def scanSFS(): scores = rutl.loadScores() field = comale; df = sort(utl.scanGenome(scores.abs(), {field: lambda x: x.abs().mean(), 'Num. of SNPs': lambda x: x.size}))[ [field, 'Num. of SNPs']] plotOne(df, df[df[field] > df[field].quantile(0.99)], fname='all') nu0 = rutl.getNut(0) nut = rutl.getNut(59) reload(rutl) # n= int(pd.read_pickle(utl.outpath + 'real/CD.F59.df').loc[:,pd.IndexSlice[:,0,'D']].mean().mean()) n = 100 SFSelect = lambda x: est.Estimate.getEstimate(x=x, method='SFSelect', n=n) sf0 = scanOne(nu0, SFSelect, 'SFSelect.Base', 'SFSelect.Base'); SFSelect = lambda x: est.Estimate.getEstimate(x=x, method='SFSelect', n=n) sft = scanOne(nut, SFSelect, 'SFSelect.Final', 'SFSelect.Final') sfr = pd.concat( [(sft.iloc[:, 0] - sf0.iloc[:, 0]).rename('SFS(59)-SFS(0)'), sf0.iloc[:, 0], sft.iloc[:, 0], df.iloc[:, 0]], axis=1) outlier = sfr[sfr.iloc[:, 0] > sfr.iloc[:, 0].quantile(0.99)] sfr.loc[(sfr.iloc[:, 0] < 0).values, sfr.columns[0]] = None fig = plt.figure(figsize=(7, 4.5), dpi=300); pplt.Manhattan(data=sfr, Outliers=outlier, fig=fig, markerSize=2, ticksize=8, sortedAlready=True) [pplt.setSize(ax, 5) for ax in fig.get_axes()] plt.savefig(utl.paperPath + 'new/{}.pdf'.format('sfs-clear'))
def outlier(): scores = rutl.removeHeteroChromatin(rutl.loadScores()) field = comale; df = sort(utl.scanGenome(scores.abs(), {field: lambda x: x.abs().mean(), 'Num. of SNPs': lambda x: x.size}))[ [field, 'Num. of SNPs']] a = df.iloc[:, 0] a = a.rename('Global Outliers'); o = a[a > a.quantile(0.99)] o.to_pickle(utl.outpath + 'real/outliers.global.df') fig = plt.figure(figsize=(7, 1.5), dpi=300); pplt.Manhattan(data=a, Outliers=pd.DataFrame(o), fig=fig, markerSize=2, ticksize=8, sortedAlready=True); [pplt.setSize(ax, 5) for ax in fig.get_axes()]; plt.gcf().subplots_adjust(bottom=0.15); plt.savefig(utl.paperPath + 'new/{}.pdf'.format('global')) a = a.rename('Chrom Outliers'); o = a.groupby(level=0).apply(lambda x: x[x > x.quantile(0.99)].loc[x.name]) o.to_pickle(utl.outpath + 'real/outliers.chrom.df') fig = plt.figure(figsize=(7, 1.5), dpi=300); pplt.Manhattan(data=a, Outliers=pd.DataFrame(o), fig=fig, markerSize=2, ticksize=8, sortedAlready=True); [pplt.setSize(ax, 5) for ax in fig.get_axes()] plt.gcf().subplots_adjust(bottom=0.15); plt.savefig(utl.paperPath + 'new/{}.pdf'.format('chrom')) a = a.rename('Local Outliers'); o = localOutliers(a) o.to_pickle(utl.outpath + 'real/outliers.local.df') fig = plt.figure(figsize=(7, 1.5), dpi=300); pplt.Manhattan(data=a, Outliers=pd.DataFrame(o), fig=fig, markerSize=2, ticksize=8, sortedAlready=True); [pplt.setSize(ax, 5) for ax in fig.get_axes()] plt.gcf().subplots_adjust(bottom=0.15); plt.savefig(utl.paperPath + 'new/{}.pdf'.format('local'))
