcr.ifthenelse(self.waterBodies.distribution == 0,\
			floodedFraction,0.),floodedFractionFileName)
		self.report(pcr.ifthenelse(self.waterBodies.distribution == 0,\
			floodedDepth,0.),floodedDepthFileName)
		self.report(self.actualStorage,actualStorageFileName)
		#-update date for time step and report relevant daily output 
		self.currentDate= self.currentDate+datetime.timedelta(self.duration)
예제 #26
0
 def dynamic(self):
     #####################
     # * dynamic section #
     #####################
     #-evaluation of the current date: return current month and the time step used
     #-reading in fluxes over land and water area for current time step [m/d]
     # and read in reservoir demand and surface water extraction [m3]
     try:
         self.landSurfaceQ = clippedRead.get(
             pcrm.generateNameT(landSurfaceQFileName,
                                self.currentTimeStep()))
     except:
         pass
     try:
         self.potWaterSurfaceQ = clippedRead.get(
             pcrm.generateNameT(waterSurfaceQFileName,
                                self.currentTimeStep()))
     except:
         pass
     #-surface water extraction and reservoir demand currently set to zero, should
     # be computed automatically and updated to reservoirs
     self.potSurfaceWaterExtraction = pcr.spatial(pcr.scalar(0.))
     #self.waterBodies.demand=  #self.reservoirDemandTSS.assignID(self.waterBodies.ID,self.currentTimeStep(),0.)*self.timeSec
     #-initialization of cumulative values of actual water extractions
     self.actWaterSurfaceQ = pcr.spatial(pcr.scalar(0.))
     self.actSurfaceWaterExtraction = pcr.spatial(pcr.scalar(0.))
     #-definition of sub-loop for routing scheme - explicit scheme has to satisfy Courant condition
     timeLimit= pcr.cellvalue(pcr.mapminimum((pcr.cover(pcr.ifthen(self.waterBodies.distribution == 0,\
      self.channelLength/self.flowVelocity),\
       self.timeSec/self.nrIterDefault)*self.timeSec/self.nrIterDefault)**0.5),1)[0]
     nrIter = int(self.timeSec / timeLimit)
     nrIter = min(nrIter, int(self.timeSec / 300.))
     while float(self.timeSec / nrIter) % 1 <> 0:
         nrIter += 1
     deltaTime = self.timeSec / nrIter
     #-sub-loop for current time step
     if self.currentDate.day == 1 or nrIter >= 24:
         print '\n*\tprocessing %s, currently using %d substeps of %d seconds\n' % \
          (self.currentDate.date(),nrIter,deltaTime)
     #-update discharge and storage
     for nrICur in range(nrIter):
         #-initializing discharge for the current sub-timestep and fill in values
         # for channels and at outlets of waterbodies
         # * channels *
         estQ= pcr.ifthenelse((self.actualStorage > 0.) & (self.waterBodies.distribution == 0) ,\
          (self.wettedArea/self.alphaQ)**(1./self.betaQ),0.)
         #estQ= pcr.ifthenelse((self.actualStorage > 0.) & (self.waterBodies.distribution == 0) ,\
         #0.5*(self.Q+(self.wettedArea/self.alphaQ)**(1./self.betaQ)),0.)
         #estQ= pcr.min(estQ,self.actualStorage/deltaTime)
         self.report(estQ, 'results/qest')
         self.Q = pcr.spatial(pcr.scalar(0.))
         self.Q= pcr.ifthenelse(self.waterBodies.distribution == 0,\
          pcr.kinematic(self.channelLDD,estQ,0.,self.alphaQ,\
           self.betaQ,1,deltaTime,self.channelLength),self.Q)
         # * water bodies *
         self.waterBodies.dischargeUpdate()
         self.Q = self.waterBodies.returnMapValue(self.Q,
                                                  self.waterBodies.actualQ)
         #-fluxes and resulting change in storage: first the local fluxes are evaluated
         # and aggregated over the water bodies where applicable; this includes the specific runoff [m/day/m2]
         # from input and the estimated extraction from surface water as volume per day [m3/day];
         # specific runoff from the land surface is always positive whereas the fluxes over the water surface
         # are potential, including discharge, and are adjusted to match the availabe storage; to this end,
         # surface water storage and fluxes over water bodies are totalized and assigned to the outlet;
         # discharge is updated in a separate step, after vertical fluxes are compared to the actual storage
         deltaActualStorage= ((self.landFraction*self.landSurfaceQ+\
          self.waterFraction*self.potWaterSurfaceQ)*self.cellArea-\
          self.potSurfaceWaterExtraction)*float(self.duration)/nrIter
         deltaActualStorage= pcr.ifthenelse(self.waterBodies.distribution != 0,\
          pcr.ifthenelse(self.waterBodies.location != 0,\
           pcr.areatotal(deltaActualStorage,self.waterBodies.distribution),0),\
            deltaActualStorage)
         adjustmentRatio= pcr.ifthenelse(deltaActualStorage < 0.,\
          pcr.min(1.,-self.actualStorage/deltaActualStorage),1.)
         self.actWaterSurfaceQ += adjustmentRatio * self.potWaterSurfaceQ
         self.actSurfaceWaterExtraction += adjustmentRatio * self.actSurfaceWaterExtraction
         deltaActualStorage *= adjustmentRatio
         #-local water balance check
         if testLocalWaterBalance:
             differenceActualStorage = self.actualStorage
             differenceActualStorage += deltaActualStorage
         #-overall water balance check: net input
         self.cumulativeDeltaStorage += pcr.catchmenttotal(
             deltaActualStorage, self.LDD)
         #-update storage first with local changes, then balance discharge with storage and update storage
         # with lateral flow and return value to water bodies
         self.actualStorage += deltaActualStorage
         self.actualStorage = pcr.max(0., self.actualStorage)
         self.Q = pcr.min(self.Q, self.actualStorage / deltaTime)
         deltaActualStorage = (-self.Q +
                               pcr.upstream(self.LDD, self.Q)) * deltaTime
         deltaActualStorage= pcr.ifthenelse(self.waterBodies.distribution != 0,\
          pcr.ifthenelse(self.waterBodies.location != 0,\
           pcr.areatotal(deltaActualStorage,self.waterBodies.distribution),0),\
            deltaActualStorage)
         self.actualStorage += deltaActualStorage
         self.actualStorage = pcr.max(0., self.actualStorage)
         self.waterBodies.actualStorage = self.waterBodies.retrieveMapValue(
             self.actualStorage)
         #-flooded fraction returned
         floodedFraction,floodedDepth,\
           self.wettedArea,self.alphaQ= self.kinAlphaComposite(self.actualStorage,self.floodplainMask)
         self.wettedArea= self.waterBodies.returnMapValue(self.wettedArea,\
          self.waterBodies.channelWidth+2.*self.waterBodies.updateWaterHeight())
         self.waterFraction= pcr.ifthenelse(self.waterBodies.distribution == 0,\
          pcr.max(self.waterFractionMask,floodedFraction),self.waterFractionMask)
         self.landFraction = pcr.max(0., 1. - self.waterFraction)
         self.flowVelocity = pcr.ifthenelse(self.wettedArea > 0,
                                            self.Q / self.wettedArea, 0.)
         #-local water balance check
         if testLocalWaterBalance:
             differenceActualStorage += deltaActualStorage
             differenceActualStorage -= self.actualStorage
             totalDifference = pcr.cellvalue(
                 pcr.maptotal(differenceActualStorage), 1)[0]
             minimumDifference = pcr.cellvalue(
                 pcr.mapminimum(differenceActualStorage), 1)[0]
             maximumDifference = pcr.cellvalue(
                 pcr.mapmaximum(differenceActualStorage), 1)[0]
             if abs(totalDifference) > 1.e-3:
                 print 'water balance error: total %e; min %e; max %e' %\
                  (totalDifference,minimumDifference,maximumDifference)
                 if reportLocalWaterBalance:
                     pcr.report(differenceActualStorage,
                                'mbe_%s.map' % self.currentDate.date())
         #-overall water balance check: updating cumulative discharge and total storage [m3]
         self.totalDischarge += self.Q * deltaTime
         self.totalStorage = pcr.catchmenttotal(self.actualStorage,
                                                self.LDD)
     #-check on occurrence of last day and report mass balance
     if self.currentDate == self.endDate:
         #-report initial maps
         pcr.report(self.Q, self.QIniMap)
         pcr.report(self.actualStorage, self.actualStorageIniMap)
         #-return relative and absolute water balance error per cell and
         # as total at basin outlets
         self.totalDischarge= pcr.ifthen((self.waterBodies.distribution == 0) | \
          (self.waterBodies.location != 0),self.totalDischarge)
         self.cumulativeDeltaStorage= pcr.ifthen((self.waterBodies.distribution == 0) | \
          (self.waterBodies.location != 0),self.cumulativeDeltaStorage)
         massBalanceError= self.totalStorage+self.totalDischarge-\
          self.cumulativeDeltaStorage
         relMassBalanceError = 1. + pcr.ifthenelse(
             self.cumulativeDeltaStorage <> 0.,
             massBalanceError / self.cumulativeDeltaStorage, 0.)
         totalMassBalanceError= pcr.cellvalue(pcr.maptotal(pcr.ifthen(self.basinOutlet,\
          massBalanceError)),1)[0]
         totalCumulativeDeltaStorage= pcr.cellvalue(pcr.maptotal(pcr.ifthen(self.basinOutlet,\
          self.cumulativeDeltaStorage)),1)[0]
         if totalCumulativeDeltaStorage > 0:
             totalRelativeMassBalanceError = 1. + totalMassBalanceError / totalCumulativeDeltaStorage
         else:
             totalRelativeMassBalanceError = 1.
         #-report maps and echo value
         pcr.report(massBalanceError, mbeFileName)
         pcr.report(relMassBalanceError, mbrFileName)
         print '\n*\ttotal global mass balance error [m3]: %8.3g' % totalMassBalanceError
         print '\n*\trelative global mass balance error [-]: %5.3f' % totalRelativeMassBalanceError
         #-echo to screen: total mass balance error and completion of run
         print '\trun completed'
     #-end of day: return states and fluxes
     #-get surface water attributes?
     if getSurfaceWaterAttributes:
         #-compute the following secondary variables:
         # surface water area [m2]: area given dynamic surface water fraction
         # residence time [days]: volume over discharge, assigned -1 in case discharge is zero
         # surface water depth [m], weighed by channel and floodplain volume
         surfaceWaterArea = self.waterFraction * self.cellArea
         surfaceWaterArea= pcr.ifthenelse(self.waterBodies.distribution != 0,\
           pcr.ifthenelse(self.waterBodies.location != 0,\
            pcr.areatotal(surfaceWaterArea,self.waterBodies.distribution),0),\
             surfaceWaterArea)
         surfaceWaterResidenceTime = pcr.ifthenelse(
             self.Q > 0., self.actualStorage / (self.Q * self.timeSec), -1)
         surfaceWaterDepth= pcr.ifthenelse(self.actualStorage > 0.,\
          pcr.max(0.,self.actualStorage-self.channelStorageCapacity)**2/\
           (self.actualStorage*surfaceWaterArea),0.)
         surfaceWaterDepth+= pcr.ifthenelse(self.actualStorage > 0.,\
          pcr.min(self.channelStorageCapacity,self.actualStorage)**2/(self.waterFractionMask*\
          self.cellArea*self.actualStorage),0.)
         #-reports: values at outlet of lakes or reservoirs are assigned to their full extent
         self.report(pcr.ifthenelse(self.waterBodies.distribution != 0,\
          pcr.areamaximum(surfaceWaterArea,self.waterBodies.distribution),surfaceWaterArea),\
           surfaceWaterAreaFileName)
         self.report(pcr.ifthenelse(self.waterBodies.distribution != 0,\
          pcr.areamaximum(surfaceWaterResidenceTime,self.waterBodies.distribution),surfaceWaterResidenceTime),\
           surfaceWaterResidenceTimeFileName)
         self.report(pcr.ifthenelse(self.waterBodies.distribution != 0,\
          pcr.areamaximum(surfaceWaterDepth,self.waterBodies.distribution),surfaceWaterDepth),\
           surfaceWaterDepthFileName)
     #-reports on standard output: values at outlet of lakes or reservoirs are assigned to their full extent
     self.report(
         pcr.ifthenelse(
             self.waterBodies.distribution != 0,
             pcr.areamaximum(self.flowVelocity,
                             self.waterBodies.distribution),
             self.flowVelocity), flowVelocityFileName)
     self.report(
         pcr.ifthenelse(
             self.waterBodies.distribution != 0,
             pcr.areamaximum(self.Q, self.waterBodies.distribution),
             self.Q), QFileName)
     self.report(pcr.ifthenelse(self.waterBodies.distribution == 0,\
      floodedFraction,0.),floodedFractionFileName)
     self.report(pcr.ifthenelse(self.waterBodies.distribution == 0,\
      floodedDepth,0.),floodedDepthFileName)
     self.report(self.actualStorage, actualStorageFileName)
     #-update date for time step and report relevant daily output
     self.currentDate = self.currentDate + datetime.timedelta(self.duration)
예제 #27
0
def getMinMaxMean(mapFile):
    mn = pcr.cellvalue(pcr.mapminimum(mapFile),1)[0]
    mx = pcr.cellvalue(pcr.mapmaximum(mapFile),1)[0]
    nrValues  = pcr.cellvalue(pcr.maptotal(pcr.scalar(pcr.defined(mapFile))), 1 ) [0] #/ getNumNonMissingValues(mapFile)
    return mn,mx,(getMapTotal(mapFile) / nrValues)
예제 #28
0
    def dynamic(self):
        """ dynamic part of the output module
        """

        # ************************************************************
        # ***** WRITING RESULTS: TIME SERIES *************************
        # ************************************************************

        # xxx=catchmenttotal(self.var.SurfaceRunForest * self.var.PixelArea, self.var.Ldd) * self.var.InvUpArea
        # self.var.Tss['DisTS'].sample(xxx)
        # self.report(self.Precipitation,binding['TaMaps'])

        # if fast init than without time series
        settings = LisSettings.instance()
        option = settings.options
        binding = settings.binding
        flags = settings.flags
        report_time_serie_act = settings.report_timeseries
        report_maps_end = settings.report_maps_end
        report_maps_steps = settings.report_maps_steps
        report_maps_all = settings.report_maps_all

        if not (option['InitLisfloodwithoutSplit']):

            if flags['loud']:
                # print the discharge of the first output map loc
                try:
                    print(" %10.2f" % self.var.Tss["DisTS"].firstout(
                        decompress(self.var.ChanQAvg)))
                except:
                    pass

            for tss in report_time_serie_act:
                # report time series
                what = 'self.var.' + report_time_serie_act[tss].output_var
                how = report_time_serie_act[tss].operation[0] if len(
                    report_time_serie_act[tss].operation) else ''
                if how == 'mapmaximum':
                    changed = compressArray(mapmaximum(decompress(eval(what))))
                    what = 'changed'
                if how == 'total':
                    changed = compressArray(
                        catchmenttotal(
                            decompress(eval(what)) * self.var.PixelAreaPcr,
                            self.var.Ldd) * self.var.InvUpArea)
                    what = 'changed'
                self.var.Tss[tss].sample(decompress(eval(what)))

        # ************************************************************
        # ***** WRITING RESULTS: MAPS   ******************************
        # ************************************************************

        # started nicely but now it becomes way to complicated, I am not happy about the next part -> has to be chaged

        checkifdouble = []  # list to check if map is reported more than once
        monthly = False
        yearly = False

