예제 #1
0
def go():
    ieee_fonts_zoom3(pylab)

    r = Report()
    algos = [InvMult2.ALGO_UNIFORM, InvMult2.ALGO_VAN_DER_CORPUT]
    for algo in algos:
        InvMult2.ALGO = algo
        InvPlus2.ALGO = algo
        print('Using algorithm %s ' % algo)
        with r.subsection(algo) as r2:
            # first
            F = parse_poset('dimensionless')
            R = F
            dp = InvMult2(F, (R, R))
            ns = [3, 4, 5, 6, 10, 15]

            axis = (0.0, 6.0, 0.0, 6.0)

            with r2.subsection('invmult2') as rr:
                go1(rr, ns, dp, plot_nominal_invmult, axis)

            # second
            axis = (0.0, 1.2, 0.0, 1.2)
            dp = InvPlus2(F, (R, R))
            with r2.subsection('invplus2') as rr:
                go1(rr, ns, dp, plot_nominal_invplus, axis)

    fn = 'out-plot_approximations/report.html'
    print('writing to %s' % fn)
    r.to_html(fn)
예제 #2
0
def go():
    ieee_fonts_zoom3(pylab)

    r = Report()
    algos = [InvMult2.ALGO_UNIFORM, InvMult2.ALGO_VAN_DER_CORPUT]
    for algo in algos:
        InvMult2.ALGO = algo
        InvPlus2.ALGO = algo
        print("Using algorithm %s " % algo)
        with r.subsection(algo) as r2:
            # first
            F = parse_poset("dimensionless")
            R = F
            dp = InvMult2(F, (R, R))
            ns = [3, 4, 5, 6, 10, 15]

            axis = (0.0, 6.0, 0.0, 6.0)

            with r2.subsection("invmult2") as rr:
                go1(rr, ns, dp, plot_nominal_invmult, axis)

            # second
            axis = (0.0, 1.2, 0.0, 1.2)
            dp = InvPlus2(F, (R, R))
            with r2.subsection("invplus2") as rr:
                go1(rr, ns, dp, plot_nominal_invplus, axis)

    fn = "out-plot_approximations/report.html"
    print("writing to %s" % fn)
    r.to_html(fn)
예제 #3
0
파일: drone_unc2.py 프로젝트: rusi/mcdp
def report(data):
    from matplotlib import pylab
    ieee_fonts_zoom3(pylab)
    r = Report()

    print('reading iterations')
    num_iterations_L = [
        get_num_iterations(res_i['traceL']) for res_i in data['results']
    ]
    num_iterations_U = [
        get_num_iterations(res_i['traceU']) for res_i in data['results']
    ]

    def get_mass(res):
        if not res.minimals:
            return None
        return list(res.minimals)[0]

    res_L = np.array([get_mass(res_i['resL']) for res_i in data['results']])
    res_U = np.array([get_mass(res_i['resU']) for res_i in data['results']])

    accuracy = np.array(res_U) - np.array(res_L)

    num_iterations = np.array(num_iterations_L) + np.array(num_iterations_U)

    print res_L
    print res_U
    print num_iterations_L
    print num_iterations_U

    intervals = data['intervals']

    print('Plotting')
    f = r.figure('fig1', cols=2)

    LOWER = 'bo-'
    UPPER = 'mo-'

    markers = dict(markeredgecolor='none',
                   markerfacecolor='black',
                   markersize=6,
                   marker='o')
    LOWER2 = dict(color='orange', linewidth=4, linestyle='-', clip_on=False)
    UPPER2 = dict(color='purple', linewidth=4, linestyle='-', clip_on=False)
    LOWER2.update(markers)
    UPPER2.update(markers)
    color_resources = '#700000'
    # color_functions = '#007000'
    color_tolerance = '#000000'

    attrs = dict(clip_on=False)

    fig = dict(figsize=(4.5, 4))
    fig_tall = dict(figsize=(3.5, 7))

    label_tolerance = u'tolerance α [mW]'
    #     label_tolerance = 'tolerance $\\alpha$ [mW]'

    with f.plot('fig_num_iterations', **fig) as pylab:
        ieee_spines_zoom3(pylab)
        pylab.plot(intervals, num_iterations_L, **LOWER2)
        pylab.plot(intervals, num_iterations_U, **UPPER2)
        pylab.xlabel(label_tolerance)
        pylab.ylabel('iterations')