def saveTopKSNPs(): scores = rutl.loadScores() ann = loadANN()["Annotation Annotation_Impact Gene_Name Gene_ID".split()] scores = pd.concat([scores, rutl.loadSNPIDs()], axis=1).set_index('ID', append=True)[0].rename('Hstatistic') top = scores[scores > scores.quantile(0.9999)].reset_index('ID').join(rutl.getNut(0), how='inner') top = top.join(ann).drop_duplicates().sort_values('Hstatistic', ascending=False) top = top[top['Annotation_Impact'] != 'LOW'] top.to_csv(utl.outpath + 'real/top_1e-4_quantile_SNPs.csv')
def findCandidateSNPs(outlierMode='local'): print 'running ', outlierMode ann = loadANN()["Annotation Annotation_Impact Gene_Name Gene_ID".split()] intervals = utl.BED.getIntervals(pd.read_pickle(utl.outpath + 'real/outliers.{}.df'.format(outlierMode)), padding=25000) scores = rutl.removeHeteroChromatin(rutl.loadScores()).rename('H') scores.shape candidates = [] for _, row in intervals.iterrows(): row = pd.DataFrame(row).T row.index.name = 'CHROM' snp = utl.BED.intersection(scores.reset_index(), row, 'H').rename(columns={'name': 'H', 'start': 'POS'})[ ['POS', 'H']].set_index('POS', append=True)['H'].astype(float) snp = snp[snp > snp.quantile(0.99)] candidates += [snp] print snp.shape, row.iloc[0].loc['len'] candidates = pd.DataFrame(pd.concat(candidates)).join(ann, how='inner') candidates = candidates[candidates['Annotation_Impact'] != 'LOW'] candidates.to_pickle(utl.outpath + 'real/{}.df'.format('cand.' + outlierMode))
def Final(): scores = rutl.loadScores(skipHetChroms=True).abs() a = sort(utl.scanGenome(scores.abs(), {'H': lambda x: x.abs().mean(), 'M': lambda x: x.size})) intervals = ga.getIntervals(o.H, padding=30000) fig = plt.figure(figsize=(7, 1.5), dpi=300); pplt.Manhattan(data=a, Outliers=o, shade=intervals.reset_index(), fig=fig, markerSize=2, ticksize=8, sortedAlready=True); [pplt.setSize(ax, 5) for ax in fig.get_axes()]; plt.gcf().subplots_adjust(bottom=0.15); plt.suptitle((shades.shape[0], shades['len'].sum() / 1e6), fontsize=8) plt.savefig(utl.paperPath + 'new/{}.pdf'.format('CHROM.FDR_0.01'))
def plotSNPPval(out): scores = rutl.loadScores() kde = utl.getDensity(scores, width=1); pval = utl.getPvalKDE(out.sort_values(ascending=False).iloc[:1200], kde) print pval.sort_values() pval[pval >= 3].size df = pd.DataFrame(pval) df = pd.concat([df[df.index.get_level_values('CHROM') == ch] for ch in ['X', '2L', '2R', '3L', '3R', '4', '2LHet', '2RHet', '3LHet', '3RHet', 'XHet']]) fig = plt.figure(figsize=(7, 2), dpi=300); pplt.Manhattan(df, fig=fig, markerSize=2, ticksize=8, sortedAlready=True); [pplt.setSize(ax, 8) for ax in fig.get_axes()]