        # Report END maps

        for maps in report_maps_end.keys():
            # report end map filename
            if settings.mc_set:
                # MonteCarlo model
                where = os.path.join(str(self.var.currentSampleNumber()),
                                     binding[maps].split("/")[-1])
            else:
                where = binding.get(maps)
            if not where:
                continue
            what = 'self.var.' + report_maps_end[maps].output_var
            if where not in checkifdouble:
                checkifdouble.append(where)
                # checks if saved at same place, if no: add to list

                if self.var.currentTimeStep() == self.var.nrTimeSteps():
                    # final step: Write end maps
                    # Get start date for reporting start step
                    # (last step indeed)
                    reportStartDate = inttodate(self.var.currentTimeStep() - 1,
                                                self.var.CalendarDayStart)

                    # if suffix with '.' is part of the filename report with
                    # suffix
                    head, tail = os.path.split(where)
                    if '.' in tail:
                        if option['writeNetcdf']:
                            # CM mod: write end map to netCDF file (single)
                            # CM ##########################

                            try:
                                writenet(0, eval(what), where, self.var.DtDay,
                                         maps,
                                         report_maps_end[maps].output_var,
                                         report_maps_end[maps].unit, 'f4',
                                         reportStartDate,
                                         self.var.currentTimeStep(),
                                         self.var.currentTimeStep())
                            except Exception as e:
                                print(str(e), 'END', what, where,
                                      self.var.DtDay, maps,
                                      report_maps_end[maps].output_var,
                                      report_maps_end[maps].unit, 'f4',
                                      reportStartDate,
                                      self.var.currentTimeStep(),
                                      self.var.currentTimeStep())
                            ################################

                        else:
                            report(decompress(eval(what)), str(where))
                    else:
                        if option['writeNetcdfStack']:

                            try:
                                writenet(0, eval(what), where, self.var.DtDay,
                                         maps,
                                         report_maps_end[maps].output_var,
                                         report_maps_end[maps].unit, 'f4',
                                         reportStartDate,
                                         self.var.currentTimeStep(),
                                         self.var.currentTimeStep())
                            except Exception as e:
                                print(str(e), 'END', what, where,
                                      self.var.DtDay, maps,
                                      report_maps_end[maps].output_var,
                                      report_maps_end[maps].unit, 'f4',
                                      reportStartDate,
                                      self.var.currentTimeStep(),
                                      self.var.currentTimeStep())
                            ###########################
                        else:
                            self.var.report(decompress(eval(what)), str(where))

        # Report REPORTSTEPS maps
        for maps in report_maps_steps.keys():
            # report reportsteps maps
            if settings.mc_set:
                # MonteCarlo model
                where = os.path.join(str(self.var.currentSampleNumber()),
                                     binding[maps].split("/")[-1])
            else:
                where = binding.get(maps)
            if not where:
                continue
            what = 'self.var.' + report_maps_steps[maps].output_var
            if not (where in checkifdouble):
                checkifdouble.append(where)
                # checks if saved at same place, if no: add to list
                if self.var.currentTimeStep() in self.var.ReportSteps:
                    flagcdf = 1  # index flag for writing nedcdf = 1 (=steps) -> indicated if a netcdf is created or maps are appended
                    frequency = "all"
                    try:
                        if report_maps_steps[maps].monthly:
                            monthly = True
                            flagcdf = 3  # set to monthly (step) flag
                            frequency = "monthly"
                    except:
                        monthly = False
                    try:
                        if report_maps_steps[maps].yearly:
                            yearly = True
                            flagcdf = 4  # set to yearly (step) flag
                            frequency = "annual"
                    except:
                        yearly = False

                    if (monthly and self.var.monthend) or (
                            yearly
                            and self.var.yearend) or not (monthly or yearly):
                        # checks if a flag monthly or yearly exists
                        if option['writeNetcdfStack']:
                            # Get start date for reporting start step
                            reportStartDate = inttodate(
                                self.var.ReportSteps[0] - 1,
                                self.var.CalendarDayStart)
                            # get step number for first reporting step
                            reportStepStart = 1
                            # get step number for last reporting step
                            reportStepEnd = self.var.ReportSteps[
                                -1] - self.var.ReportSteps[0] + 1
                            cdfflags = CDFFlags.instance()
                            try:
                                writenet(cdfflags[flagcdf], eval(what), where,
                                         self.var.DtDay, maps,
                                         report_maps_steps[maps].output_var,
                                         report_maps_steps[maps].unit, 'f4',
                                         reportStartDate, reportStepStart,
                                         reportStepEnd, frequency)
                            except Exception as e:
                                print(" +----> ERR: {}".format(str(e)))
                                print(
                                    "REP flag:{} - {} {} {} {} {} {} {} {} {} {}"
                                    .format(cdfflags[flagcdf], what, where,
                                            self.var.DtDay, maps,
                                            report_maps_steps[maps].output_var,
                                            report_maps_steps[maps].unit, 'f4',
                                            reportStartDate, reportStepStart,
                                            reportStepEnd))

                        else:
                            self.var.report(decompress(eval(what)), str(where))

        # Report ALL maps
        for maps in report_maps_all.keys():
            # report maps for all timesteps
            if settings.mc_set:
                where = os.path.join(str(self.var.currentSampleNumber()),
                                     binding[maps].split("/")[-1])
            else:
                where = binding.get(maps)
            if not where:
                continue
            what = 'self.var.' + report_maps_all[maps].output_var
            if where not in checkifdouble:
                checkifdouble.append(where)
                # checks if saved at same place, if no: add to list

                # index flag for writing nedcdf = 1 (=all) -> indicated if a netcdf is created or maps are appended
                # cannot check only if netcdf exists, because than an old netcdf will be used accidently
                flagcdf = 2
                frequency = "all"
                try:
                    if report_maps_all[maps].monthly:
                        monthly = True
                        flagcdf = 5  # set to monthly flag
                        frequency = "monthly"
                except:
                    monthly = False
                try:
                    if report_maps_all[maps].yearly:
                        yearly = True
                        flagcdf = 6  # set to yearly flag
                        frequency = "annual"
                except:
                    yearly = False

                if (monthly and self.var.monthend) or (
                        yearly
                        and self.var.yearend) or not (monthly or yearly):
                    # checks if a flag monthly or yearly exists]
                    if option['writeNetcdfStack']:
                        #Get start date for reporting start step
                        reportStartDate = inttodate(
                            binding['StepStartInt'] - 1,
                            self.var.CalendarDayStart)
                        # CM: get step number for first reporting step which is always the first simulation step
                        # CM: first simulation step referred to reportStartDate
                        ##reportStepStart = int(binding['StepStart'])
                        reportStepStart = 1
                        #get step number for last reporting step which is always the last simulation step
                        #last simulation step referred to reportStartDate
                        reportStepEnd = binding['StepEndInt'] - binding[
                            'StepStartInt'] + 1

                        try:
                            cdfflags = CDFFlags.instance()
                            writenet(cdfflags[flagcdf], eval(what), where,
                                     self.var.DtDay, maps,
                                     report_maps_all[maps].output_var,
                                     report_maps_all[maps].unit, 'f4',
                                     reportStartDate, reportStepStart,
                                     reportStepEnd, frequency)
                        except Exception as e:
                            warnings.warn(LisfloodWarning(str(e)))
                            print(str(e), "ALL", what, where, self.var.DtDay,
                                  maps, report_maps_all[maps].output_var,
                                  report_maps_all[maps].unit, 'f4',
                                  reportStartDate, reportStepStart,
                                  reportStepEnd)
                    else:
                        self.var.report(decompress(eval(what)),
                                        trimPCRasterOutputPath(where))

        cdfflags = CDFFlags.instance()
        # set the falg to indicate if a netcdffile has to be created or is only appended
        # if reportstep than increase the counter
        if self.var.currentTimeStep() in self.var.ReportSteps:
            # FIXME magic numbers. replace indexes with descriptive keys
            cdfflags.inc(1)
            # globals.cdfFlag[1] += 1
            if self.var.monthend:
                # globals.cdfFlag[3] += 1
                cdfflags.inc(3)
            if self.var.yearend:
                # globals.cdfFlag[4] += 1
                cdfflags.inc(4)

        # increase the counter for report all maps
        cdfflags.inc(2)
        # globals.cdfFlag[2] += 1
        if self.var.monthend:
            # globals.cdfFlag[5] += 1
            cdfflags.inc(5)
        if self.var.yearend:
            # globals.cdfFlag[6] += 1
            cdfflags.inc(6)
def main():
	#-initialization
	# MVs
	MV= -999.
	# minimum catchment size to process
	catchmentSizeLimit= 0.0
	# period of interest, start and end year
	startYear= 1961
	endYear= 2010
	# maps
	cloneMapFileName= '/data/hydroworld/PCRGLOBWB20/input30min/global/Global_CloneMap_30min.map'
	lddFileName= '/data/hydroworld/PCRGLOBWB20/input30min/routing/lddsound_30min.map'
	cellAreaFileName= '/data/hydroworld/PCRGLOBWB20/input30min/routing/cellarea30min.map'
	# set clone 
	pcr.setclone(cloneMapFileName)
	# output
	outputPath= '/scratch/rens/reservedrecharge'
	percentileMapFileName= os.path.join(outputPath,'q%03d_cumsec.map')
	textFileName= os.path.join(outputPath,'groundwater_environmentalflow_%d.txt')
	fractionReservedRechargeMapFileName= os.path.join(outputPath,'fraction_reserved_recharge%d.map')
	fractionMinimumReservedRechargeMapFileName= os.path.join(outputPath,'minimum_fraction_reserved_recharge%d.map')
	# input
	inputPath= '/nfsarchive/edwin-emergency-backup-DO-NOT-DELETE/rapid/edwin/05min_runs_results/2015_04_27/non_natural_2015_04_27/global/netcdf/'
	# define data to be read from netCDF files
	ncData= {}
	variableName= 'totalRunoff'
	ncData[variableName]= {}
	ncData[variableName]['fileName']= os.path.join(inputPath,'totalRunoff_monthTot_output.nc')
	ncData[variableName]['fileRoot']= os.path.join(outputPath,'qloc')
	ncData[variableName]['annualAverage']= pcr.scalar(0)	
	variableName= 'gwRecharge'
	ncData[variableName]= {}
	ncData[variableName]['fileName']= os.path.join(inputPath,'gwRecharge_monthTot_output.nc')
	ncData[variableName]['fileRoot']= os.path.join(outputPath,'gwrec')
	ncData[variableName]['annualAverage']= pcr.scalar(0)
	variableName= 'discharge'
	ncData[variableName]= {}
	ncData[variableName]['fileName']= os.path.join(inputPath,'totalRunoff_monthTot_output.nc')
	ncData[variableName]['fileRoot']= os.path.join(outputPath,'qc')
	ncData[variableName]['annualAverage']= pcr.scalar(0)
	ncData[variableName]['mapStack']= np.array([])
	# percents and environmental flow condition set as percentile
	percents= range(10,110,10)
	environmentalFlowPercent= 10
	if environmentalFlowPercent not in percents:
		percents.append(environmentalFlowPercent)
		percents.sort()