    with f.plot('fig_num_iterations_log', **fig) as pylab:
        ieee_spines_zoom3(pylab)
        pylab.loglog(intervals, num_iterations_L, **LOWER2)
        pylab.loglog(intervals, num_iterations_U, **UPPER2)
        pylab.xlabel(label_tolerance)
        pylab.ylabel('iterations')

    with f.plot('mass', **fig_tall) as pylab:
        ieee_spines_zoom3(pylab)
        pylab.plot(intervals, res_L, LOWER, **attrs)
        pylab.plot(intervals, res_U, UPPER, **attrs)
        pylab.xlabel(label_tolerance)
        pylab.ylabel('total mass [g]')
        set_axis_colors(pylab, color_tolerance, color_resources)

    with f.plot('mass3', **fig_tall) as pylab:
        ieee_spines_zoom3(pylab)
        pylab.plot(intervals, res_L, **LOWER2)
        pylab.plot(intervals, res_U, **UPPER2)
        pylab.xlabel(label_tolerance)
        pylab.ylabel('total mass [g]')
        set_axis_colors(pylab, color_tolerance, color_resources)

    with f.plot('mass3log', **fig) as pylab:
        ieee_spines_zoom3(pylab)
        pylab.semilogx(intervals, res_L, **LOWER2)
        pylab.semilogx(intervals, res_U, **UPPER2)
        pylab.xlabel(label_tolerance)
        pylab.ylabel('total mass [g]')
        set_axis_colors(pylab, color_tolerance, color_resources)

    with f.plot('mass_log', **fig) as pylab:
        ieee_spines_zoom3(pylab)
        pylab.loglog(intervals, res_L, LOWER, **attrs)
        pylab.loglog(intervals, res_U, UPPER, **attrs)
        pylab.xlabel(label_tolerance)
        pylab.ylabel('total mass [g]')
        set_axis_colors(pylab, color_tolerance, color_resources)

    with f.plot('mass2', **fig) as pylab:
        ieee_spines_zoom3(pylab)

        mean = np.array(res_L) * 0.5 + np.array(res_U) * 0.5
        err = (res_U - res_L) / 2

        e = pylab.errorbar(intervals,
                           mean,
                           yerr=err,
                           color='black',
                           linewidth=2,
                           linestyle="None",
                           **attrs)
        #         plotline: Line2D instance #         x, y plot markers and/or line
        #         caplines: list of error bar cap#         Line2D instances
        #         barlinecols: list of         LineCollection instances for the horizontal and vertical error ranges.
        e[0].set_clip_on(False)
        for b in e[1]:
            b.set_clip_on(False)
        for b in e[2]:
            b.set_clip_on(False)
            b.set_linewidth(2)

        pylab.xlabel(label_tolerance)
        pylab.ylabel('total mass [g]')
        set_axis_colors(pylab, color_tolerance, color_resources)

    with f.plot('mass2_log', **fig) as pylab:
        ieee_spines_zoom3(pylab)
        pylab.loglog(intervals, res_L, LOWER, **attrs)
        pylab.loglog(intervals, res_U, UPPER, **attrs)
        pylab.xlabel(label_tolerance)
        pylab.ylabel('total mass [g]')
        set_axis_colors(pylab, color_tolerance, color_resources)

    with f.plot('accuracy', **fig) as pylab:
        ieee_spines_zoom3(pylab)
        pylab.plot(accuracy, num_iterations, 'o', **attrs)
        pylab.ylabel('iterations')
        pylab.xlabel('solution uncertainty [g]')

    with f.plot('accuracy_log', **fig) as pylab:
        ieee_spines_zoom3(pylab)
        pylab.loglog(accuracy, num_iterations, 'o', **attrs)
        pylab.ylabel('iterations')
        pylab.xlabel('solution uncertainty [g]')

    return r
예제 #4
0
def matplotlib_settings():
    from matplotlib import pylab
    ieee_fonts_zoom3(pylab)
예제 #5
0
def report(data):
    print('report()')
    from matplotlib import pylab

    ieee_fonts_zoom3(pylab)

    r = Report()

    num = np.array(data['n'])
    print num

    print('reading iterations')
    num_iterations_L = [
        get_num_iterations(res_i['traceL']) for res_i in data['results']
    ]
    num_iterations_U = [
        get_num_iterations(res_i['traceU']) for res_i in data['results']
    ]

    def get_mass(res):
        if not res.minimals:
            return np.inf
        return list(res.minimals)[0]

    res_L = np.array([get_mass(res_i['resL']) for res_i in data['results']])
    res_U = np.array([get_mass(res_i['resU']) for res_i in data['results']])