def createGwandaDataNew(): def save(df, name='candidatesnps.txt'): df.sort_index().reset_index().to_csv(utl.outpath + 'real/gowinda/{}.txt'.format(name), sep='\t', header=None, index=False) scores = rutl.removeHeteroChromatin(rutl.loadScores()).rename('H') save(scores, 'allsnps') for outlierMode in ['local', 'global', 'chrom']: a = pd.read_pickle(utl.outpath + 'real/{}.df'.format('cand.' + outlierMode))['H'].reset_index().drop_duplicates( subset=['CHROM', 'POS']).set_index(['CHROM', 'POS']).H save(a, 'cand.' + outlierMode + '.damped.0') print a.shape ann = loadANN()["Annotation Annotation_Impact Gene_Name Gene_ID".split()] for dampn in [100, 500, 1000, 2000]: damp = scores.sort_values(ascending=False).iloc[:dampn] damp = pd.DataFrame(damp).join(ann, how='inner') damp = \ damp[damp['Annotation_Impact'] != 'LOW']['H'].reset_index().drop_duplicates().set_index(['CHROM', 'POS'])['H'] damp.shape for outlierMode in ['local', 'global', 'chrom']: a = pd.read_pickle(utl.outpath + 'real/{}.df'.format('cand.' + outlierMode))[ 'H'].reset_index().drop_duplicates(subset=['CHROM', 'POS']).set_index(['CHROM', 'POS']).H a = pd.concat([a, damp]).reset_index().drop_duplicates(subset=['CHROM', 'POS']).set_index( ['CHROM', 'POS']).H save(a, 'cand.' + outlierMode + '.damped.{}'.format(dampn)) print a.shape Genes = pd.read_pickle(utl.outpath + 'real/GO.df').set_index('GO') Genes = Genes[Genes.AnnID.apply(lambda x: x[:2] == 'CG')] Genes.AnnID.value_counts() df = pd.concat([Genes.term.drop_duplicates(), Genes.AnnID.groupby(level=0).apply(lambda x: ' '.join(x.tolist()))], axis=1) df.to_csv(utl.outpath + 'real/gowinda/goassociation.CG', sep='\t', header=None) df = pd.concat([Genes.term.drop_duplicates(), Genes.FBgn.groupby(level=0).apply(lambda x: ' '.join(x.tolist()))], axis=1) df.to_csv(utl.outpath + 'real/gowinda/goassociation.FBgn', sep='\t', header=None)
def estimateS(y): eps=1e-3 y[0]=y[0].apply(lambda x: min(1-eps,max(x,eps))) y[59]=y[59].apply(lambda x: min(1-eps,max(x,eps))) s=(2./59 * (utl.logit(y[59])-utl.logit(y[0]))).rename('s') return s import popgen.Run.TimeSeries.RealData.Utils as rutl import scipy as sc import popgen.Plots as pplt import popgen.Run.TimeSeries.RealData.Utils as rutl import popgen.Run.TimeSeries.RealData.Data as dta import popgen.TimeSeries.Markov as mkv S=np.arange(-1,1,0.05).round(2);chroms=['2L','2R','3L','3R','X'] pd.read_pickle('/home/arya/out/real/HMM1x/h5.000000E-01.df').loc[i] scores = utl.getEuChromatin(rutl.loadScores(skipHetChroms=True)).loc[chroms].rename('score') cdAll=utl.getEuChromatin(pd.read_pickle('/home/arya/out/real/CD.F59.df').loc[chroms]) freq=lambda x:x.xs('C',level='READ',axis=1).sum(1)/x.xs('D',level='READ',axis=1).sum(1) s=estimateS(cdAll.groupby(axis=1,level='GEN').apply(freq)[[0,37,59]]) x=pd.read_pickle('/home/arya/out/real/HMM1x/h5.000000E-01.df').loc[chroms,0.5] pplt.Manhattan(utl.zpvalgenome(utl.scanGenome(utl.zpvalgenome2tail(s)))) (x.s*(x.alt-x.null)).hist(bins=100) D=cdAll.xs('D',axis=1,level='READ') d=D.median(1).rename('d') f=lambda x:(x.alt-x.null) pplt.Manhattan(utl.scanGenome(x2p(f(x)))) x2p=lambda X2: -pd.Series(1 - sc.stats.chi2.cdf(X2, 1),index=X2.index).apply(np.log) y=(f(pd.read_pickle('/home/arya/out/real/HMM/h5.000000E-01.df')[0.5]).loc[chroms].rename('y')*pd.read_pickle('/home/arya/out/real/HMM/h5.000000E-01.df')[0.5].s).dropna() y.sort_values() y=utl.zpvalgenome(pd.read_pickle('/home/arya/out/real/HMM/h5.000000E-01.df')[0.5].s.loc[chroms])