	#-start
	# obtain attributes
	pcr.setclone(cloneMapFileName)
	cloneSpatialAttributes= spatialAttributes(cloneMapFileName)
	years= range(startYear,endYear+1)
	# output path
	if not os.path.isdir(outputPath):
		os.makedirs(outputPath)
	os.chdir(outputPath)
	# compute catchments
	ldd= pcr.readmap(lddFileName)
	cellArea= pcr.readmap(cellAreaFileName)
	catchments= pcr.catchment(ldd,pcr.pit(ldd))
	fractionWater= pcr.scalar(0.0) # temporary!
	lakeMask= pcr.boolean(0) # temporary!
	pcr.report(catchments,os.path.join(outputPath,'catchments.map'))
	maximumCatchmentID= int(pcr.cellvalue(pcr.mapmaximum(pcr.scalar(catchments)),1)[0])
	# iterate over years
	weight= float(len(years))**-1
	for year in years:
		#-echo year
		print ' - processing year %d' % year
		#-process data
		startDate= datetime.datetime(year,1,1)
		endDate= datetime.datetime(year,12,31)
		timeSteps= endDate.toordinal()-startDate.toordinal()+1
		dynamicIncrement= 1
		for variableName in ncData.keys():
			print '   extracting %s' % variableName,
			ncFileIn= ncData[variableName]['fileName']
			#-process data
			pcrDataSet= pcrObject(variableName, ncData[variableName]['fileRoot'],\
				ncFileIn,cloneSpatialAttributes, pcrVALUESCALE= pcr.Scalar, resamplingAllowed= True,\
				dynamic= True, dynamicStart= startDate, dynamicEnd= endDate, dynamicIncrement= dynamicIncrement, ncDynamicDimension= 'time')
			pcrDataSet.initializeFileInfo()
			pcrDataSet.processFileInfo()
			for fileInfo in pcrDataSet.fileProcessInfo.values()[0]:
				tempFileName= fileInfo[1]
				variableField= pcr.readmap(tempFileName)
				variableField= pcr.ifthen(pcr.defined(ldd),pcr.cover(variableField,0))
				if variableName == 'discharge':
					dayNumber= int(os.path.splitext(tempFileName)[1].strip('.'))
					date= datetime.date(year,1,1)+datetime.timedelta(dayNumber-1)
					numberDays= calendar.monthrange(year,date.month)[1]
					variableField= pcr.max(0,pcr.catchmenttotal(variableField*cellArea,ldd)/(numberDays*24*3600))
				ncData[variableName]['annualAverage']+= weight*variableField
				if 'mapStack' in ncData[variableName].keys():
					tempArray= pcr2numpy(variableField,MV)
					mask= tempArray != MV
					if ncData[variableName]['mapStack'].size != 0:
						ncData[variableName]['mapStack']= np.vstack((ncData[variableName]['mapStack'],tempArray[mask]))
					else:
						ncData[variableName]['mapStack']= tempArray[mask]
						coordinates= np.zeros((ncData[variableName]['mapStack'].size,2))
						pcr.setglobaloption('unitcell')
						tempArray= pcr2numpy(pcr.ycoordinate(pcr.boolean(1))+0.5,MV)
						coordinates[:,0]= tempArray[mask]
						tempArray= pcr2numpy(pcr.xcoordinate(pcr.boolean(1))+0.5,MV)
						coordinates[:,1]= tempArray[mask]      
				os.remove(tempFileName)				
			# delete object
			pcrDataSet= None
			del pcrDataSet
			# close line on screen
			print
	# report annual averages
	key= 'annualAverage'
	ncData['discharge'][key]/= 12
	for variableName in ncData.keys():
		ncData[variableName][key]= pcr.max(0,ncData[variableName][key])
		pcr.report(ncData[variableName][key],\
			os.path.join(outputPath,'%s_%s.map' % (variableName,key)))
	# remove aux.xml
	for tempFileName in os.listdir(outputPath):
		if 'aux.xml' in tempFileName:
			os.remove(tempFileName)
	# sort data
	print 'sorting discharge data'
	variableName= 'discharge'
	key= 'mapStack'
	indices= np.zeros((ncData[variableName][key].shape),np.uint)
	for iCnt in xrange(ncData[variableName][key].shape[1]):
		indices[:,iCnt]= ncData[variableName][key][:,iCnt].argsort(kind= 'mergesort')
		ncData[variableName][key][:,iCnt]= ncData[variableName][key][:,iCnt][indices[:,iCnt]]
	# extract values for percentiles
	print 'returning maps'
	for percent in percents:
		percentile= 0.01*percent
		index0= min(ncData[variableName][key].shape[0]-1,int(percentile*ncData[variableName][key].shape[0]))
		index1= min(ncData[variableName][key].shape[0]-1,int(percentile*ncData[variableName][key].shape[0])+1)
		x0= float(index0)/ncData[variableName][key].shape[0]
		x1= float(index1)/ncData[variableName][key].shape[0]
		if x0 <> x1:
			y= ncData[variableName][key][index0,:]+(percentile-x0)*\
				 (ncData[variableName][key][index1,:]-ncData[variableName][key][index0,:])/(x1-x0)
		else:
			y= ncData[variableName][key][index0,:]
		# convert a slice of the stack into an array
		tempArray= np.ones((cloneSpatialAttributes.numberRows,cloneSpatialAttributes.numberCols))*MV
		for iCnt in xrange(coordinates.shape[0]):
			row= coordinates[iCnt,0]-1
			col= coordinates[iCnt,1]-1
			tempArray[row,col]= y[iCnt]
		variableField= numpy2pcr(pcr.Scalar,tempArray,MV)
		pcr.report(variableField,percentileMapFileName % percent)
		if percent == environmentalFlowPercent:
			ncData[variableName]['environmentalFlow']= variableField
		tempArray= None; variableField= None
		del tempArray, variableField
	# process environmental flow
	# initialize map of reserved recharge fraction
	fractionReservedRechargeMap= pcr.ifthen(ncData[variableName]['environmentalFlow'] < 0,pcr.scalar(0))
	fractionMinimumReservedRechargeMap= pcr.ifthen(ncData[variableName]['environmentalFlow'] < 0,pcr.scalar(0))
	textFile= open(textFileName % environmentalFlowPercent,'w')
	hStr= 'Environmental flow analysis per basin, resulting in a map of renewable, exploitable recharge, for the %d%s quantile of discharge\n' % (environmentalFlowPercent,'%')
	hStr+= 'Returns Q_%d/R, the fraction of reserved recharge needed to sustain fully the environental flow requirement defined as the %d percentile,\n' % (environmentalFlowPercent, environmentalFlowPercent)
	hStr+= 'and Q*_%d/R, a reduced fraction that takes the availability of surface water into account\n' % environmentalFlowPercent
	textFile.write(hStr)
	print hStr
	# create header to display on screen and write to file
	# reported are: 1: ID, 2: Area, 3: average discharge, 4: environmental flow, 5: average recharge,
	# 6: Q_%d/Q, 7: Q_%d/R_Avg, 8: R_Avg/Q_Avg, 9: Q*_%d/R_Avg
	hStr= '%6s,%15s,%15s,%15s,%15s,%15s,%15s,%15s,%15s\n' % \
		('ID','Area [km2]','Q_Avg [m3]','Q_%d [m3]' % environmentalFlowPercent ,'R_Avg [m3]','Q_%d/Q_Avg [-]' % environmentalFlowPercent,\
			'Q_%d/Q_Avg [-]' % environmentalFlowPercent,'R_Avg/Q_Avg [-]','Q*_%d/Q_Avg [-]' % environmentalFlowPercent)
	textFile.write(hStr)
	print hStr
	for catchment in xrange(1,maximumCatchmentID+1):
		# create catchment mask and check whether it does not coincide with a lake
		catchmentMask= catchments == catchment
		catchmentSize= pcr.cellvalue(pcr.maptotal(pcr.ifthen(catchmentMask,cellArea*1.e-6)),1)[0]
		#~ ##~ if pcr.cellvalue(pcr.maptotal(pcr.ifthen(catchmentMask,pcr.scalar(lakeMask))),1) <> \
				#~ ##~ pcr.cellvalue(pcr.maptotal(pcr.ifthen(catchmentMask,pcr.scalar(catchmentMask))),1)[0] and \
				#~ ##~ catchmentSize > catchmentSizeLimit:
		key= 'annualAverage'
		variableName= 'discharge'			
		if bool(pcr.cellvalue(pcr.maptotal(pcr.ifthen((ldd == 5) & catchmentMask,\
				pcr.scalar(ncData[variableName][key] > 0))),1)[0]) and catchmentSize >= catchmentSizeLimit:
			# valid catchment, process
			# all volumes are in m3 per year
			key= 'annualAverage'
			catchmentAverageDischarge= pcr.cellvalue(pcr.mapmaximum(pcr.ifthen(catchmentMask & (ldd == 5),\
				ncData[variableName][key])),1)[0]*365.25*3600*24
			variableName= 'gwRecharge'
			catchmentRecharge= pcr.cellvalue(pcr.maptotal(pcr.ifthen(catchmentMask,ncData[variableName][key]*\
				(1.-fractionWater)*cellArea)),1)[0]
			variableName= 'totalRunoff'
			catchmentRunoff= pcr.cellvalue(pcr.maptotal(pcr.ifthen(catchmentMask,ncData[variableName][key]*\
				cellArea)),1)[0]
			key= 'environmentalFlow'
			variableName= 'discharge'			
			catchmentEnvironmentalFlow= pcr.cellvalue(pcr.mapmaximum(pcr.ifthen(catchmentMask & (ldd == 5),\
				ncData[variableName][key])),1)[0]*365.25*3600*24
			catchmentRunoff= max(catchmentRunoff,catchmentEnvironmentalFlow)
			if catchmentAverageDischarge > 0.:
				fractionEnvironmentalFlow= catchmentEnvironmentalFlow/catchmentAverageDischarge
				fractionGroundWaterContribution= catchmentRecharge/catchmentAverageDischarge
			else:
				fractionEnvironmentalFlow= 0.
				fractionGroundWaterContribution= 0.
			if catchmentRecharge > 0:
				fractionReservedRecharge= min(1,catchmentEnvironmentalFlow/catchmentRecharge)
			else:
				fractionReservedRecharge= 1.0
			fractionMinimumReservedRecharge= (fractionReservedRecharge+fractionGroundWaterContribution-\
				fractionReservedRecharge*fractionGroundWaterContribution)*fractionReservedRecharge
			#~ # echo to screen, and write to file and map
			wStr= '%6s,%15.1f,%15.6g,%15.6g,%15.6g,%15.6f,%15.6f,%15.6f,%15.6f\n' % \
				(catchment,catchmentSize,catchmentAverageDischarge,catchmentEnvironmentalFlow,catchmentRecharge,\
					fractionEnvironmentalFlow,fractionReservedRecharge,fractionGroundWaterContribution,fractionMinimumReservedRecharge)
			print wStr
			textFile.write(wStr)
			# update maps
			fractionReservedRechargeMap= pcr.ifthenelse(catchmentMask,\
				pcr.scalar(fractionReservedRecharge),fractionReservedRechargeMap)
			fractionMinimumReservedRechargeMap= pcr.ifthenelse(catchmentMask,\
				pcr.scalar(fractionMinimumReservedRecharge),fractionMinimumReservedRechargeMap)
	#-report map and close text file
	pcr.report(fractionReservedRechargeMap,fractionReservedRechargeMapFileName % environmentalFlowPercent)
	pcr.report(fractionMinimumReservedRechargeMap,fractionMinimumReservedRechargeMapFileName % environmentalFlowPercent)
	# close text file
	textFile.close()
	# finished
	print 'all done!'
예제 #30
0
def waterBalance(  fluxesIn,  fluxesOut,  deltaStorages,  processName,   PrintOnlyErrors,  dateStr,threshold=1e-5):
    """ Returns the water balance for a list of input, output, and storage map files and """

    inMap = pcr.spatial(pcr.scalar(0.0))
    dsMap = pcr.spatial(pcr.scalar(0.0))
    outMap = pcr.spatial(pcr.scalar(0.0))
    inflow = 0
    outflow = 0
    deltaS = 0
    for fluxIn in fluxesIn:
        inflow += getMapTotal(fluxIn)
        inMap += fluxIn
    for fluxOut in fluxesOut:
        outflow += getMapTotal(fluxOut)
        outMap += fluxOut
    for deltaStorage in deltaStorages:
        deltaS += getMapTotal(deltaStorage)
        dsMap += deltaStorage

    #if PrintOnlyErrors:
    a,b,c = getMinMaxMean(inMap + dsMap- outMap)
    # if abs(a) > 1e-5 or abs(b) > 1e-5:
    # if abs(a) > 1e-4 or abs(b) > 1e-4:
    if abs(a) > threshold or abs(b) > threshold:
        print "WBError %s Min %f Max %f Mean %f" %(processName,a,b,c)
    #    if abs(inflow + deltaS - outflow) > 1e-5:
    #        print "Water balance Error for %s on %s: in = %f\tout=%f\tdeltaS=%f\tBalance=%f" \
    #        %(processName,dateStr,inflow,outflow,deltaS,inflow + deltaS - outflow)
    #else:
    #   print "Water balance for %s: on %s in = %f\tout=%f\tdeltaS=%f\tBalance=%f" \
    #        %(processName,dateStr,inflow,outflow,deltaS,inflow + deltaS - outflow)

    wb = inMap + dsMap - outMap
    maxWBError = pcr.cellvalue(pcr.mapmaximum(pcr.abs(wb)), 1, 1)[0]

    #if maxWBError > 0.001 / 1000:
        #row = 0
        #col = 0
        #cellID = 1
        #troubleCell = 0

        #print "Water balance for %s on %s: %f mm !!! " %(processName,dateStr,maxWBError * 1000)
        #pcr.report(wb,"%s-WaterBalanceError-%s" %(processName,dateStr))

        #npWBMError = pcr2numpy(wb, -9999)
        #(nr, nc) = np.shape(npWBMError)
        #for r in range(0, nr):
            #for c in range(0, nc):

                ## print r,c

                #if npWBMError[r, c] != -9999.0:
                    #val = npWBMError[r, c]
                    #if math.fabs(val) > 0.0001 / 1000:

                        ## print npWBMError[r,c]

                        #row = r
                        #col = c
                        #troubleCell = cellID
                #cellID += 1
        #print 'Water balance for %s on %s: %f mm row %i col %i cellID %i!!! ' % (
            #processName,
            #dateStr,
            #maxWBError * 1000,
            #row,
            #col,
            #troubleCell,
            #)

    return inMap + dsMap - outMap
예제 #31
0
    def __init__(self, iniItems, landmask):
        object.__init__(self)

        # cloneMap, temporary directory, absolute path for input directory, landmask
        self.cloneMap = iniItems.cloneMap
        self.tmpDir = iniItems.tmpDir
        self.inputDir = iniItems.globalOptions['inputDir']
        self.landmask = landmask

        # configuration from the ini file
        self.iniItems = iniItems

        # topography properties: read several variables from the netcdf file
        for var in ['dem_minimum','dem_maximum','dem_average','dem_standard_deviation',\
                    'slopeLength','orographyBeta','tanslope',\
                    'dzRel0000','dzRel0001','dzRel0005',\
                    'dzRel0010','dzRel0020','dzRel0030','dzRel0040','dzRel0050',\
                    'dzRel0060','dzRel0070','dzRel0080','dzRel0090','dzRel0100']:
            vars(self)[var] = vos.netcdf2PCRobjCloneWithoutTime(self.iniItems.modflowParameterOptions['topographyNC'], \
                                                                var, self.cloneMap)
            vars(self)[var] = pcr.cover(vars(self)[var], 0.0)

        # channel properties: read several variables from the netcdf file
        for var in [
                'lddMap', 'cellAreaMap', 'gradient', 'bankfull_width',
                'bankfull_depth', 'dem_floodplain', 'dem_riverbed'
        ]:
            vars(self)[var] = vos.netcdf2PCRobjCloneWithoutTime(self.iniItems.modflowParameterOptions['channelNC'], \
                                                                var, self.cloneMap)
            vars(self)[var] = pcr.cover(vars(self)[var], 0.0)

        # minimum channel width
        minimum_channel_width = 0.1
        self.bankfull_width = pcr.max(minimum_channel_width,
                                      self.bankfull_width)

        #~ # cell fraction if channel water reaching the flood plan # NOT USED
        #~ self.flood_plain_fraction = self.return_innundation_fraction(pcr.max(0.0, self.dem_floodplain - self.dem_minimum))

        # coefficient of Manning
        self.manningsN = vos.readPCRmapClone(self.iniItems.modflowParameterOptions['manningsN'],\
                                             self.cloneMap,self.tmpDir,self.inputDir)

        # minimum channel gradient
        minGradient = 0.00005
        self.gradient = pcr.max(minGradient,
                                pcr.cover(self.gradient, minGradient))

        # correcting lddMap
        self.lddMap = pcr.ifthen(pcr.scalar(self.lddMap) > 0.0, self.lddMap)
        self.lddMap = pcr.lddrepair(pcr.ldd(self.lddMap))

        # channelLength = approximation of channel length (unit: m)  # This is approximated by cell diagonal.
        cellSizeInArcMin = np.round(pcr.clone().cellSize() * 60.)
        verticalSizeInMeter = cellSizeInArcMin * 1852.
        self.channelLength  = ((self.cellAreaMap/verticalSizeInMeter)**(2)+\
                                                (verticalSizeInMeter)**(2))**(0.5)

        # option for lakes and reservoir
        self.onlyNaturalWaterBodies = False
        if self.iniItems.modflowParameterOptions[
                'onlyNaturalWaterBodies'] == "True":
            self.onlyNaturalWaterBodies = True

        # groundwater linear recession coefficient (day-1) ; the linear reservoir concept is still being used to represent fast response flow
        #                                                                                                                  particularly from karstic aquifer in mountainous regions
        self.recessionCoeff = vos.netcdf2PCRobjCloneWithoutTime(self.iniItems.modflowParameterOptions['groundwaterPropertiesNC'],\
                                                                 'recessionCoeff', self.cloneMap)
        self.recessionCoeff = pcr.cover(self.recessionCoeff, 0.00)
        self.recessionCoeff = pcr.min(1.0000, self.recessionCoeff)
        #
        if 'minRecessionCoeff' in iniItems.modflowParameterOptions.keys():
            minRecessionCoeff = float(
                iniItems.modflowParameterOptions['minRecessionCoeff'])
        else:
            minRecessionCoeff = 1.0e-4  # This is the minimum value used in Van Beek et al. (2011).
        self.recessionCoeff = pcr.max(minRecessionCoeff, self.recessionCoeff)

        # aquifer saturated conductivity (m/day)
        self.kSatAquifer = vos.netcdf2PCRobjCloneWithoutTime(self.iniItems.modflowParameterOptions['groundwaterPropertiesNC'],\
                                                             'kSatAquifer', self.cloneMap)
        self.kSatAquifer = pcr.cover(self.kSatAquifer,
                                     pcr.mapmaximum(self.kSatAquifer))
        self.kSatAquifer = pcr.max(0.010, self.kSatAquifer)

        self.kSatAquifer *= 0.001

        # aquifer specific yield (dimensionless)
        self.specificYield = vos.netcdf2PCRobjCloneWithoutTime(self.iniItems.modflowParameterOptions['groundwaterPropertiesNC'],\
                                                               'specificYield', self.cloneMap)
        self.specificYield = pcr.cover(self.specificYield,
                                       pcr.mapmaximum(self.specificYield))
        self.specificYield = pcr.max(
            0.010, self.specificYield
        )  # TODO: TO BE CHECKED: The resample process of specificYield
        self.specificYield = pcr.min(1.000, self.specificYield)