    accuracy = np.array(res_U) - np.array(res_L)

    num_iterations = np.array(num_iterations_L) + np.array(num_iterations_U)

    print res_L
    print res_U
    print num_iterations_L
    print num_iterations_U

    print('Plotting')
    f = r.figure('fig1', cols=2)

    attrs = dict(clip_on=False)

    markers = dict(markeredgecolor='none',
                   markerfacecolor='black',
                   markersize=6,
                   marker='o')
    LOWER = dict(color='orange', linewidth=4, linestyle='-', clip_on=False)
    UPPER = dict(color='purple', linewidth=4, linestyle='-', clip_on=False)
    LOWER.update(markers)
    UPPER.update(markers)
    color_resources = '#700000'
    # color_functions = '#007000'
    color_tolerance = '#000000'

    fig = dict(figsize=(4.5, 3.4))

    with f.plot('fig_num_iterations', **fig) as pylab:
        ieee_spines_zoom3(pylab)
        pylab.plot(num, num_iterations_L, **LOWER)
        pylab.plot(num, num_iterations_U, **UPPER)
        pylab.ylabel('iterations')
        pylab.xlabel('n')

    if False:
        with f.plot('fig_num_iterations_log', **fig) as pylab:
            ieee_spines_zoom3(pylab)
            pylab.loglog(num, num_iterations_L, **LOWER)
            pylab.loglog(num, num_iterations_U, **UPPER)
            pylab.ylabel('iterations')
            pylab.xlabel('n')

    with f.plot('mass', **fig) as pylab:
        ieee_spines_zoom3(pylab)
        pylab.plot(num, res_L, **LOWER)
        pylab.plot(num, res_U, **UPPER)
        pylab.ylabel('total mass [g]')
        pylab.xlabel('n')
        set_axis_colors(pylab, color_tolerance, color_resources)

    with f.plot('mass2', **fig) as pylab:
        ieee_spines_zoom3(pylab)

        valid = np.isfinite(res_U)
        invalid = np.logical_not(valid)
        print valid

        res_L_valid = res_L[valid]
        res_U_valid = res_U[valid]
        num_valid = num[valid]

        mean = res_L_valid * 0.5 + res_U_valid * 0.5
        err = (res_U_valid - res_L_valid) / 2

        e = pylab.errorbar(num_valid,
                           mean,
                           yerr=err,
                           color='black',
                           linewidth=2,
                           linestyle="None",
                           **attrs)
        #         plotline: Line2D instance #         x, y plot markers and/or line
        #         caplines: list of error bar cap#         Line2D instances
        #         barlinecols: list of         LineCollection instances for the horizontal and vertical error ranges.
        e[0].set_clip_on(False)
        for b in e[1]:
            b.set_clip_on(False)
        for b in e[2]:
            b.set_clip_on(False)
            b.set_linewidth(2)

        num_invalid = num[invalid]
        res_L_invalid = res_L[invalid]
        max_y = pylab.axis()[3]
        for n, res_L in zip(num_invalid, res_L_invalid):
            pylab.plot([n, n], [max_y, res_L], '--', color='gray', **attrs)
        pylab.plot(num_invalid, res_L_invalid, 'ko', **attrs)

        pylab.xlabel('n')
        pylab.ylabel('total mass [g]')
        set_axis_colors(pylab, color_tolerance, color_resources)

    with f.plot('accuracy', **fig) as pylab:
        ieee_spines_zoom3(pylab)
        pylab.plot(num_iterations, accuracy, 'o', **attrs)
        pylab.xlabel('iterations')
        pylab.ylabel('solution uncertainty [g]')

    return r
예제 #6
0
def matplotlib_settings():
    from matplotlib import pylab
    ieee_fonts_zoom3(pylab)
예제 #7
0
def report(data):
    from matplotlib import pylab
    ieee_fonts_zoom3(pylab)
    r = Report()

    print('reading iterations')
    num_iterations_L = [get_num_iterations(res_i['traceL']) for res_i in data['results']]
    num_iterations_U = [get_num_iterations(res_i['traceU']) for res_i in data['results']]

    def get_mass(res):
        if not res.minimals:
            return None
        return list(res.minimals)[0]

    res_L = np.array([ get_mass(res_i['resL']) for res_i in data['results']])
    res_U = np.array([ get_mass(res_i['resU']) for res_i in data['results']])

    accuracy = np.array(res_U) - np.array(res_L)

    num_iterations = np.array(num_iterations_L) + np.array(num_iterations_U)

    print res_L
    print res_U
    print num_iterations_L
    print num_iterations_U

    intervals = data['intervals']

    print('Plotting')
    f = r.figure('fig1', cols=2)