def replicatesSanityCheck(): a = pd.read_csv(utl.home + 'BF37.head', header=None, sep='\t').iloc[:, [0, 1, -1]].set_index([0, 1]).sort_index().iloc[:,0] cd=pd.read_pickle('/home/arya/out/real/CD.F59.df').loc[a.index,pd.IndexSlice[:,[0,37]]] print (a-utl.CMHcd(cd,damp=0,negLog10=False,eps=0)).abs().sum() a = pd.read_csv(utl.home + 'BF15.head', header=None, sep='\t').iloc[:, [0, 1, -1]].set_index([0, 1]).sort_index().iloc[:,0] cd=pd.read_pickle('/home/arya/out/real/CD.F59.df').loc[a.index] cd=cd.groupby(level=[0],axis=1).apply(lambda x: x.iloc[:,:4]).T.dropna().reset_index() cd.GEN=cd.GEN.replace(23,15) cd=cd.set_index(['REP','GEN','READ']).T print (a-utl.CMHcd(cd,damp=0,negLog10=False,eps=0)).abs().sum() if __name__ == '__main__': start=time() # dta.createF37VCF() #dta.computeTransitions() # dta.precomputeCDandEmissions() # dta.computeF37() # dta.computeF59( # ) # options.h=0.5 rutl.runHMM(options.h) #rutl.scanCMH() # rutl.computeScores() # ga.computeGeneRankings() print '\nDone in {:.1f} secs.'.format(time()-start)
np.set_printoptions(linewidth=200, precision=5, suppress=True) import pandas as pd; pd.options.display.max_rows = 20; pd.options.display.expand_frame_repr = False import seaborn as sns import pylab as plt; import matplotlib as mpl import os; home = os.path.expanduser('~') + '/' import popgen.Util as utl import popgen.Estimate as est import popgen.Run.TimeSeries.RealData.Utils as rutl a = rutl.loadAllScores().groupby(level='h', axis=1).apply(rutl.HstatisticAll) df = pd.read_pickle(utl.outpath + 'real/scores.df') i = df.lrd.sort_values().index[-1] df.loc[i] cd = pd.read_pickle(utl.outpath + 'real/CD.F59.df') import popgen.Plots as pplt import pylab as plt names = rutl.loadSNPIDs() sns.set_style("white", {"grid.color": "0.9", 'axes.linewidth': .5, "grid.linewidth": "9.99"}) mpl.rc('font', **{'family': 'serif', 'serif': ['Computer Modern']}); mpl.rc('text', usetex=True) reload(pplt) f, ax = plt.subplots(1, 2, sharey=True, dpi=300, figsize=(4, 2))
def analyzie(minsize=500, winSize=50 * 1000): scores = rutl.loadScores() df = sort(utl.scanGenome(scores.abs(), {comale: lambda x: x.abs().mean(), 'Num. of SNPs': lambda x: x.size}, minSize=minsize))[[comale, 'Num. of SNPs']] outlier = df[df[comale] > df[comale].quantile(0.99)] plotOne(df, outlier, fname='manhattan.min500');