        # estimate of thickness (unit: m) of accesible groundwater
        totalGroundwaterThickness = vos.netcdf2PCRobjCloneWithoutTime(self.iniItems.modflowParameterOptions['estimateOfTotalGroundwaterThicknessNC'],\
                                    'thickness', self.cloneMap)
        # extrapolation
        totalGroundwaterThickness = pcr.cover(totalGroundwaterThickness,\
                                    pcr.windowaverage(totalGroundwaterThickness, 1.0))
        totalGroundwaterThickness = pcr.cover(totalGroundwaterThickness,\
                                    pcr.windowaverage(totalGroundwaterThickness, 1.5))
        totalGroundwaterThickness = pcr.cover(totalGroundwaterThickness, 0.0)
        #
        # set minimum thickness
        minimumThickness = pcr.scalar(float(\
                           self.iniItems.modflowParameterOptions['minimumTotalGroundwaterThickness']))
        totalGroundwaterThickness = pcr.max(minimumThickness,
                                            totalGroundwaterThickness)
        #
        # set maximum thickness: 250 m.
        maximumThickness = 250.
        self.totalGroundwaterThickness = pcr.min(maximumThickness,
                                                 totalGroundwaterThickness)

        # river bed resistance (unit: day)
        self.bed_resistance = 1.0

        # option to ignore capillary rise
        self.ignoreCapRise = True
        if self.iniItems.modflowParameterOptions['ignoreCapRise'] == "False":
            self.ignoreCapRise = False

        # initiate old style reporting                                  # TODO: remove this!
        self.initiate_old_style_groundwater_reporting(iniItems)
예제 #32
0
파일: wflow_lib.py 프로젝트: ninjach/wflow
def subcatch_stream(
    ldd,
    threshold,
    min_strahler=-999,
    max_strahler=999,
    assign_edge=False,
    assign_existing=False,
    up_area=None,
):
    """
    (From Deltares Hydrotools)

    Derive catchments based upon strahler threshold
    Input:
        ldd -- pcraster object direction, local drain directions
        threshold -- integer, strahler threshold, subcatchments ge threshold
            are derived
        min_strahler -- integer, minimum strahler threshold of river catchments
            to return
        max_strahler -- integer, maximum strahler threshold of river catchments
            to return
        assign_unique=False -- if set to True, unassigned connected areas at
            the edges of the domain are assigned a unique id as well. If set
            to False, edges are not assigned
        assign_existing=False == if set to True, unassigned edges are assigned
            to existing basins with an upstream weighting. If set to False,
            edges are assigned to unique IDs, or not assigned
    output:
        stream_ge -- pcraster object, streams of strahler order ge threshold
        subcatch -- pcraster object, subcatchments of strahler order ge threshold

    """
    # derive stream order

    stream = pcr.streamorder(ldd)
    stream_ge = pcr.ifthen(stream >= threshold, stream)
    stream_up_sum = pcr.ordinal(pcr.upstream(ldd, pcr.cover(pcr.scalar(stream_ge), 0)))
    # detect any transfer of strahler order, to a higher strahler order.
    transition_strahler = pcr.ifthenelse(
        pcr.downstream(ldd, stream_ge) != stream_ge,
        pcr.boolean(1),
        pcr.ifthenelse(
            pcr.nominal(ldd) == 5,
            pcr.boolean(1),
            pcr.ifthenelse(
                pcr.downstream(ldd, pcr.scalar(stream_up_sum)) > pcr.scalar(stream_ge),
                pcr.boolean(1),
                pcr.boolean(0),
            ),
        ),
    )
    # make unique ids (write to file)
    transition_unique = pcr.ordinal(pcr.uniqueid(transition_strahler))

    # derive upstream catchment areas (write to file)
    subcatch = pcr.nominal(pcr.subcatchment(ldd, transition_unique))

    if assign_edge:
        # fill unclassified areas (in pcraster equal to zero) with a unique id, above the maximum id assigned so far
        unique_edge = pcr.clump(pcr.ifthen(subcatch == 0, pcr.ordinal(0)))
        subcatch = pcr.ifthenelse(
            subcatch == 0,
            pcr.nominal(pcr.mapmaximum(pcr.scalar(subcatch)) + pcr.scalar(unique_edge)),
            pcr.nominal(subcatch),
        )
    elif assign_existing:
        # unaccounted areas are added to largest nearest draining basin
        if up_area is None:
            up_area = pcr.ifthen(
                pcr.boolean(pcr.cover(stream_ge, 0)), pcr.accuflux(ldd, 1)
            )
        riverid = pcr.ifthen(pcr.boolean(pcr.cover(stream_ge, 0)), subcatch)

        friction = 1.0 / pcr.scalar(
            pcr.spreadzone(pcr.cover(pcr.ordinal(up_area), 0), 0, 0)
        )  # *(pcr.scalar(ldd)*0+1)
        delta = pcr.ifthen(
            pcr.scalar(ldd) >= 0,
            pcr.ifthen(
                pcr.cover(subcatch, 0) == 0,
                pcr.spreadzone(pcr.cover(riverid, 0), 0, friction),
            ),
        )
        subcatch = pcr.ifthenelse(pcr.boolean(pcr.cover(subcatch, 0)), subcatch, delta)

    # finally, only keep basins with minimum and maximum river order flowing through them
    strahler_subcatch = pcr.areamaximum(stream, subcatch)
    subcatch = pcr.ifthen(
        pcr.ordinal(strahler_subcatch) >= min_strahler,
        pcr.ifthen(pcr.ordinal(strahler_subcatch) <= max_strahler, subcatch),
    )

    return stream_ge, pcr.ordinal(subcatch)
예제 #33
0
def subcatch_order_b(
    ldd, oorder, sizelimit=0, fill=False, fillcomplete=False, stoporder=0
):
    """
    Determines subcatchments using the catchment order

    This version tries to keep the number op upstream/downstream catchment the
    small by first dederivingatchment connected to the major river(the order) given, and fill
    up from there.

    Input:
        - ldd
        - oorder - order to use
        - sizelimit - smallest catchments to include, default is all (sizelimit=0) in number of cells
        - if fill is set to True the higer order catchment are filled also
        - if fillcomplete is set to True the whole ldd is filled with catchments.


    :returns sc, dif, nldd; Subcatchment, Points, subcatchldd
    """
    # outl = find_outlet(ldd)
    # large = pcr.subcatchment(ldd,pcr.boolean(outl))

    if stoporder == 0:
        stoporder = oorder

    stt = pcr.streamorder(ldd)
    sttd = pcr.downstream(ldd, stt)
    pts = pcr.ifthen((pcr.scalar(sttd) - pcr.scalar(stt)) > 0.0, sttd)
    maxorder = pcraster.framework.getCellValue(pcr.mapmaximum(stt), 1, 1)
    dif = pcr.uniqueid(pcr.boolean(pcr.ifthen(stt == pcr.ordinal(oorder), pts)))

    if fill:
        for order in range(oorder, maxorder):
            m_pts = pcr.ifthen((pcr.scalar(sttd) - pcr.scalar(order)) > 0.0, sttd)
            m_dif = pcr.uniqueid(
                pcr.boolean(pcr.ifthen(stt == pcr.ordinal(order), m_pts))
            )
            dif = pcr.uniqueid(pcr.boolean(pcr.cover(m_dif, dif)))

        for myorder in range(oorder - 1, stoporder, -1):
            sc = pcr.subcatchment(ldd, pcr.nominal(dif))
            m_pts = pcr.ifthen((pcr.scalar(sttd) - pcr.scalar(stt)) > 0.0, sttd)
            m_dif = pcr.uniqueid(
                pcr.boolean(pcr.ifthen(stt == pcr.ordinal(myorder - 1), m_pts))
            )
            dif = pcr.uniqueid(
                pcr.boolean(pcr.cover(pcr.ifthen(pcr.scalar(sc) == 0, m_dif), dif))
            )

        if fillcomplete:
            sc = pcr.subcatchment(ldd, pcr.nominal(dif))
            cs, m_dif, stt = subcatch_order_a(ldd, stoporder)
            dif = pcr.uniqueid(
                pcr.boolean(
                    pcr.cover(
                        pcr.ifthen(pcr.scalar(sc) == 0, pcr.ordinal(m_dif)),
                        pcr.ordinal(dif),
                    )
                )
            )

    scsize = pcr.catchmenttotal(1, ldd)
    dif = pcr.ordinal(pcr.uniqueid(pcr.boolean(pcr.ifthen(scsize >= sizelimit, dif))))
    sc = pcr.subcatchment(ldd, dif)

    # Make pit ldd
    nldd = pcr.lddrepair(pcr.ifthenelse(pcr.cover(dif, 0) > 0, 5, ldd))

    return sc, dif, nldd
예제 #34
0
def waterBalance(  fluxesIn,  fluxesOut,  deltaStorages,  processName,   PrintOnlyErrors,  dateStr,threshold=1e-5):
    """ Returns the water balance for a list of input, output, and storage map files and """

    inMap = pcr.spatial(pcr.scalar(0.0))
    dsMap = pcr.spatial(pcr.scalar(0.0))
    outMap = pcr.spatial(pcr.scalar(0.0))
    inflow = 0
    outflow = 0
    deltaS = 0
    for fluxIn in fluxesIn:
        inflow += getMapTotal(fluxIn)
        inMap += fluxIn
    for fluxOut in fluxesOut:
        outflow += getMapTotal(fluxOut)
        outMap += fluxOut
    for deltaStorage in deltaStorages:
        deltaS += getMapTotal(deltaStorage)
        dsMap += deltaStorage

    #if PrintOnlyErrors:
    a,b,c = getMinMaxMean(inMap + dsMap- outMap)
    # if abs(a) > 1e-5 or abs(b) > 1e-5:
    # if abs(a) > 1e-4 or abs(b) > 1e-4:
    if abs(a) > threshold or abs(b) > threshold:
        print "WBError %s Min %f Max %f Mean %f" %(processName,a,b,c)
    #    if abs(inflow + deltaS - outflow) > 1e-5:
    #        print "Water balance Error for %s on %s: in = %f\tout=%f\tdeltaS=%f\tBalance=%f" \
    #        %(processName,dateStr,inflow,outflow,deltaS,inflow + deltaS - outflow)
    #else:
    #   print "Water balance for %s: on %s in = %f\tout=%f\tdeltaS=%f\tBalance=%f" \
    #        %(processName,dateStr,inflow,outflow,deltaS,inflow + deltaS - outflow)

    wb = inMap + dsMap - outMap
    maxWBError = pcr.cellvalue(pcr.mapmaximum(pcr.abs(wb)), 1, 1)[0]

    #if maxWBError > 0.001 / 1000:
        #row = 0
        #col = 0
        #cellID = 1
        #troubleCell = 0

        #print "Water balance for %s on %s: %f mm !!! " %(processName,dateStr,maxWBError * 1000)
        #pcr.report(wb,"%s-WaterBalanceError-%s" %(processName,dateStr))

        #npWBMError = pcr2numpy(wb, -9999)
        #(nr, nc) = np.shape(npWBMError)
        #for r in range(0, nr):
            #for c in range(0, nc):

                ## print r,c

                #if npWBMError[r, c] != -9999.0:
                    #val = npWBMError[r, c]
                    #if math.fabs(val) > 0.0001 / 1000:

                        ## print npWBMError[r,c]

                        #row = r
                        #col = c
                        #troubleCell = cellID
                #cellID += 1
        #print 'Water balance for %s on %s: %f mm row %i col %i cellID %i!!! ' % (
            #processName,
            #dateStr,
            #maxWBError * 1000,
            #row,
            #col,
            #troubleCell,
            #)

    return inMap + dsMap - outMap
예제 #35
0
streamorder = pcr.ordinal(pcr.streamorder(ldd))
river = pcr.boolean(
    pcr.ifthen(
        streamorder >= int(min(np.max(pcr.pcr2numpy(streamorder, -9999)), minorder)),
        streamorder,
    )
)
outlets = pcr.ifthen(pcr.ordinal(ldd) == 5, pcr.boolean(1))
outlets = pcr.nominal(pcr.uniqueid(outlets))
catchments = pcr.nominal(pcr.catchment(ldd, outlets))

if not keepall:
    catchments = pcr.nominal(
        pcr.ifthen(
            pcr.mapmaximum(
                pcr.areatotal(pcr.scalar(catchments) * 0 + 1, pcr.nominal(catchments))
            )
            == pcr.areatotal(pcr.scalar(catchments) * 0 + 1, pcr.nominal(catchments)),
            catchments,
        )
    )

pcr.report(ldd, ldd_map)
pcr.report(streamorder, streamorder_map)
pcr.report(river, river_map)
pcr.report(catchments, catchments_map)
if not EPSG == None:
    call(
        (
            "gdal_translate",
            "-of",
예제 #36
0
    def __init__(self, iniItems, landmask):
        object.__init__(self)
        
        # cloneMap, temporary directory for the resample process, temporary directory for the modflow process, absolute path for input directory, landmask
        self.cloneMap        = iniItems.cloneMap
        self.tmpDir          = iniItems.tmpDir
        self.tmp_modflow_dir = iniItems.tmp_modflow_dir
        self.inputDir        = iniItems.globalOptions['inputDir']
        self.landmask        = landmask
        
        # configuration from the ini file
        self.iniItems = iniItems
                
        # topography properties: read several variables from the netcdf file
        for var in ['dem_minimum','dem_maximum','dem_average','dem_standard_deviation',\
                    'slopeLength','orographyBeta','tanslope',\
                    'dzRel0000','dzRel0001','dzRel0005',\
                    'dzRel0010','dzRel0020','dzRel0030','dzRel0040','dzRel0050',\
                    'dzRel0060','dzRel0070','dzRel0080','dzRel0090','dzRel0100']:
            vars(self)[var] = vos.netcdf2PCRobjCloneWithoutTime(self.iniItems.modflowParameterOptions['topographyNC'], \
                                                                var, self.cloneMap)
            vars(self)[var] = pcr.cover(vars(self)[var], 0.0)

        # channel properties: read several variables from the netcdf file
        for var in ['lddMap','cellAreaMap','gradient','bankfull_width',
                    'bankfull_depth','dem_floodplain','dem_riverbed']:
            vars(self)[var] = vos.netcdf2PCRobjCloneWithoutTime(self.iniItems.modflowParameterOptions['channelNC'], \
                                                                var, self.cloneMap)
            vars(self)[var] = pcr.cover(vars(self)[var], 0.0)
        
        # minimum channel width
        minimum_channel_width = 0.5                                               # TODO: Define this one in the configuration file
        self.bankfull_width = pcr.max(minimum_channel_width, self.bankfull_width)
        
        #~ # cell fraction if channel water reaching the flood plan               # NOT USED YET 
        #~ self.flood_plain_fraction = self.return_innundation_fraction(pcr.max(0.0, self.dem_floodplain - self.dem_minimum))
        
        # coefficient of Manning
        self.manningsN = vos.readPCRmapClone(self.iniItems.modflowParameterOptions['manningsN'],\
                                             self.cloneMap,self.tmpDir,self.inputDir)
        
        # minimum channel gradient
        minGradient   = 0.00005                                                   # TODO: Define this one in the configuration file
        self.gradient = pcr.max(minGradient, pcr.cover(self.gradient, minGradient))

        # correcting lddMap
        self.lddMap = pcr.ifthen(pcr.scalar(self.lddMap) > 0.0, self.lddMap)
        self.lddMap = pcr.lddrepair(pcr.ldd(self.lddMap))
        
        # channelLength = approximation of channel length (unit: m)  # This is approximated by cell diagonal. 
        cellSizeInArcMin      = np.round(pcr.clone().cellSize()*60.)               # FIXME: This one will not work if you use the resolution: 0.5, 1.5, 2.5 arc-min
        verticalSizeInMeter   = cellSizeInArcMin*1852.                            
        horizontalSizeInMeter = self.cellAreaMap/verticalSizeInMeter
        self.channelLength    = ((horizontalSizeInMeter)**(2)+\
                                 (verticalSizeInMeter)**(2))**(0.5)
        