    LOWER = 'bo-'
    UPPER = 'mo-'

    markers = dict(markeredgecolor='none', markerfacecolor='black', markersize=6,
                   marker='o')
    LOWER2 = dict(color='orange', linewidth=4, linestyle='-', clip_on=False)
    UPPER2 = dict(color='purple', linewidth=4, linestyle='-', clip_on=False)
    LOWER2.update(markers)
    UPPER2.update(markers)
    color_resources = '#700000'
    # color_functions = '#007000'
    color_tolerance = '#000000'


    attrs = dict(clip_on=False)
    
    fig = dict(figsize=(4.5, 4))
    fig_tall = dict(figsize=(3.5    , 7))

    label_tolerance = u'tolerance α [mW]'
#     label_tolerance = 'tolerance $\\alpha$ [mW]'

    with f.plot('fig_num_iterations', **fig) as pylab:
        ieee_spines_zoom3(pylab)
        pylab.plot(intervals, num_iterations_L, **LOWER2)
        pylab.plot(intervals, num_iterations_U, **UPPER2)
        pylab.xlabel(label_tolerance)
        pylab.ylabel('iterations')

    with f.plot('fig_num_iterations_log', **fig) as pylab:
        ieee_spines_zoom3(pylab)
        pylab.loglog(intervals, num_iterations_L, **LOWER2)
        pylab.loglog(intervals, num_iterations_U, **UPPER2)
        pylab.xlabel(label_tolerance)
        pylab.ylabel('iterations')

    with f.plot('mass', **fig_tall) as pylab:
        ieee_spines_zoom3(pylab)
        pylab.plot(intervals, res_L, LOWER, **attrs)
        pylab.plot(intervals, res_U, UPPER, **attrs)
        pylab.xlabel(label_tolerance)
        pylab.ylabel('total mass [g]')
        set_axis_colors(pylab, color_tolerance, color_resources)

    with f.plot('mass3', **fig_tall) as pylab:
        ieee_spines_zoom3(pylab)
        pylab.plot(intervals, res_L, **LOWER2)
        pylab.plot(intervals, res_U, **UPPER2)
        pylab.xlabel(label_tolerance)
        pylab.ylabel('total mass [g]')
        set_axis_colors(pylab, color_tolerance, color_resources)

    with f.plot('mass3log', **fig) as pylab:
        ieee_spines_zoom3(pylab)
        pylab.semilogx(intervals, res_L, **LOWER2)
        pylab.semilogx(intervals, res_U, **UPPER2)
        pylab.xlabel(label_tolerance)
        pylab.ylabel('total mass [g]')
        set_axis_colors(pylab, color_tolerance, color_resources)

    with f.plot('mass_log', **fig) as pylab:
        ieee_spines_zoom3(pylab)
        pylab.loglog(intervals, res_L, LOWER, **attrs)
        pylab.loglog(intervals, res_U, UPPER, **attrs)
        pylab.xlabel(label_tolerance)
        pylab.ylabel('total mass [g]')
        set_axis_colors(pylab, color_tolerance, color_resources)

    with f.plot('mass2', **fig) as pylab:
        ieee_spines_zoom3(pylab)

        mean = np.array(res_L) * 0.5 + np.array(res_U) * 0.5
        err = (res_U - res_L) / 2

        e = pylab.errorbar(intervals, mean, yerr=err,
                           color='black', linewidth=2,
                           linestyle="None", **attrs)
#         plotline: Line2D instance #         x, y plot markers and/or line
#         caplines: list of error bar cap#         Line2D instances
#         barlinecols: list of         LineCollection instances for the horizontal and vertical error ranges.
        e[0].set_clip_on(False)
        for b in e[1]:
            b.set_clip_on(False)
        for b in e[2]:
            b.set_clip_on(False)
            b.set_linewidth(2)

        pylab.xlabel(label_tolerance)
        pylab.ylabel('total mass [g]')
        set_axis_colors(pylab, color_tolerance, color_resources)

    with f.plot('mass2_log',  **fig) as pylab:
        ieee_spines_zoom3(pylab)
        pylab.loglog(intervals, res_L, LOWER, **attrs)
        pylab.loglog(intervals, res_U, UPPER, **attrs)
        pylab.xlabel(label_tolerance)
        pylab.ylabel('total mass [g]')
        set_axis_colors(pylab, color_tolerance, color_resources)