def scanSFSSNPbased(): scores = rutl.loadScores(skipHetChroms=True) # field = comale; # df = sort(utl.scanGenome(scores.abs(), {field: lambda x: x.abs().mean(), 'Num. of SNPs': lambda x: x.size}))[ # [field, 'Num. of SNPs']] # plotOne(df, df[df[field] > df[field].quantile(0.99)], fname='all') reload(rutl) reload(pplt) reload(utl) # SFSelect = lambda x: est.Estimate.getEstimate(x=x, method='SFSelect', n=100) # sfs0 = utl.scanGenomeSNP(rutl.getNut(0, skipHetChroms=True), SFSelect) # sfst = utl.scanGenomeSNP(rutl.getNut(59, skipHetChroms=True), SFSelect).rename(59); sfs=(sfst-sfs0); sfs[sfs<0]=None g = ga.loadGeneCoordinates().set_index('name') genes = g.loc[['Ace', 'Cyp6g1', 'CHKov1']].reset_index().set_index('CHROM') shade = scores.sort_values().reset_index().iloc[-2:].rename(columns={'POS': 'start'}); shade['end'] = shade.start + 100 cand = pd.concat([scores, scores.rank(ascending=False).rename('rank'), rutl.getNut(0, skipHetChroms=True)], axis=1).sort_values('rank') chroms = ['2L', '2R', '3L', '3R'] reload(utl) # reload(pplt);pplt.Genome(sfs.loc[chroms],genes=genes);plt.tight_layout(pad=0.1) df = pd.concat( [utl.scanGenomeSNP(scores.abs(), lambda x: x.mean(), winSize=200, step=100, skipFromFirst=900).rename(200), utl.scanGenomeSNP(scores.abs(), lambda x: x.mean(), winSize=500, step=100, skipFromFirst=750).rename(500), utl.scanGenomeSNP(scores.abs(), lambda x: x.mean(), winSize=1000, step=100, skipFromFirst=500).rename( 1000)], axis=1) df['comb'] = df[200] * df[500] * df[1000] fig = plt.figure(figsize=(7, 4.5), dpi=300); pplt.Manhattan(data=sort(df.rename(columns={'comb': '200*500*1000'})), fig=fig, markerSize=2, ticksize=8, sortedAlready=True); [pplt.setSize(ax, 5) for ax in fig.get_axes()]; plt.gcf().subplots_adjust(bottom=0.15); plt.savefig(utl.paperPath + 'new/{}.pdf'.format('SNPbased')) pplt.Genome(df.comb); plt.tight_layout(pad=0.1) # analyzie() # scanSFS() # outlier() # scanSFSSNPbased() a = df.comb o = localOutliers(a, q=0.9); fig = plt.figure(figsize=(7, 1.5), dpi=300); pplt.Manhattan(data=a, Outliers=pd.DataFrame(o), fig=fig, markerSize=2, ticksize=8, sortedAlready=True); [pplt.setSize(ax, 5) for ax in fig.get_axes()]; plt.gcf().subplots_adjust(bottom=0.15); plt.savefig(utl.paperPath + 'new/{}.pdf'.format('SNPbased.candidates')) Scores = pd.concat([scores.rename('scores').abs(), scores.groupby(level=0).apply( lambda x: pd.Series(range(x.size), index=x.loc[x.name].index)).rename('i')], axis=1) cutoff = FDR(o, Scores); a = pd.concat([df, cutoff[cutoff.sum(1) > 0]], axis=1).dropna(); for fdr in [0.95, 0.99, 0.999]: o = a[a.comb > a[fdr]] fig = plt.figure(figsize=(7, 1.5), dpi=300); pplt.Manhattan(data=df.comb, Outliers=pd.DataFrame(o), fig=fig, markerSize=2, ticksize=8, sortedAlready=True); [pplt.setSize(ax, 5) for ax in fig.get_axes()]; plt.gcf().subplots_adjust(bottom=0.15); plt.savefig(utl.paperPath + 'new/{}.pdf'.format('SNPbased.fdr{}'.format(fdr)))