        # option for lakes and reservoir
        self.onlyNaturalWaterBodies = False
        if self.iniItems.modflowParameterOptions['onlyNaturalWaterBodies'] == "True": self.onlyNaturalWaterBodies = True

        # groundwater linear recession coefficient (day-1) ; the linear reservoir concept is still being used to represent fast response flow  
        #                                                                                                                  particularly from karstic aquifer in mountainous regions                    
        self.recessionCoeff = vos.netcdf2PCRobjCloneWithoutTime(self.iniItems.modflowParameterOptions['groundwaterPropertiesNC'],\
                                                                 'recessionCoeff', self.cloneMap)
        self.recessionCoeff = pcr.cover(self.recessionCoeff,0.00)       
        self.recessionCoeff = pcr.min(1.0000,self.recessionCoeff)       
        #
        if 'minRecessionCoeff' in iniItems.modflowParameterOptions.keys():
            minRecessionCoeff = float(iniItems.modflowParameterOptions['minRecessionCoeff'])
        else:
            minRecessionCoeff = 1.0e-4                                       # This is the minimum value used in Van Beek et al. (2011). 
        self.recessionCoeff = pcr.max(minRecessionCoeff,self.recessionCoeff)      
        
        # aquifer saturated conductivity (m/day)
        self.kSatAquifer = vos.netcdf2PCRobjCloneWithoutTime(self.iniItems.modflowParameterOptions['groundwaterPropertiesNC'],\
                                                             'kSatAquifer', self.cloneMap)
        self.kSatAquifer = pcr.cover(self.kSatAquifer,pcr.mapmaximum(self.kSatAquifer))       
        self.kSatAquifer = pcr.max(0.001,self.kSatAquifer)
        # TODO: Define the minimum value as part of the configuration file
        
        # aquifer specific yield (dimensionless)
        self.specificYield = vos.netcdf2PCRobjCloneWithoutTime(self.iniItems.modflowParameterOptions['groundwaterPropertiesNC'],\
                                                               'specificYield', self.cloneMap)
        self.specificYield = pcr.cover(self.specificYield,pcr.mapmaximum(self.specificYield))       
        self.specificYield = pcr.max(0.010,self.specificYield)         # TODO: TO BE CHECKED: The resample process of specificYield     
        self.specificYield = pcr.min(1.000,self.specificYield)       
        # TODO: Define the minimum value as part of the configuration file

        # estimate of thickness (unit: m) of accesible groundwater 
        totalGroundwaterThickness = vos.netcdf2PCRobjCloneWithoutTime(self.iniItems.modflowParameterOptions['estimateOfTotalGroundwaterThicknessNC'],\
                                    'thickness', self.cloneMap)
        # extrapolation 
        totalGroundwaterThickness = pcr.cover(totalGroundwaterThickness,\
                                    pcr.windowaverage(totalGroundwaterThickness, 1.0))
        totalGroundwaterThickness = pcr.cover(totalGroundwaterThickness,\
                                    pcr.windowaverage(totalGroundwaterThickness, 1.5))
        totalGroundwaterThickness = pcr.cover(totalGroundwaterThickness, 0.0)
        #
        # set minimum thickness
        minimumThickness = pcr.scalar(float(\
                           self.iniItems.modflowParameterOptions['minimumTotalGroundwaterThickness']))
        totalGroundwaterThickness = pcr.max(minimumThickness, totalGroundwaterThickness)
        #
        # set maximum thickness: 250 m.   # TODO: Define this one as part of the ini file
        maximumThickness = 250.
        self.totalGroundwaterThickness = pcr.min(maximumThickness, totalGroundwaterThickness)
        # TODO: Define the maximum value as part of the configuration file

        # surface water bed thickness  (unit: m)
        bed_thickness  = 0.1              # TODO: Define this as part of the configuration file
        # surface water bed resistance (unit: day)
        bed_resistance = bed_thickness / (self.kSatAquifer) 
        minimum_bed_resistance = 1.0      # TODO: Define this as part of the configuration file
        self.bed_resistance = pcr.max(minimum_bed_resistance,\
                                              bed_resistance,)
        
        # option to ignore capillary rise
        self.ignoreCapRise = True
        if self.iniItems.modflowParameterOptions['ignoreCapRise'] == "False": self.ignoreCapRise = False
        
        # a variable to indicate if the modflow has been called or not
        self.modflow_has_been_called = False
        
        # list of the convergence criteria for HCLOSE (unit: m)
        # - Deltares default's value is 0.001 m                         # check this value with Jarno
        self.criteria_HCLOSE = [0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]  
        self.criteria_HCLOSE = sorted(self.criteria_HCLOSE)
        
        # list of the convergence criteria for RCLOSE (unit: m3)
        # - Deltares default's value for their 25 and 250 m resolution models is 10 m3  # check this value with Jarno
        cell_area_assumption = verticalSizeInMeter * float(pcr.cellvalue(pcr.mapmaximum(horizontalSizeInMeter),1)[0])
        self.criteria_RCLOSE = [10., 10.* cell_area_assumption/(250.*250.), 10.* cell_area_assumption/(25.*25.)]
        self.criteria_RCLOSE = sorted(self.criteria_RCLOSE)

        # initiate the index for HCLOSE and RCLOSE
        self.iteration_HCLOSE = 0
        self.iteration_RCLOSE = 0
        
        # initiate old style reporting                                  # TODO: remove this!
        self.initiate_old_style_groundwater_reporting(iniItems)
    cmd = "col2map --clone " + ldd_file_name + \
          " -S -x 3 -y 2 -v 4 " + "one_line.tmp" + " usgs_drain_area.map"
    print(cmd)
    os.system(cmd)
    usgs_drain_area_km2 = pcr.readmap("usgs_drain_area.map")

    # pcrglobwb catchment area
    edwin_code_pcrglobwb_catchment_area_km2 = pcr.ifthen(
        pcr.defined(edwin_code), pcrglobwb_catchment_area_km2)

    # calculate the absolute difference
    abs_diff = pcr.abs(usgs_drain_area_km2 -
                       edwin_code_pcrglobwb_catchment_area_km2)

    # make correction if required
    abs_diff_value = pcr.cellvalue(pcr.mapmaximum(abs_diff), 1)[0]
    usgs_drain_area_km2 = pcr.cellvalue(pcr.mapmaximum(usgs_drain_area_km2),
                                        1)[0]

    if (usgs_drain_area_km2 > 1000.0) and \
       (abs_diff_value > 0.10 * usgs_drain_area_km2):

        # class within 0.1 arc degree windows
        edwin_code = pcr.windowmajority(edwin_code, 0.1)

        # find the most accurate cell:
        areaorder = pcr.areaorder(
            pcr.windowmaximum(pcr.spatial(pcr.scalar(usgs_drain_area_km2)),
                              0.1) - pcrglobwb_catchment_area_km2, edwin_code)

        # select pixel
def main():

    # output folder (and tmp folder)
    clean_out_folder = True
    if os.path.exists(out_folder):
        if clean_out_folder:
            shutil.rmtree(out_folder)
            os.makedirs(out_folder)
    else:
        os.makedirs(out_folder)
    os.chdir(out_folder)
    os.system("pwd")

    # set the clone map
    print("set the clone")
    pcr.setclone(global_ldd_30min_inp_file)

    # define the landmask
    print("define the landmask")
    # - based on the 30min input
    landmask_30min = define_landmask(input_file = global_landmask_30min_file,\
                                      clone_map_file = global_ldd_30min_inp_file,\
                                      output_map_file = "landmask_30min_only.map")
    # - based on the 05min input
    landmask_05min = define_landmask(input_file = global_landmask_05min_file,\
                                      clone_map_file = global_ldd_30min_inp_file,\
                                      output_map_file = "landmask_05min_only.map")
    # - based on the 06min input
    landmask_06min = define_landmask(input_file = global_landmask_06min_file,\
                                      clone_map_file = global_ldd_30min_inp_file,\
                                      output_map_file = "landmask_06min_only.map")
    # - based on the 30sec input
    landmask_30sec = define_landmask(input_file = global_landmask_30sec_file,\
                                      clone_map_file = global_ldd_30min_inp_file,\
                                      output_map_file = "landmask_30sec_only.map")
    # - based on the 30sec input
    landmask_03sec = define_landmask(input_file = global_landmask_03sec_file,\
                                      clone_map_file = global_ldd_30min_inp_file,\
                                      output_map_file = "landmask_03sec_only.map")
    #
    # - merge all landmasks
    landmask = pcr.cover(landmask_30min, landmask_05min, landmask_06min,
                         landmask_30sec, landmask_03sec)
    pcr.report(landmask, "global_landmask_extended_30min.map")
    # ~ pcr.aguila(landmask)

    # extend ldd
    print("extend/define the ldd")
    ldd_map = pcr.readmap(global_ldd_30min_inp_file)
    ldd_map = pcr.ifthen(landmask, pcr.cover(ldd_map, pcr.ldd(5)))
    pcr.report(ldd_map, "global_ldd_extended_30min.map")
    # ~ pcr.aguila(ldd_map)

    # catchment map and size
    catchment_map = pcr.catchment(ldd_map, pcr.pit(ldd_map))
    catchment_size = pcr.areatotal(pcr.spatial(pcr.scalar(1.0)), catchment_map)
    # ~ pcr.aguila(catchment_size)

    # identify small islands
    print("identify small islands")
    # - maps of islands smaller than 15000 cells (at half arc degree resolution)
    island_map = pcr.ifthen(landmask, pcr.clump(pcr.defined(ldd_map)))
    island_size = pcr.areatotal(pcr.spatial(pcr.scalar(1.0)), island_map)
    island_map = pcr.ifthen(island_size < 15000., island_map)
    # ~ # - use catchments (instead of islands)
    # ~ island_map  = catchment_map
    # ~ island_size = catchment_size
    # ~ island_map  = pcr.ifthen(island_size < 10000., island_map)
    # - sort from the largest island
    # -- take one cell per island as a representative
    island_map_rep_size = pcr.ifthen(
        pcr.areaorder(island_size, island_map) == 1.0, island_size)
    # -- sort from the largest island
    island_map_rep_ids = pcr.areaorder(
        island_map_rep_size * -1.00,
        pcr.ifthen(pcr.defined(island_map_rep_size), pcr.nominal(1.0)))
    # -- map of smaller islands, sorted from the largest one
    island_map = pcr.areamajority(pcr.nominal(island_map_rep_ids), island_map)

    # identify the biggest island for every group of small islands within a certain window (arcdeg cells)
    print("the biggest island for every group of small islands")
    large_island_map = pcr.ifthen(
        pcr.scalar(island_map) == pcr.windowminimum(pcr.scalar(island_map),
                                                    15.), island_map)
    # ~ pcr.aguila(large_island_map)

    # identify big catchments
    print("identify large catchments")
    catchment_map = pcr.catchment(ldd_map, pcr.pit(ldd_map))
    catchment_size = pcr.areatotal(pcr.spatial(pcr.scalar(1.0)), catchment_map)

    # ~ # - identify all large catchments with size >= 50 cells (at the resolution of 30 arcmin) = 50 x (50^2) km2 = 125000 km2
    # ~ large_catchment_map = pcr.ifthen(catchment_size >= 50, catchment_map)
    # ~ # - identify all large catchments with size >= 10 cells (at the resolution of 30 arcmin)
    # ~ large_catchment_map = pcr.ifthen(catchment_size >= 10, catchment_map)
    # ~ # - identify all large catchments with size >= 5 cells (at the resolution of 30 arcmin)
    # ~ large_catchment_map = pcr.ifthen(catchment_size >= 5, catchment_map)
    # ~ # - identify all large catchments with size >= 20 cells (at the resolution of 30 arcmin)
    # ~ large_catchment_map = pcr.ifthen(catchment_size >= 20, catchment_map)

    # - identify all large catchments with size >= 25 cells (at the resolution of 30 arcmin)
    large_catchment_map = pcr.ifthen(catchment_size >= 25, catchment_map)

    # - give the codes that are different than islands
    large_catchment_map = pcr.nominal(
        pcr.scalar(large_catchment_map) +
        10. * vos.getMinMaxMean(pcr.scalar(large_island_map))[1])

    # merge biggest islands and big catchments
    print("merge large catchments and islands")
    large_catchment_and_island_map = pcr.cover(large_catchment_map,
                                               large_island_map)
    # ~ large_catchment_and_island_map = pcr.cover(large_island_map, large_catchment_map)
    large_catchment_and_island_map_size = pcr.areatotal(
        pcr.spatial(pcr.scalar(1.0)), large_catchment_and_island_map)

    # - sort from the largest one
    # -- take one cell per island as a representative
    large_catchment_and_island_map_rep_size = pcr.ifthen(
        pcr.areaorder(large_catchment_and_island_map_size,
                      large_catchment_and_island_map) == 1.0,
        large_catchment_and_island_map_size)
    # -- sort from the largest
    large_catchment_and_island_map_rep_ids = pcr.areaorder(
        large_catchment_and_island_map_rep_size * -1.00,
        pcr.ifthen(pcr.defined(large_catchment_and_island_map_rep_size),
                   pcr.nominal(1.0)))
    # -- map of largest catchments and islands, sorted from the largest one
    large_catchment_and_island_map = pcr.areamajority(
        pcr.nominal(large_catchment_and_island_map_rep_ids),
        large_catchment_and_island_map)
    # ~ pcr.report(large_catchment_and_island_map, "large_catchments_and_islands.map")

    # ~ # perform cdo fillmiss2 in order to merge the small catchments to the nearest large catchments
    # ~ print("spatial interpolation/extrapolation using cdo fillmiss2 to get initial subdomains")
    # ~ cmd = "gdal_translate -of NETCDF large_catchments_and_islands.map large_catchments_and_islands.nc"
    # ~ print(cmd); os.system(cmd)
    # ~ cmd = "cdo fillmiss2 large_catchments_and_islands.nc large_catchments_and_islands_filled.nc"
    # ~ print(cmd); os.system(cmd)
    # ~ cmd = "gdal_translate -of PCRaster large_catchments_and_islands_filled.nc large_catchments_and_islands_filled.map"
    # ~ print(cmd); os.system(cmd)
    # ~ cmd = "mapattr -c " + global_ldd_30min_inp_file + " " + "large_catchments_and_islands_filled.map"
    # ~ print(cmd); os.system(cmd)
    # ~ # - initial subdomains
    # ~ subdomains_initial = pcr.nominal(pcr.readmap("large_catchments_and_islands_filled.map"))
    # ~ subdomains_initial = pcr.areamajority(subdomains_initial, catchment_map)
    # ~ pcr.aguila(subdomains_initial)

    # spatial interpolation/extrapolation in order to merge the small catchments to the nearest large catchments
    print("spatial interpolation/extrapolation to get initial subdomains")
    field = large_catchment_and_island_map
    cellID = pcr.nominal(pcr.uniqueid(pcr.defined(field)))
    zoneID = pcr.spreadzone(cellID, 0, 1)
    field = pcr.areamajority(field, zoneID)
    subdomains_initial = field
    subdomains_initial = pcr.areamajority(subdomains_initial, catchment_map)
    pcr.aguila(subdomains_initial)

    pcr.report(subdomains_initial, "global_subdomains_30min_initial.map")

    print(str(int(vos.getMinMaxMean(pcr.scalar(subdomains_initial))[0])))
    print(str(int(vos.getMinMaxMean(pcr.scalar(subdomains_initial))[1])))