    with f.plot('accuracy',  **fig) as pylab:
        ieee_spines_zoom3(pylab)
        pylab.plot(accuracy, num_iterations, 'o', **attrs)
        pylab.ylabel('iterations')
        pylab.xlabel('solution uncertainty [g]')

    with f.plot('accuracy_log',  **fig) as pylab:
        ieee_spines_zoom3(pylab)
        pylab.loglog(accuracy, num_iterations, 'o', **attrs)
        pylab.ylabel('iterations')
        pylab.xlabel('solution uncertainty [g]')

    return r
예제 #8
0
def report(res):

    r = Report()

    dataL = res['dataL']
    dataU = res['dataU']

    what_to_plot_res = dict(total_cost="USD", total_mass='kg')
    what_to_plot_fun = dict(endurance="hour", extra_payload="g")

    queries = dataL['queries']
    endurance = [q['endurance'] for q in queries]

    def get_value(data, field):
        for res in data['results']:
            a = to_numpy_array({field: 'kg'}, res)

            if len(a):
                a = min(a[field])
            else:
                a = None
            yield a


    from matplotlib import pylab
    ieee_fonts_zoom3(pylab)


    markers = dict(markeredgecolor='none', markerfacecolor='black', markersize=6,
                   marker='o')
    LOWER2 = dict(color='orange', linewidth=4, linestyle='-', clip_on=False)
    UPPER2 = dict(color='purple', linewidth=4, linestyle='-', clip_on=False)
    LOWER2.update(markers)
    UPPER2.update(markers)
    color_resources = '#700000'
    color_functions = '#007000'


    fig = dict(figsize=(4.5, 4))

    with r.plot('total_mass', **fig) as pylab:
        ieee_spines_zoom3(pylab)
        total_massL = np.array(list(get_value(dataL, 'total_mass')))
        total_massU = np.array(list(get_value(dataU, 'total_mass')))
        print endurance
        print total_massL, total_massU
        pylab.plot(endurance, total_massL, **LOWER2)
        pylab.plot(endurance, total_massU, **UPPER2)
        set_axis_colors(pylab, color_functions, color_resources)
        pylab.xlabel('endurance [hours]')
        pylab.ylabel('total_mass [kg]')

    return r


    print('Plotting lower')
    with r.subsection('lower') as rL:
        plot_all_directions(rL,
                            queries=dataL['queries'],
                            results=dataL['results'],
                            what_to_plot_res=what_to_plot_res,
                            what_to_plot_fun=what_to_plot_fun)
    
    print('Plotting upper')
    with r.subsection('upper') as rU:
        plot_all_directions(rU,
                            queries=dataU['queries'],
                            results=dataU['results'],
                            what_to_plot_res=what_to_plot_res,
                            what_to_plot_fun=what_to_plot_fun)

    return r
예제 #9
0
def report(res):

    r = Report()

    dataL = res['dataL']
    dataU = res['dataU']

    what_to_plot_res = dict(total_cost="USD", total_mass='kg')
    what_to_plot_fun = dict(endurance="hour", extra_payload="g")

    queries = dataL['queries']
    endurance = [q['endurance'] for q in queries]

    def get_value(data, field):
        for res in data['results']:
            a = to_numpy_array({field: 'kg'}, res)

            if len(a):
                a = min(a[field])
            else:
                a = None
            yield a

    from matplotlib import pylab
    ieee_fonts_zoom3(pylab)

    markers = dict(markeredgecolor='none',
                   markerfacecolor='black',
                   markersize=6,
                   marker='o')
    LOWER2 = dict(color='orange', linewidth=4, linestyle='-', clip_on=False)
    UPPER2 = dict(color='purple', linewidth=4, linestyle='-', clip_on=False)
    LOWER2.update(markers)
    UPPER2.update(markers)
    color_resources = '#700000'
    color_functions = '#007000'

    fig = dict(figsize=(4.5, 4))

    with r.plot('total_mass', **fig) as pylab:
        ieee_spines_zoom3(pylab)
        total_massL = np.array(list(get_value(dataL, 'total_mass')))
        total_massU = np.array(list(get_value(dataU, 'total_mass')))
        print endurance
        print total_massL, total_massU
        pylab.plot(endurance, total_massL, **LOWER2)
        pylab.plot(endurance, total_massU, **UPPER2)
        set_axis_colors(pylab, color_functions, color_resources)
        pylab.xlabel('endurance [hours]')
        pylab.ylabel('total_mass [kg]')