def Final(): ############ preparing data def saveGOTex(df): name = np.unique(df.index)[0] print '*' * 80, name df = df.sort_values('-log($p$-value)', ascending=False) df['Rank'] = range(1, df.shape[0] + 1); df = df.iloc[:, [6] + range(6)] path = utl.paperPath + '/tables/{}.tex'.format(name); df.to_csv(path.replace('.tex', '.csv').replace('/tables/', '/data/')) utl.DataframetolaTexTable(df.iloc[:, :-1], alignment=['c', 'c', 'p{3in}', 'c', 'c', 'c'], fname=path) goPvalue = lambda x: utl.getPvalFisher(AllGenes=allVariantGenes.values, putativeList=x.values, myList=g.index.values) unpackp = lambda x: [min(6, np.round(x[0], 1)), x[1].loc['Putative', 'myList']] # Score = lambda x,f:f(scores.loc[x.CHROM][(scores.loc[x.CHROM].index>=x.start)&(scores.loc[x.CHROM].index<=x.end)]) sort = lambda df: pd.concat( [df[df.index.get_level_values('CHROM') == ch] for ch in ['X', '2L', '2R', '3L', '3R']]).rename( columns={'H': r'$\mathcal{H}^+$', 'M': 'Num. of Variants'}) Genes = loadGeneData().reset_index().set_index('GO') Genes = Genes.loc[ (Genes['FBgn'].groupby(level=0).apply(lambda x: len(x.unique())) > 2).replace({False: None}).dropna().index] scores = utl.getEuChromatin(rutl.loadScores(skipHetChroms=True)) ann = pd.DataFrame(scores).join(loadANN(), how='inner') allVariantGenes = ann['Gene_ID'].drop_duplicates() # f=lambda x: x[x>=x.quantile(0.9)].mean() # geneScores=ann.reset_index().set_index('Gene_ID')[['CHROM','POS',0]].drop_duplicates().groupby(level=0)[0].apply(f) ############ computing candidate regions scan = utl.scanGenome(scores.abs(), {'H': lambda x: x.abs().mean(), 'M': lambda x: x.size}, winSize=30000) o = utl.localOutliers(scan.H, q=0.99); o = scan.loc[o.index] fig = plt.figure(figsize=(7, 2.5), dpi=300); pplt.Manhattan(data=sort(scan), Outliers=sort(o), fig=fig, markerSize=2, ticksize=8, sortedAlready=True); [pplt.setSize(ax, 6) for ax in fig.get_axes()]; pplt.annotate('(A)', ax=fig.axes[0], fontsize=8) pplt.annotate('(B)', ax=fig.axes[1], fontsize=8) plt.gcf().subplots_adjust(bottom=0.15); pplt.savefig('manhattan', 300) plt.savefig(utl.paperFiguresPath + 'manhattan.pdf') regions = utl.BED.getIntervals(o.H, padding=30000); print regions.shape intervalGenes = utl.BED.intersection(ann, regions).name.drop_duplicates().reset_index().set_index('name'); print intervalGenes.size g = intervalGenes; # intervalGenes # g=g[g>=g.quantile(0.)]; print g.size df = Genes.groupby(level=0).apply(lambda x: pd.DataFrame( [x.name, x.term.iloc[0]] + unpackp(goPvalue(x.FBgn.drop_duplicates())) + [x.ontology.iloc[0], x.FBgn.unique().size] + [ np.intersect1d(x.values, g.index.values)], index=['GO ID', 'GO Term', '-log($p$-value)', 'Hits', 'Ontology', 'Num of Genes', 'Genes']).T) df = df[(df['-log($p$-value)'] >= 3) & (df.Hits >= 3)] df['-log($p$-value)'] = df['-log($p$-value)'].astype(str) df = df.set_index('Ontology') df.groupby(level=0).apply(saveGOTex); print df tempGenes = Genes.reset_index().set_index('FBgn').loc[ np.append(df.set_index('GO ID').loc['GO:0009631'].Genes, df.set_index('GO ID').loc['GO:0009408'].Genes)][ ['term', 'name', 'GO']].reset_index().set_index('GO').loc[['GO:0009631', 'GO:0009408']].drop_duplicates() tempGenes.columns = ['FlyBase ID', 'GO Term', 'Gene