    # ~ print(str(int(vos.getMinMaxMean(pcr.scalar(subdomains_initial_clump))[0])))
    # ~ print(str(int(vos.getMinMaxMean(pcr.scalar(subdomains_initial_clump))[1])))

    print("Checking all subdomains, avoid too large subdomains")

    num_of_masks = int(vos.getMinMaxMean(pcr.scalar(subdomains_initial))[1])

    # clone code that will be assigned
    assigned_number = 0

    subdomains_final = pcr.ifthen(
        pcr.scalar(subdomains_initial) < -7777, pcr.nominal(0))

    for nr in range(1, num_of_masks + 1, 1):

        msg = "Processing the landmask %s" % (str(nr))
        print(msg)

        mask_selected_boolean = pcr.ifthen(subdomains_initial == nr,
                                           pcr.boolean(1.0))

        # ~ if nr == 1: pcr.aguila(mask_selected_boolean)

        xmin, ymin, xmax, ymax = boundingBox(mask_selected_boolean)
        area_in_degree2 = (xmax - xmin) * (ymax - ymin)

        # ~ print(str(area_in_degree2))

        # check whether the size of bounding box is ok
        # - initial check value
        check_ok = True

        reference_area_in_degree2 = 2500.
        if area_in_degree2 > 1.50 * reference_area_in_degree2: check_ok = False
        if (xmax - xmin) > 10 * (ymax - ymin): check_ok = False

        if check_ok == True:

            msg = "Clump is not needed."
            msg = "\n\n" + str(msg) + "\n\n"
            print(msg)

            # assign the clone code
            assigned_number = assigned_number + 1

            # update global landmask for river and land
            mask_selected_nominal = pcr.ifthen(mask_selected_boolean,
                                               pcr.nominal(assigned_number))
            subdomains_final = pcr.cover(subdomains_final,
                                         mask_selected_nominal)

        if check_ok == False:

            msg = "Clump is needed."
            msg = "\n\n" + str(msg) + "\n\n"
            print(msg)

            # make clump
            clump_ids = pcr.nominal(pcr.clump(mask_selected_boolean))

            # merge clumps that are close together
            clump_ids_window_majority = pcr.windowmajority(clump_ids, 10.0)
            clump_ids = pcr.areamajority(clump_ids_window_majority, clump_ids)
            # ~ pcr.aguila(clump_ids)

            # minimimum and maximum values
            min_clump_id = int(
                pcr.cellvalue(pcr.mapminimum(pcr.scalar(clump_ids)), 1)[0])
            max_clump_id = int(
                pcr.cellvalue(pcr.mapmaximum(pcr.scalar(clump_ids)), 1)[0])

            for clump_id in range(min_clump_id, max_clump_id + 1, 1):

                msg = "Processing the clump %s of %s from the landmask %s" % (
                    str(clump_id), str(max_clump_id), str(nr))
                msg = "\n\n" + str(msg) + "\n\n"
                print(msg)

                # identify mask based on the clump
                mask_selected_boolean_from_clump = pcr.ifthen(
                    clump_ids == pcr.nominal(clump_id), mask_selected_boolean)
                mask_selected_boolean_from_clump = pcr.ifthen(
                    mask_selected_boolean_from_clump,
                    mask_selected_boolean_from_clump)

                # check whether the clump is empty
                check_mask_selected_boolean_from_clump = pcr.ifthen(
                    mask_selected_boolean, mask_selected_boolean_from_clump)
                check_if_empty = float(
                    pcr.cellvalue(
                        pcr.mapmaximum(
                            pcr.scalar(
                                pcr.defined(
                                    check_mask_selected_boolean_from_clump))),
                        1)[0])

                if check_if_empty == 0.0:

                    msg = "Map is empty !"
                    msg = "\n\n" + str(msg) + "\n\n"
                    print(msg)

                else:

                    msg = "Map is NOT empty !"
                    msg = "\n\n" + str(msg) + "\n\n"
                    print(msg)

                    # assign the clone code
                    assigned_number = assigned_number + 1

                    # update global landmask for river and land
                    mask_selected_nominal = pcr.ifthen(
                        mask_selected_boolean_from_clump,
                        pcr.nominal(assigned_number))
                    subdomains_final = pcr.cover(subdomains_final,
                                                 mask_selected_nominal)

    # ~ # kill all aguila processes if exist
    # ~ os.system('killall aguila')

    pcr.aguila(subdomains_final)

    print("")
    print("")
    print("")

    print("The subdomain map is READY.")

    pcr.report(subdomains_final, "global_subdomains_30min_final.map")

    num_of_masks = int(vos.getMinMaxMean(pcr.scalar(subdomains_final))[1])
    print(num_of_masks)

    print("")
    print("")
    print("")

    for nr in range(1, num_of_masks + 1, 1):

        mask_selected_boolean = pcr.ifthen(subdomains_final == nr,
                                           pcr.boolean(1.0))

        xmin, ymin, xmax, ymax = boundingBox(mask_selected_boolean)
        area_in_degree2 = (xmax - xmin) * (ymax - ymin)

        print(
            str(nr) + " ; " + str(area_in_degree2) + " ; " +
            str((xmax - xmin)) + " ; " + str((ymax - ymin)))

    print("")
    print("")
    print("")

    print("Number of subdomains: " + str(num_of_masks))

    print("")
    print("")
    print("")

    # spatial extrapolation in order to cover the entire map
    print("spatial interpolation/extrapolation to cover the entire map")
    field = subdomains_final
    cellID = pcr.nominal(pcr.uniqueid(pcr.defined(field)))
    zoneID = pcr.spreadzone(cellID, 0, 1)
    field = pcr.areamajority(field, zoneID)
    subdomains_final_filled = field
    pcr.aguila(subdomains_final_filled)

    pcr.report(subdomains_final_filled,
               "global_subdomains_30min_final_filled.map")
예제 #39
0
파일: wflow_lib.py 프로젝트: ninjach/wflow
def subcatch_order_b(
    ldd, oorder, sizelimit=0, fill=False, fillcomplete=False, stoporder=0
):
    """
    Determines subcatchments using the catchment order

    This version tries to keep the number op upstream/downstream catchment the
    small by first dederivingatchment connected to the major river(the order) given, and fill
    up from there.

    Input:
        - ldd
        - oorder - order to use
        - sizelimit - smallest catchments to include, default is all (sizelimit=0) in number of cells
        - if fill is set to True the higer order catchment are filled also
        - if fillcomplete is set to True the whole ldd is filled with catchments.


    :returns sc, dif, nldd; Subcatchment, Points, subcatchldd
    """
    # outl = find_outlet(ldd)
    # large = pcr.subcatchment(ldd,pcr.boolean(outl))

    if stoporder == 0:
        stoporder = oorder

    stt = pcr.streamorder(ldd)
    sttd = pcr.downstream(ldd, stt)
    pts = pcr.ifthen((pcr.scalar(sttd) - pcr.scalar(stt)) > 0.0, sttd)
    maxorder = pcraster.framework.getCellValue(pcr.mapmaximum(stt), 1, 1)
    dif = pcr.uniqueid(pcr.boolean(pcr.ifthen(stt == pcr.ordinal(oorder), pts)))

    if fill:
        for order in range(oorder, maxorder):
            m_pts = pcr.ifthen((pcr.scalar(sttd) - pcr.scalar(order)) > 0.0, sttd)
            m_dif = pcr.uniqueid(
                pcr.boolean(pcr.ifthen(stt == pcr.ordinal(order), m_pts))
            )
            dif = pcr.uniqueid(pcr.boolean(pcr.cover(m_dif, dif)))

        for myorder in range(oorder - 1, stoporder, -1):
            sc = pcr.subcatchment(ldd, pcr.nominal(dif))
            m_pts = pcr.ifthen((pcr.scalar(sttd) - pcr.scalar(stt)) > 0.0, sttd)
            m_dif = pcr.uniqueid(
                pcr.boolean(pcr.ifthen(stt == pcr.ordinal(myorder - 1), m_pts))
            )
            dif = pcr.uniqueid(
                pcr.boolean(pcr.cover(pcr.ifthen(pcr.scalar(sc) == 0, m_dif), dif))
            )

        if fillcomplete:
            sc = pcr.subcatchment(ldd, pcr.nominal(dif))
            cs, m_dif, stt = subcatch_order_a(ldd, stoporder)
            dif = pcr.uniqueid(
                pcr.boolean(
                    pcr.cover(
                        pcr.ifthen(pcr.scalar(sc) == 0, pcr.ordinal(m_dif)),
                        pcr.ordinal(dif),
                    )
                )
            )

    scsize = pcr.catchmenttotal(1, ldd)
    dif = pcr.ordinal(pcr.uniqueid(pcr.boolean(pcr.ifthen(scsize >= sizelimit, dif))))
    sc = pcr.subcatchment(ldd, dif)

    # Make pit ldd
    nldd = pcr.lddrepair(pcr.ifthenelse(pcr.cover(dif, 0) > 0, 5, ldd))

    return sc, dif, nldd
class TimeoutputTimeseries(object):
    """
  Class to create pcrcalc timeoutput style timeseries
  """
    def __init__(self, tssFilename, model, idMap=None, noHeader=False):
        """

    """

        if not isinstance(tssFilename, str):
            raise Exception(
                "timeseries output filename must be of type string")

        self._outputFilename = tssFilename
        self._maxId = 1
        self._spatialId = None
        self._spatialDatatype = None
        self._spatialIdGiven = False
        self._userModel = model
        self._writeHeader = not noHeader
        # array to store the timestep values
        self._sampleValues = None

        _idMap = False
        if isinstance(idMap, str) or isinstance(idMap,
                                                pcraster._pcraster.Field):
            _idMap = True

        nrRows = self._userModel.nrTimeSteps() - self._userModel.firstTimeStep(
        ) + 1

        if _idMap:
            self._spatialId = idMap
            if isinstance(idMap, str):
                self._spatialId = pcraster.readmap(idMap)

            _allowdDataTypes = [
                pcraster.Nominal, pcraster.Ordinal, pcraster.Boolean
            ]
            if self._spatialId.dataType() not in _allowdDataTypes:
                raise Exception(
                    "idMap must be of type Nominal, Ordinal or Boolean")

            if self._spatialId.isSpatial():
                self._maxId, valid = pcraster.cellvalue(
                    pcraster.mapmaximum(pcraster.ordinal(self._spatialId)), 1)
            else:
                self._maxId = 1

            # cell indices of the sample locations
            self._sampleAddresses = []
            for cellId in range(1, self._maxId + 1):
                self._sampleAddresses.append(self._getIndex(cellId))

            self._spatialIdGiven = True
            nrCols = self._maxId
            self._sampleValues = [[Decimal("NaN")] * nrCols
                                  for _ in [0] * nrRows]
        else:
            self._sampleValues = [[Decimal("NaN")] * 1 for _ in [0] * nrRows]

    def _getIndex(self, cellId):
        """
    returns the cell index of a sample location
    """
        nrCells = pcraster.clone().nrRows() * pcraster.clone().nrCols()
        found = False
        cell = 1
        index = 0

        while found == False:
            if pcraster.cellvalue(self._spatialId,
                                  cell)[1] == True and pcraster.cellvalue(
                                      self._spatialId, cell)[0] == cellId:
                index = cell
                found = True
            cell += 1
            if cell > nrCells:
                raise RuntimeError(
                    "could not find a cell with the index number %d" %
                    (cellId))

        return index

    def sample(self, expression):
        """
    Sampling the current values of 'expression' at the given locations for the current timestep
    """

        arrayRowPos = self._userModel.currentTimeStep(
        ) - self._userModel.firstTimeStep()

        #if isinstance(expression, float):
        #  expression = pcraster.scalar(expression)

        try:
            # store the data type for tss file header
            if self._spatialDatatype == None:
                self._spatialDatatype = str(expression.dataType())
        except AttributeError, e:
            datatype, sep, tail = str(e).partition(" ")
            msg = "Argument must be a PCRaster map, type %s given. If necessary use data conversion functions like scalar()" % (
                datatype)
            raise AttributeError(msg)

        if self._spatialIdGiven:
            if expression.dataType() == pcraster.Scalar or expression.dataType(
            ) == pcraster.Directional:
                tmp = pcraster.areaaverage(pcraster.spatial(expression),
                                           pcraster.spatial(self._spatialId))
            else:
                tmp = pcraster.areamajority(pcraster.spatial(expression),
                                            pcraster.spatial(self._spatialId))

            col = 0
            for cellIndex in self._sampleAddresses:
                value, valid = pcraster.cellvalue(tmp, cellIndex)
                if not valid:
                    value = Decimal("NaN")

                self._sampleValues[arrayRowPos][col] = value
                col += 1
        else:
            if expression.dataType() == pcraster.Scalar or expression.dataType(
            ) == pcraster.Directional:
                tmp = pcraster.maptotal(pcraster.spatial(expression))\
                      / pcraster.maptotal(pcraster.scalar(pcraster.defined(pcraster.spatial(expression))))
            else:
                tmp = pcraster.mapmaximum(pcraster.maptotal(pcraster.areamajority(pcraster.spatial(expression),\
                      pcraster.spatial(pcraster.nominal(1)))))

            value, valid = pcraster.cellvalue(tmp, 1)
            if not valid:
                value = Decimal("NaN")

            self._sampleValues[arrayRowPos] = value

        if self._userModel.currentTimeStep() == self._userModel.nrTimeSteps():
            self._writeTssFile()
예제 #41
0
    def readTopo(self, iniItems, optionDict):

        # a dictionary/section of options that will be used
        if optionDict == None:
            optionDict = iniItems._sections["landSurfaceOptions"]

        # maps of elevation attributes:
        topoParams = ["tanslope", "slopeLength", "orographyBeta"]
        if optionDict["topographyNC"] == str(None):
            for var in topoParams:
                input = configget(iniItems, "landSurfaceOptions", str(var), "None")
                vars(self)[var] = vos.readPCRmapClone(
                    input, self.cloneMap, self.tmpDir, self.inputDir
                )
                if var != "slopeLength":
                    vars(self)[var] = pcr.cover(vars(self)[var], 0.0)
        else:
            topoPropertiesNC = vos.getFullPath(
                optionDict["topographyNC"], self.inputDir
            )

            for var in topoParams:
                vars(self)[var] = vos.netcdf2PCRobjCloneWithoutTime(
                    topoPropertiesNC, var, cloneMapFileName=self.cloneMap
                )
                if var != "slopeLength":
                    vars(self)[var] = pcr.cover(vars(self)[var], 0.0)

        # ~ self.tanslope = pcr.max(self.tanslope, 0.00001)              # In principle, tanslope can be zero. Zero tanslope will provide zero TCL (no interflow)

        # covering slopeLength with its maximum value
        self.slopeLength = pcr.cover(self.slopeLength, pcr.mapmaximum(self.slopeLength))

        # maps of relative elevation above flood plains
        dzRel = [
            "dzRel0001",
            "dzRel0005",
            "dzRel0010",
            "dzRel0020",
            "dzRel0030",
            "dzRel0040",
            "dzRel0050",
            "dzRel0060",
            "dzRel0070",
            "dzRel0080",
            "dzRel0090",
            "dzRel0100",
        ]
        if optionDict["topographyNC"] == str(None):
            for i in range(0, len(dzRel)):
                var = dzRel[i]
                input = optionDict[str(var)]
                vars(self)[var] = vos.readPCRmapClone(
                    input, self.cloneMap, self.tmpDir, self.inputDir
                )
                vars(self)[var] = pcr.cover(vars(self)[var], 0.0)
                if i > 0:
                    vars(self)[var] = pcr.max(vars(self)[var], vars(self)[dzRel[i - 1]])
        else:
            for i in range(0, len(dzRel)):
                var = dzRel[i]
                vars(self)[var] = vos.netcdf2PCRobjCloneWithoutTime(
                    topoPropertiesNC, var, cloneMapFileName=self.cloneMap
                )
                vars(self)[var] = pcr.cover(vars(self)[var], 0.0)
                if i > 0:
                    vars(self)[var] = pcr.max(vars(self)[var], vars(self)[dzRel[i - 1]])
예제 #42
0
def main():

