def test_observed_agreement(self): anno1 = np.array([0, 0, 1, 1, MV, 3]) anno2 = np.array([0, MV, 1, 1, MV, 2]) nvalid = np.sum(is_valid(anno1) & is_valid(anno2)) expected = np.array([1., 2., 0., 0.]) / nvalid freqs = pmh.observed_agreement_frequency(anno1, anno2, 4) np.testing.assert_array_equal(freqs, expected)
def cohens_kappa(annotations1, annotations2, nclasses=None): """Compute Cohen's kappa for two annotators. Assumes that the annotators draw annotations at random with different but constant frequencies. See also :func:`~pyanno.measures.helpers.pairwise_matrix`. **References:** * Cohen, Jacob (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37--46. * `Wikipedia entry <http://en.wikipedia.org/wiki/Cohen%27s_kappa>`_ Arguments --------- annotations1 : ndarray, shape = (n_items, ) Array of annotations for a single annotator. Missing values should be indicated by :attr:`pyanno.util.MISSING_VALUE` annotations2 : ndarray, shape = (n_items, ) Array of annotations for a single annotator. Missing values should be indicated by :attr:`pyanno.util.MISSING_VALUE` nclasses : int Number of annotation classes. If None, `nclasses` is inferred from the values in the annotations Returns ------- stat : float The value of the statistics """ if all_invalid(annotations1, annotations2): logger.debug('No valid annotations') return np.nan if nclasses is None: nclasses = compute_nclasses(annotations1, annotations2) chance_agreement = chance_agreement_different_frequency(annotations1, annotations2, nclasses) observed_agreement = observed_agreement_frequency(annotations1, annotations2, nclasses) return chance_adjusted_agreement(observed_agreement.sum(), chance_agreement.sum())
def scotts_pi(annotations1, annotations2, nclasses=None): """Return Scott's pi statistic for two annotators. Assumes that the annotators draw random annotations with the same frequency as the combined observed annotations. See also :func:`~pyanno.measures.helpers.pairwise_matrix`. **References:** * Scott, W. (1955). "Reliability of content analysis: The case of nominal scale coding." Public Opinion Quarterly, 19(3), 321-325. * `Wikipedia entry <http://en.wikipedia.org/wiki/Scott%27s_Pi>`_ Arguments --------- annotations1 : ndarray, shape = (n_items, ) Array of annotations for a single annotator. Missing values should be indicated by :attr:`pyanno.util.MISSING_VALUE` annotations2 : ndarray, shape = (n_items, ) Array of annotations for a single annotator. Missing values should be indicated by :attr:`pyanno.util.MISSING_VALUE` nclasses : int Number of annotation classes. If None, `nclasses` is inferred from the values in the annotations Returns ------- stat : float The value of the statistics """ if all_invalid(annotations1, annotations2): logger.debug('No valid annotations') return np.nan if nclasses is None: nclasses = compute_nclasses(annotations1, annotations2) chance_agreement = chance_agreement_same_frequency(annotations1, annotations2, nclasses) observed_agreement = observed_agreement_frequency(annotations1, annotations2, nclasses) return chance_adjusted_agreement(observed_agreement.sum(), chance_agreement.sum())
def cohens_kappa(annotations1, annotations2, nclasses=None): """Compute Cohen's kappa for two annotators. Assumes that the annotators draw annotations at random with different but constant frequencies. See also :func:`~pyanno.measures.helpers.pairwise_matrix`. **References:** * Cohen, Jacob (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37--46. * `Wikipedia entry <http://en.wikipedia.org/wiki/Cohen%27s_kappa>`_ Arguments --------- annotations1 : ndarray, shape = (n_items, ) Array of annotations for a single annotator. Missing values should be indicated by :attr:`pyanno.util.MISSING_VALUE` annotations2 : ndarray, shape = (n_items, ) Array of annotations for a single annotator. Missing values should be indicated by :attr:`pyanno.util.MISSING_VALUE` nclasses : int Number of annotation classes. If None, `nclasses` is inferred from the values in the annotations Returns ------- stat : float The value of the statistics """ if all_invalid(annotations1, annotations2): logger.debug("No valid annotations") return np.nan if nclasses is None: nclasses = compute_nclasses(annotations1, annotations2) chance_agreement = chance_agreement_different_frequency(annotations1, annotations2, nclasses) observed_agreement = observed_agreement_frequency(annotations1, annotations2, nclasses) return chance_adjusted_agreement(observed_agreement.sum(), chance_agreement.sum())
def scotts_pi(annotations1, annotations2, nclasses=None): """Return Scott's pi statistic for two annotators. Assumes that the annotators draw random annotations with the same frequency as the combined observed annotations. See also :func:`~pyanno.measures.helpers.pairwise_matrix`. **References:** * Scott, W. (1955). "Reliability of content analysis: The case of nominal scale coding." Public Opinion Quarterly, 19(3), 321-325. * `Wikipedia entry <http://en.wikipedia.org/wiki/Scott%27s_Pi>`_ Arguments --------- annotations1 : ndarray, shape = (n_items, ) Array of annotations for a single annotator. Missing values should be indicated by :attr:`pyanno.util.MISSING_VALUE` annotations2 : ndarray, shape = (n_items, ) Array of annotations for a single annotator. Missing values should be indicated by :attr:`pyanno.util.MISSING_VALUE` nclasses : int Number of annotation classes. If None, `nclasses` is inferred from the values in the annotations Returns ------- stat : float The value of the statistics """ if all_invalid(annotations1, annotations2): logger.debug("No valid annotations") return np.nan if nclasses is None: nclasses = compute_nclasses(annotations1, annotations2) chance_agreement = chance_agreement_same_frequency(annotations1, annotations2, nclasses) observed_agreement = observed_agreement_frequency(annotations1, annotations2, nclasses) return chance_adjusted_agreement(observed_agreement.sum(), chance_agreement.sum())