Name'] utl.DataframetolaTexTable(tempGenes, fname=utl.paperPath + '/tables/{}.tex'.format('tempGenes'), alignment=['l', 'l', 'l']) regions.to_csv(utl.paperPath + 'data/intervals.csv') snps = utl.BED.intersection(scores.reset_index(), regions, 0); snps['POS'] = snps.start; snps.set_index('POS', append=True, inplace=True) snps = snps['name'].astype(float).reset_index().drop_duplicates().set_index(['CHROM', 'POS']).name def ff(x): y = utl.BED.intersection(scores.reset_index(), x, 0).rename(columns={'start': 'POS'}).set_index('POS', append=True).name.astype( float) y = y[y > 0] y = y[y >= y.quantile(0.9)] print x['len'].iloc[0], y.size return y cands = regions.reset_index().groupby(level=0).apply(ff).reset_index(level=0).name cands.sort_index().reset_index().drop_duplicates().dropna().to_csv(utl.outpath + 'real/gowinda/cands.final.txt', sep='\t', header=None, index=False) scores.sort_index().reset_index().drop_duplicates().dropna().to_csv(utl.outpath + 'real/gowinda/allsnps.txt', sep='\t', header=None, index=False) name = 'cands.final.out.tsv' gowinda = pd.read_csv('/home/arya/out/real/gowinda/{}'.format(name), sep='\t', header=None)[[0, 4, 5, 6, 7, 8, 9]] gowinda.columns = ['GO ID', '-log($p$-value)', 'Hits', 'Num of Genes', 'Total Genes', 'GO Term', 'Genes'] gowinda = gowinda[gowinda.Hits >= 3] gowinda['-log($p$-value)'] = -gowinda['-log($p$-value)'].apply(np.log10).round(1) gowinda.to_csv(utl.paperPath + 'data/gowinda.all.tsv', sep='\t') bp = gowinda.set_index('GO ID').loc[ Genes[Genes.ontology == 'biological_process'].index.unique().rename('GO ID')].dropna() bp.to_csv(utl.paperPath + 'data/gowinda.bp.tsv', sep='\t') utl.DataframetolaTexTable(bp.reset_index()[['GO ID', 'GO Term', '-log($p$-value)']], alignment=['c', 'p{4in}', 'c'], fname=utl.paperPath + 'tables/gowinda.tex') map(len, (Genes.index.unique(), bp.index.unique(), df.loc['biological_process']['GO ID'].unique())), len( np.intersect1d(bp.index.unique(), df['GO ID'].unique())) pval = utl.getPvalFisher(Genes[Genes.ontology == 'biological_process'].index.unique(), bp.index.unique(), df.loc['biological_process']['GO ID'].unique()) print pval stats = pd.Series(None, name='Value') stats['Num. of Vatiants'] = scores.size stats['Num. of Candidate Intervals'] = regions.shape[0] stats['Total Num. of Genes'] = loadGeneCoordinates().shape[0] stats['Num. of Variant Genes'] = ann['Gene_ID'].unique().shape[0] stats['Num. of Genes within Candidate Intervals'] = intervalGenes.shape[0] stats['Total Num. of GO'] = len(loadGeneData().index.unique()) stats['Num. of GO with 3 or More Genes'] = len(Genes.index.unique()) stats['Num. of Candidate Variants for Gowinda'] = cands.size stats = stats.apply(lambda x: '{:,.0f}'.format(x)) stats.index.name = 'Statistic' print stats utl.DataframetolaTexTable(stats.reset_index(), fname=utl.paperPath + 'tables/stats.tex', alignment=['l', 'r'])