    # output folder
    clean_out_folder = True
    if os.path.exists(out_folder):
        if clean_out_folder:
            shutil.rmtree(out_folder)
            os.makedirs(out_folder)
    else:
        os.makedirs(out_folder)
    os.chdir(out_folder)
    os.system("pwd")

    # tmp folder
    tmp_folder = out_folder + "/tmp/"
    if os.path.exists(tmp_folder): shutil.rmtree(tmp_folder)
    os.makedirs(tmp_folder)

    # set the clone map
    print("set the clone map")
    pcr.setclone(global_clone_map_file)

    # read ldd map
    print("define the ldd")
    # ~ ldd_map = pcr.readmap(global_ldd_inp_file)
    ldd_map     = pcr.lddrepair(pcr.lddrepair(pcr.ldd(vos.readPCRmapClone(v                = global_ldd_inp_file, \
                                                                          cloneMapFileName = global_clone_map_file, \
                                                                          tmpDir           = tmp_folder, \
                                                                          absolutePath     = None, \
                                                                          isLddMap         = True, \
                                                                          cover            = None, \
                                                                          isNomMap         = False))))

    # define the landmask
    if landmask_map_file == None:
        print("define the landmask based on the ldd input")
        # ~ landmask = pcr.defined(pcr.readmap(global_ldd_inp_file))
        landmask = pcr.defined(ldd_map)
        landmask = pcr.ifthen(landmask, landmask)
    else:
        print("define the landmask based on the input landmask_map_file")
        landmask = pcr.readmap(landmask_map_file)
        ldd_map = pcr.ifthen(landmask, pcr.cover(ldd_map, pcr.ldd(5)))
        ldd_map = pcr.lddrepair(pcr.lddrepair(pcr.ldd(ldd_map)))
        landmask = pcr.defined(ldd_map)
    landmask = pcr.ifthen(landmask, landmask)

    # save ldd files used
    # - global ldd
    cmd = "cp " + str(global_ldd_inp_file) + " ."
    print(cmd)
    os.system(cmd)
    # - ldd map that is used
    pcr.report(ldd_map, "lddmap_used.map")

    # make catchment map
    print("make catchment map")
    catchment_map = pcr.catchment(ldd_map, pcr.pit(ldd_map))

    # read global subdomain file
    print("read global subdomain file")
    global_subdomain_map = vos.readPCRmapClone(
        v=global_subdomain_file,
        cloneMapFileName=global_clone_map_file,
        tmpDir=tmp_folder,
        absolutePath=None,
        isLddMap=False,
        cover=None,
        isNomMap=True)

    # set initial subdomain
    print("assign subdomains to all catchments")
    subdomains_initial = pcr.areamajority(global_subdomain_map, catchment_map)
    subdomains_initial = pcr.ifthen(landmask, subdomains_initial)

    pcr.aguila(subdomains_initial)

    pcr.report(subdomains_initial, "global_subdomains_initial.map")

    print(str(int(vos.getMinMaxMean(pcr.scalar(subdomains_initial))[0])))
    print(str(int(vos.getMinMaxMean(pcr.scalar(subdomains_initial))[1])))

    print("Checking all subdomains, avoid too large subdomains")

    num_of_masks = int(vos.getMinMaxMean(pcr.scalar(subdomains_initial))[1])

    # clone code that will be assigned
    assigned_number = 0

    subdomains_final = pcr.ifthen(
        pcr.scalar(subdomains_initial) < -7777, pcr.nominal(0))

    for nr in range(1, num_of_masks + 1, 1):

        msg = "Processing the landmask %s" % (str(nr))
        print(msg)

        mask_selected_boolean = pcr.ifthen(subdomains_initial == nr,
                                           pcr.boolean(1.0))

        process_this_clone = False
        if pcr.cellvalue(pcr.mapmaximum(pcr.scalar(mask_selected_boolean)), 1,
                         1)[0] > 0:
            process_this_clone = True

        # ~ if nr == 1: pcr.aguila(mask_selected_boolean)

        # - initial check value
        check_ok = True

        if process_this_clone:
            xmin, ymin, xmax, ymax = boundingBox(mask_selected_boolean)
            area_in_degree2 = (xmax - xmin) * (ymax - ymin)

            # ~ print(str(area_in_degree2))

            # check whether the size of bounding box is ok
            reference_area_in_degree2 = 2500.
            if area_in_degree2 > 1.50 * reference_area_in_degree2:
                check_ok = False
            if (xmax - xmin) > 10 * (ymax - ymin): check_ok = False

        # ~ # ignore checking
        # ~ check_ok = True

        if check_ok == True and process_this_clone == True:

            msg = "Clump is not needed."
            msg = "\n\n" + str(msg) + "\n\n"
            print(msg)

            # assign the clone code
            assigned_number = assigned_number + 1

            # update global landmask for river and land
            mask_selected_nominal = pcr.ifthen(mask_selected_boolean,
                                               pcr.nominal(assigned_number))
            subdomains_final = pcr.cover(subdomains_final,
                                         mask_selected_nominal)

        if check_ok == False and process_this_clone == True:

            msg = "Clump is needed."
            msg = "\n\n" + str(msg) + "\n\n"
            print(msg)

            # make clump
            clump_ids = pcr.nominal(pcr.clump(mask_selected_boolean))

            # merge clumps that are close together
            clump_ids_window_majority = pcr.windowmajority(clump_ids, 10.0)
            clump_ids = pcr.areamajority(clump_ids_window_majority, clump_ids)
            # ~ pcr.aguila(clump_ids)

            # minimimum and maximum values
            min_clump_id = int(
                pcr.cellvalue(pcr.mapminimum(pcr.scalar(clump_ids)), 1)[0])
            max_clump_id = int(
                pcr.cellvalue(pcr.mapmaximum(pcr.scalar(clump_ids)), 1)[0])

            for clump_id in range(min_clump_id, max_clump_id + 1, 1):

                msg = "Processing the clump %s of %s from the landmask %s" % (
                    str(clump_id), str(max_clump_id), str(nr))
                msg = "\n\n" + str(msg) + "\n\n"
                print(msg)

                # identify mask based on the clump
                mask_selected_boolean_from_clump = pcr.ifthen(
                    clump_ids == pcr.nominal(clump_id), mask_selected_boolean)
                mask_selected_boolean_from_clump = pcr.ifthen(
                    mask_selected_boolean_from_clump,
                    mask_selected_boolean_from_clump)

                # check whether the clump is empty
                check_mask_selected_boolean_from_clump = pcr.ifthen(
                    mask_selected_boolean, mask_selected_boolean_from_clump)
                check_if_empty = float(
                    pcr.cellvalue(
                        pcr.mapmaximum(
                            pcr.scalar(
                                pcr.defined(
                                    check_mask_selected_boolean_from_clump))),
                        1)[0])

                if check_if_empty == 0.0:

                    msg = "Map is empty !"
                    msg = "\n\n" + str(msg) + "\n\n"
                    print(msg)

                else:

                    msg = "Map is NOT empty !"
                    msg = "\n\n" + str(msg) + "\n\n"
                    print(msg)

                    # assign the clone code
                    assigned_number = assigned_number + 1

                    # update global landmask for river and land
                    mask_selected_nominal = pcr.ifthen(
                        mask_selected_boolean_from_clump,
                        pcr.nominal(assigned_number))
                    subdomains_final = pcr.cover(subdomains_final,
                                                 mask_selected_nominal)

    # ~ # kill all aguila processes if exist
    # ~ os.system('killall aguila')

    pcr.aguila(subdomains_final)

    print("")
    print("")
    print("")

    print("The subdomain map is READY.")

    pcr.report(subdomains_final, "global_subdomains_final.map")

    num_of_masks = int(vos.getMinMaxMean(pcr.scalar(subdomains_final))[1])
    print(num_of_masks)

    print("")
    print("")
    print("")

    print("Making the clone and landmask maps for all subdomains")

    num_of_masks = int(vos.getMinMaxMean(pcr.scalar(subdomains_final))[1])

    # clone and mask folders
    clone_folder = out_folder + "/clone/"
    if os.path.exists(clone_folder): shutil.rmtree(clone_folder)
    os.makedirs(clone_folder)
    mask_folder = out_folder + "/mask/"
    if os.path.exists(mask_folder): shutil.rmtree(mask_folder)
    os.makedirs(mask_folder)

    print("")
    print("")

    for nr in range(1, num_of_masks + 1, 1):

        msg = "Processing the subdomain %s" % (str(nr))
        print(msg)

        # set the global clone
        pcr.setclone(global_clone_map_file)

        mask_selected_boolean = pcr.ifthen(subdomains_final == nr,
                                           pcr.boolean(1.0))

        mask_selected_nominal = pcr.ifthen(subdomains_final == nr,
                                           pcr.nominal(nr))
        mask_file = "mask/mask_%s.map" % (str(nr))
        pcr.report(mask_selected_nominal, mask_file)

        xmin, ymin, xmax, ymax = boundingBox(mask_selected_boolean)
        area_in_degree2 = (xmax - xmin) * (ymax - ymin)

        print(
            str(nr) + " ; " + str(area_in_degree2) + " ; " +
            str((xmax - xmin)) + " ; " + str((ymax - ymin)))

        # cellsize in arcdegree
        cellsize = cellsize_in_arcmin / 60.

        # number of rows and cols
        num_rows = int(round(ymax - ymin) / cellsize)
        num_cols = int(round(xmax - xmin) / cellsize)

        # make the clone map using mapattr
        clonemap_mask_file = "clone/clonemap_mask_%s.map" % (str(nr))
        cmd = "mapattr -s -R %s -C %s -B -P yb2t -x %s -y %s -l %s %s" % (
            str(num_rows), str(num_cols), str(xmin), str(ymax), str(cellsize),
            clonemap_mask_file)
        print(cmd)
        os.system(cmd)

        # set the local landmask for the clump
        pcr.setclone(clonemap_mask_file)
        local_mask = vos.readPCRmapClone(v = mask_file, \
                                         cloneMapFileName = clonemap_mask_file,
                                         tmpDir = tmp_folder, \
                                         absolutePath = None, isLddMap = False, cover = None, isNomMap = True)
        local_mask_boolean = pcr.defined(local_mask)
        local_mask_boolean = pcr.ifthen(local_mask_boolean, local_mask_boolean)
        pcr.report(local_mask_boolean, mask_file)

    print("")
    print("")
    print("")

    print(num_of_masks)
예제 #43
0
    def __init__(self, iniItems,landmask,spinUp):
        object.__init__(self)
        
        self.cloneMap = iniItems.cloneMap
        self.tmpDir = iniItems.tmpDir
        self.inputDir = iniItems.globalOptions['inputDir']
        self.landmask = landmask

        # option to activate water balance check
        self.debugWaterBalance = True
        if iniItems.routingOptions['debugWaterBalance'] == "False":
            self.debugWaterBalance = False

        if iniItems.groundwaterOptions['groundwaterPropertiesNC'] == str(None):
            # assign the recession coefficient parameter(s)
            self.recessionCoeff = vos.readPCRmapClone(\
               iniItems.groundwaterOptions['recessionCoeff'],
               self.cloneMap,self.tmpDir,self.inputDir)
        else:       
            groundwaterPropertiesNC = vos.getFullPath(\
                                      iniItems.groundwaterOptions[\
                                         'groundwaterPropertiesNC'],
                                          self.inputDir)
            self.recessionCoeff = vos.netcdf2PCRobjCloneWithoutTime(\
                                  groundwaterPropertiesNC,'recessionCoeff',\
                                  cloneMapFileName = self.cloneMap)

        # groundwater recession coefficient (day-1_
        self.recessionCoeff = pcr.cover(self.recessionCoeff,0.00)       
        self.recessionCoeff = pcr.min(1.0000,self.recessionCoeff)       
        #
        if 'minRecessionCoeff' in iniItems.groundwaterOptions.keys():
            minRecessionCoeff = float(iniItems.groundwaterOptions['minRecessionCoeff'])
        else:
            minRecessionCoeff = 1.0e-4                                       # This is the minimum value used in Van Beek et al. (2011). 
        self.recessionCoeff = pcr.max(minRecessionCoeff,self.recessionCoeff)      
        
        if iniItems.groundwaterOptions['groundwaterPropertiesNC'] == str(None):
            # assign aquifer specific yield
            self.specificYield  = vos.readPCRmapClone(\
               iniItems.groundwaterOptions['specificYield'],
               self.cloneMap,self.tmpDir,self.inputDir)
        else:       
            self.specificYield = vos.netcdf2PCRobjCloneWithoutTime(\
                                 groundwaterPropertiesNC,'specificYield',\
                                 cloneMapFileName = self.cloneMap)

        self.specificYield  = pcr.cover(self.specificYield,0.0)       
        self.specificYield  = pcr.max(0.010,self.specificYield)         # TODO: TO BE CHECKED: The resample process of specificYield     
        self.specificYield  = pcr.min(1.000,self.specificYield)       

        if iniItems.groundwaterOptions['groundwaterPropertiesNC'] == str(None):
            # assign aquifer saturated conductivity
            self.kSatAquifer = vos.readPCRmapClone(\
               iniItems.groundwaterOptions['kSatAquifer'],
               self.cloneMap,self.tmpDir,self.inputDir)
        else:       
            self.kSatAquifer = vos.netcdf2PCRobjCloneWithoutTime(\
                               groundwaterPropertiesNC,'kSatAquifer',\
                               cloneMapFileName = self.cloneMap)

        self.kSatAquifer = pcr.cover(self.kSatAquifer,0.0)       
        self.kSatAquifer = pcr.max(0.010,self.kSatAquifer)       

        # limitAbstraction options
        self.limitAbstraction = False
        if iniItems.landSurfaceOptions['limitAbstraction'] == "True": self.limitAbstraction = True
        
        # option for limitting fossil groundwater abstractions - This option is only defined for IWMI project 
        self.limitFossilGroundwaterAbstraction = False
        if self.limitAbstraction == False and\
           "extraOptionsforProjectWithIWMI" in iniItems.allSections and\
           iniItems.extraOptionsforProjectWithIWMI['limitFossilGroundWaterAbstraction'] == "True":
            
            logger.info('Fossil groundwater abstraction limit is used (IWMI project).')
            self.limitFossilGroundwaterAbstraction = True
            
            # estimate of thickness (unit: mm) of aceesible groundwater: shallow and deep 
            totalGroundwaterThickness = vos.readPCRmapClone(\
                                        iniItems.extraOptionsforProjectWithIWMI['estimateOfTotalGroundwaterThickness'],
                                        self.cloneMap,self.tmpDir,self.inputDir)
            totalGroundwaterThickness = pcr.cover(totalGroundwaterThickness,
                                        pcr.windowaverage(totalGroundwaterThickness, 1.0))
            totalGroundwaterThickness = pcr.cover(totalGroundwaterThickness,
                                        pcr.windowaverage(totalGroundwaterThickness, 1.5))
            totalGroundwaterThickness = pcr.cover(totalGroundwaterThickness,
                                        pcr.windowaverage(totalGroundwaterThickness, 2.5))
            totalGroundwaterThickness = pcr.cover(totalGroundwaterThickness,
                                        pcr.windowaverage(totalGroundwaterThickness, 5.0))
            totalGroundwaterThickness = pcr.cover(totalGroundwaterThickness,
                                        pcr.windowaverage(totalGroundwaterThickness, 7.5))
            totalGroundwaterThickness = pcr.cover(totalGroundwaterThickness,
                                        pcr.mapmaximum(totalGroundwaterThickness))