    return r

    print('Plotting lower')
    with r.subsection('lower') as rL:
        plot_all_directions(rL,
                            queries=dataL['queries'],
                            results=dataL['results'],
                            what_to_plot_res=what_to_plot_res,
                            what_to_plot_fun=what_to_plot_fun)

    print('Plotting upper')
    with r.subsection('upper') as rU:
        plot_all_directions(rU,
                            queries=dataU['queries'],
                            results=dataU['results'],
                            what_to_plot_res=what_to_plot_res,
                            what_to_plot_fun=what_to_plot_fun)

    return r
예제 #10
0
def create_report1(data, model_name):

    all_min_throughput = []
    all_resolution = []
    all_num_solutions = []
    all_min_budget = []
    all_min_power = []

    for query, query_results in zip(data['queries'], data['results']):
        resolution = query['resolution']
        min_throughput = query['min_throughput']
        num_solutions = len(query_results)

        if num_solutions == 0:
            min_power = np.nan
            min_budget = np.nan
        else:
            min_power = np.min([_['power'] for _ in query_results])
            min_budget = np.min([_['budget'] for _ in query_results])

        all_min_throughput.append(min_throughput)
        all_resolution.append(resolution)
        all_num_solutions.append(num_solutions)
        all_min_power.append(min_power)
        all_min_budget.append(min_budget)

    all_min_throughput = np.array(all_min_throughput)
    all_resolution = np.array(all_resolution)
    all_num_solutions = np.array(all_num_solutions)
    all_min_power = np.array(all_min_power)
    all_min_budget = np.array(all_min_budget)

    one_solution = all_num_solutions == 1
    multiple_solutions = all_num_solutions > 1
    is_not_feasible = all_num_solutions == 0
    is_feasible = all_num_solutions > 0

    from matplotlib import pylab
    ieee_fonts_zoom3(pylab)

    fig = dict(figsize=(4.5, 4))
    popt = dict(clip_on=False)

    def do_axes(pylab):
        pylab.xlabel('resolution [pixels/deg]')
        pylab.ylabel('min_throughput [Hz]')
        set_axis_colors(pylab, color_functions, color_functions)

    r = Report(model_name)
    with r.plot('feasibility', **fig) as pylab:
        ieee_spines_zoom3(pylab)

        pylab.plot(all_resolution[one_solution],
                   all_min_throughput[one_solution],
                   'k.',
                   markersize=4,
                   **popt)
        pylab.plot(all_resolution[multiple_solutions],
                   all_min_throughput[multiple_solutions],
                   'ms',
                   markersize=4,
                   **popt)
        pylab.plot(all_resolution[is_not_feasible],
                   all_min_throughput[is_not_feasible],
                   'r.',
                   markersize=0.5,
                   **popt)

        do_axes(pylab)

    with r.plot('power', **fig) as pylab:

        ieee_spines_zoom3(pylab)

        x = all_resolution
        y = all_min_throughput
        z = all_min_power
        plot_field(pylab, x, y, z, cmap='afmhot')
        pylab.title('power', color=color_resources)
        do_axes(pylab)

    with r.plot('budget', **fig) as pylab:

        ieee_spines_zoom3(pylab)

        x = all_resolution
        y = all_min_throughput
        z = all_min_budget
        plot_field(pylab, x, y, z, cmap='afmhot')
        pylab.title('budget', color=color_resources)
        do_axes(pylab)

    with r.plot('budget2', **fig) as pylab:
        ieee_spines_zoom3(pylab)

        unique_budgets = np.unique(all_min_budget[is_feasible])

        markers = ['b.', 'g.', 'm.', 'y.']
        for i, ub in enumerate(unique_budgets):
            which = all_min_budget == ub
            pylab.plot(all_resolution[which],
                       all_min_throughput[which],
                       markers[i],
                       markersize=4,
                       **popt)

        pylab.plot(all_resolution[is_not_feasible],
                   all_min_throughput[is_not_feasible],
                   'r.',
                   markersize=0.5,
                   **popt)

        do_axes(pylab)

    r.text('about_budget', '%s = %s' % (unique_budgets, markers))
    r.text(
        'misc', 'min_power: %s W - %s W' % (np.min(
            all_min_power[is_feasible]), np.max(all_min_power[is_feasible])))
    return r