            # set minimum thickness to 50 m:
            totalGroundwaterThickness = pcr.max(50.0, totalGroundwaterThickness)
            
            # estimate of capacity (unit: m) of renewable groundwater (shallow)
            storGroundwaterCap =  pcr.cover(
                                  vos.readPCRmapClone(\
                                  iniItems.extraOptionsforProjectWithIWMI['estimateOfRenewableGroundwaterCapacity'],
                                  self.cloneMap,self.tmpDir,self.inputDir),\
                                  0.0)

            # fossil groundwater capacity (unit: m)
            self.fossilWaterCap = pcr.max(0.0,\
                                  totalGroundwaterThickness*self.specificYield - storGroundwaterCap)
            
        # option for limitting regional groundwater abstractions - This option is only defined 
        self.limitRegionalAnnualGroundwaterAbstraction = False
        if "extraOptionsforProjectWithIWMI" in iniItems.allSections and\
           iniItems.extraOptionsforProjectWithIWMI['limitRegionalAnnualGroundwaterAbstraction'] == "True":

            logger.info('Limit for regional groundwater abstraction is used (IWMI project).')
            self.limitRegionalAnnualGroundwaterAbstraction = True
            
            region_ids = vos.readPCRmapClone(\
                         iniItems.extraOptionsforProjectWithIWMI['regionIds'],
                         self.cloneMap,self.tmpDir,self.inputDir)
            self.region_ids = pcr.nominal(region_ids)
            self.region_ids = pcr.ifthen(self.landmask, self.region_ids)
            
            self.regionalAnnualGroundwaterAbstractionLimit = vos.readPCRmapClone(\
                                                                 iniItems.extraOptionsforProjectWithIWMI['pumpingCapacity'],
                                                                 self.cloneMap,self.tmpDir,self.inputDir)
            self.regionalAnnualGroundwaterAbstractionLimit = pcr.roundup(self.regionalAnnualGroundwaterAbstractionLimit*1000.)/1000.
            self.regionalAnnualGroundwaterAbstractionLimit = pcr.cover(self.regionalAnnualGroundwaterAbstractionLimit, 0.0)
            
            self.regionalAnnualGroundwaterAbstractionLimit *= 1000. * 1000. * 1000. # unit: m3/year
            self.regionalAnnualGroundwaterAbstractionLimit  = pcr.ifthen(self.landmask,\
                                                                         self.regionalAnnualGroundwaterAbstractionLimit)

        # zones at which water allocation (surface and groundwater allocation) is determined
        self.usingAllocSegments = False
        if iniItems.landSurfaceOptions['allocationSegmentsForGroundSurfaceWater']  != "None": self.usingAllocSegments = True
        
        # incorporating groundwater distribution network:
        if self.usingAllocSegments and self.limitAbstraction == False:

            self.allocSegments = vos.readPCRmapClone(\
             iniItems.landSurfaceOptions['allocationSegmentsForGroundSurfaceWater'],
             self.cloneMap,self.tmpDir,self.inputDir,isLddMap=False,cover=None,isNomMap=True)
            self.allocSegments = pcr.ifthen(self.landmask, self.allocSegments)

            cellArea = vos.readPCRmapClone(\
              iniItems.routingOptions['cellAreaMap'],
              self.cloneMap,self.tmpDir,self.inputDir)
            cellArea = pcr.ifthen(self.landmask, cellArea)              # TODO: integrate this one with the one coming from the routing module

            self.segmentArea = pcr.areatotal(pcr.cover(cellArea, 0.0), self.allocSegments)
            self.segmentArea = pcr.ifthen(self.landmask, self.segmentArea)
        

        self.report = True
        try:
            self.outDailyTotNC = iniItems.groundwaterOptions['outDailyTotNC'].split(",")
            self.outMonthTotNC = iniItems.groundwaterOptions['outMonthTotNC'].split(",")
            self.outMonthAvgNC = iniItems.groundwaterOptions['outMonthAvgNC'].split(",")
            self.outMonthEndNC = iniItems.groundwaterOptions['outMonthEndNC'].split(",")
            self.outAnnuaTotNC = iniItems.groundwaterOptions['outAnnuaTotNC'].split(",")
            self.outAnnuaAvgNC = iniItems.groundwaterOptions['outAnnuaAvgNC'].split(",")
            self.outAnnuaEndNC = iniItems.groundwaterOptions['outAnnuaEndNC'].split(",")
        except:
            self.report = False
        if self.report == True:
            self.outNCDir  = iniItems.outNCDir
            self.netcdfObj = PCR2netCDF(iniItems)
            #
            # daily output in netCDF files:
            if self.outDailyTotNC[0] != "None":
                for var in self.outDailyTotNC:
                    # creating the netCDF files:
                    self.netcdfObj.createNetCDF(str(self.outNCDir)+"/"+ \
                                                str(var)+"_dailyTot.nc",\
                                                    var,"undefined")
            # MONTHly output in netCDF files:
            # - cummulative
            if self.outMonthTotNC[0] != "None":
                for var in self.outMonthTotNC:
                    # initiating monthlyVarTot (accumulator variable):
                    vars(self)[var+'MonthTot'] = None
                    # creating the netCDF files:
                    self.netcdfObj.createNetCDF(str(self.outNCDir)+"/"+ \
                                                str(var)+"_monthTot.nc",\
                                                    var,"undefined")
            # - average
            if self.outMonthAvgNC[0] != "None":
                for var in self.outMonthAvgNC:
                    # initiating monthlyTotAvg (accumulator variable)
                    vars(self)[var+'MonthTot'] = None
                    # initiating monthlyVarAvg:
                    vars(self)[var+'MonthAvg'] = None
                     # creating the netCDF files:
                    self.netcdfObj.createNetCDF(str(self.outNCDir)+"/"+ \
                                                str(var)+"_monthAvg.nc",\
                                                    var,"undefined")
            # - last day of the month
            if self.outMonthEndNC[0] != "None":
                for var in self.outMonthEndNC:
                     # creating the netCDF files:
                    self.netcdfObj.createNetCDF(str(self.outNCDir)+"/"+ \
                                                str(var)+"_monthEnd.nc",\
                                                    var,"undefined")
            # YEARly output in netCDF files:
            # - cummulative
            if self.outAnnuaTotNC[0] != "None":
                for var in self.outAnnuaTotNC:
                    # initiating yearly accumulator variable:
                    vars(self)[var+'AnnuaTot'] = None
                    # creating the netCDF files:
                    self.netcdfObj.createNetCDF(str(self.outNCDir)+"/"+ \
                                                str(var)+"_annuaTot.nc",\
                                                    var,"undefined")
            # - average
            if self.outAnnuaAvgNC[0] != "None":
                for var in self.outAnnuaAvgNC:
                    # initiating annualyVarAvg:
                    vars(self)[var+'AnnuaAvg'] = None
                    # initiating annualyTotAvg (accumulator variable)
                    vars(self)[var+'AnnuaTot'] = None
                     # creating the netCDF files:
                    self.netcdfObj.createNetCDF(str(self.outNCDir)+"/"+ \
                                                str(var)+"_annuaAvg.nc",\
                                                    var,"undefined")
            # - last day of the year
            if self.outAnnuaEndNC[0] != "None":
                for var in self.outAnnuaEndNC:
                     # creating the netCDF files:
                    self.netcdfObj.createNetCDF(str(self.outNCDir)+"/"+ \
                                                str(var)+"_annuaEnd.nc",\
                                                    var,"undefined")

        #get initial conditions
        self.getICs(iniItems,spinUp)
예제 #44
0
        dem = pcr.cover(dem,linescover,pointscover)
        #pcr.report(dem,'dem1.map')
        dem = dem + burn
        #pcr.report(dem,'dem2.map')
        ldd = pcr.lddcreate(dem,float("1E35"),float("1E35"),float("1E35"),float("1E35"))
    else:
        ldd = pcr.lddcreate(dem,burnvalue/2,float("1E35"),float("1E35"),float("1E35"))

streamorder = pcr.ordinal(pcr.streamorder(ldd))
river = pcr.boolean(pcr.ifthen(streamorder >= int(min(np.max(pcr.pcr2numpy(streamorder,-9999)),minorder)), streamorder))
outlets = pcr.ifthen(pcr.ordinal(ldd) == 5, pcr.boolean(1))
outlets = pcr.nominal(pcr.uniqueid(outlets))
catchments = pcr.nominal(pcr.catchment(ldd, outlets))

if not keepall:
    catchments = pcr.nominal(pcr.ifthen(pcr.mapmaximum(pcr.areatotal(pcr.scalar(catchments)*0+1,pcr.nominal(catchments))) == pcr.areatotal(pcr.scalar(catchments)*0+1,pcr.nominal(catchments)),catchments))
    
pcr.report(ldd,ldd_map)
pcr.report(streamorder,streamorder_map)
pcr.report(river,river_map)
pcr.report(catchments,catchments_map)
if not EPSG == None:
    call(('gdal_translate','-of','GTiff','-stats','-a_srs',EPSG,'-ot','Float32',catchments_map,catchments_tif))
else: call(('gdal_translate','-of','GTiff','-stats','-ot','Float32',catchments_map,catchments_tif))
wt.Raster2Pol(catchments_tif,catchshp,srs)

riversid_map = workdir + 'riverid.map'
drain_map = workdir + 'drain.map'
ldd_mask = pcr.ifthen(river, ldd)
upstream = pcr.upstream(ldd_mask, pcr.scalar(river))
downstream = pcr.downstream(ldd_mask, upstream)
channelLength= clippedRead.get(os.path.join(mapsDir,'channel_length.map'))
channelDepth= clippedRead.get(os.path.join(mapsDir,'channel_depth.map'))
floodplainMask= pcr.spatial(pcr.boolean(1)) # NOTE: set to zero for static, to one for dynamic floodplains
channelManN= 0.04
floodplainManN= 0.10
#-flood plain parameterization
#-root of file name with maps of relative elvation above floodplain
# and associated fractions
relZFileName= 'elev%04d.map'
areaFractions=[0.0,0.01,0.05,0.10,0.20,0.30,0.40,\
  0.50,0.60,0.70,0.80,0.90,1.00]
# reduction parameter of smoothing interval and error threshold
reductionKK= 0.5
criterionKK= 40.
#-modelSignature
if pcr.cellvalue(pcr.mapmaximum(pcr.scalar(floodplainMask)),1)[0] == 1:
	modelSignature= forcingDataSet+'_dynamic-routing'
else:
	modelSignature= forcingDataSet+'_static-routing'
if noReservoirs:
  modelSignature= modelSignature+'_noreservoirs'
modelSignature+= '_%s' % domainStr
#-stacks of specific runoff and direct flux over water surface [m per unit area and per time step]
# for model input and root of maps of initial storage [m3], discharge [m3/s], flood depth [m] and
# flood fraction [m2/m2]
landSurfaceQFileName= os.path.join(pathRes,'qloc')
waterSurfaceQFileName= os.path.join(pathRes,'qw')
actualStorageFileName= os.path.join(pathRes,'wst')
QFileName= os.path.join(pathRes,'qc')
flowVelocityFileName= os.path.join(pathRes,'vel')
floodedDepthFileName= os.path.join(pathRes,'fldd')
예제 #46
0
def subcatch_stream(ldd, threshold, stream=None, min_strahler=-999, max_strahler=999, assign_edge=False, assign_existing=False, up_area=None, basin=None):
    """
    Derive catchments based upon strahler threshold
    Input:
        ldd -- pcraster object direction, local drain directions
        threshold -- integer, strahler threshold, subcatchments ge threshold
            are derived
        stream=None -- pcraster object ordinal, stream order map (made with pcr.streamorder), if provided, stream order
            map is not generated on the fly but used from this map. Useful when a subdomain within a catchment is
            provided, which would cause edge effects in the stream order map
        min_strahler=-999 -- integer, minimum strahler threshold of river catchments
            to return
        max_strahler=999 -- integer, maximum strahler threshold of river catchments
            to return
        assign_unique=False -- if set to True, unassigned connected areas at
            the edges of the domain are assigned a unique id as well. If set
            to False, edges are not assigned
        assign_existing=False == if set to True, unassigned edges are assigned
            to existing basins with an upstream weighting. If set to False,
            edges are assigned to unique IDs, or not assigned
    output:
        stream_ge -- pcraster object, streams of strahler order ge threshold
        subcatch -- pcraster object, subcatchments of strahler order ge threshold

    """
    # derive stream order

    if stream is None:
        stream = pcr.streamorder(ldd)

    stream_ge = pcr.ifthen(stream >= threshold, stream)
    stream_up_sum = pcr.ordinal(pcr.upstream(ldd, pcr.cover(pcr.scalar(stream_ge), 0)))
    # detect any transfer of strahler order, to a higher strahler order.
    transition_strahler = pcr.ifthenelse(pcr.downstream(ldd, stream_ge) != stream_ge, pcr.boolean(1),
                                         pcr.ifthenelse(pcr.nominal(ldd) == 5, pcr.boolean(1), pcr.ifthenelse(pcr.downstream(ldd, pcr.scalar(stream_up_sum)) > pcr.scalar(stream_ge), pcr.boolean(1),
                                                                                                              pcr.boolean(0))))
    # make unique ids (write to file)
    transition_unique = pcr.ordinal(pcr.uniqueid(transition_strahler))

    # derive upstream catchment areas (write to file)
    subcatch = pcr.nominal(pcr.subcatchment(ldd, transition_unique))
    # mask out areas outside basin
    if basin is not None:
        subcatch = pcr.ifthen(basin, subcatch)

    if assign_edge:
        # fill unclassified areas (in pcraster equal to zero) with a unique id, above the maximum id assigned so far
        unique_edge = pcr.clump(pcr.ifthen(subcatch==0, pcr.ordinal(0)))
        subcatch = pcr.ifthenelse(subcatch==0, pcr.nominal(pcr.mapmaximum(pcr.scalar(subcatch)) + pcr.scalar(unique_edge)), pcr.nominal(subcatch))
    elif assign_existing:
        # unaccounted areas are added to largest nearest draining basin
        if up_area is None:
            up_area = pcr.ifthen(pcr.boolean(pcr.cover(stream_ge, 0)), pcr.accuflux(ldd, 1))
        riverid = pcr.ifthen(pcr.boolean(pcr.cover(stream_ge, 0)), subcatch)

        friction = 1./pcr.scalar(pcr.spreadzone(pcr.cover(pcr.ordinal(up_area), 0), 0, 0)) # *(pcr.scalar(ldd)*0+1)
        delta = pcr.ifthen(pcr.scalar(ldd)>=0, pcr.ifthen(pcr.cover(subcatch, 0)==0, pcr.spreadzone(pcr.cover(riverid, 0), 0, friction)))
        subcatch = pcr.ifthenelse(pcr.boolean(pcr.cover(subcatch, 0)),
                                      subcatch,
                                      delta)

    # finally, only keep basins with minimum and maximum river order flowing through them
    strahler_subcatch = pcr.areamaximum(stream, subcatch)
    subcatch = pcr.ifthen(pcr.ordinal(strahler_subcatch) >= min_strahler, pcr.ifthen(pcr.ordinal(strahler_subcatch) <= max_strahler, subcatch))

    return stream_ge, pcr.ordinal(subcatch)