예제 #1
0
class MyPLS():
    def __init__(self,
                 n_components=2,
                 scale=True,
                 max_iter=500,
                 tol=1e-06,
                 copy=True):
        self.pls = PLSRegression(n_components, scale, max_iter, tol, copy)

    def fit(self, X, Y):
        self.pls.fit(X, Y)
        return self.pls

    def predict(self, X, copy=True):
        return self.pls.predict(X, copy).flatten()

    def score(self, X, Y, sample_weight=None):
        return self.pls.score(X, Y, sample_weight)

    def get_params(self, deep=True):
        return self.pls.get_params(deep)

    def set_params(self, **parameters):
        self.pls.set_params(**parameters)
        return self

    @property
    def intercept_(self):
        return 0

    @property
    def coeff_(self):
        return self.pls.coef_
예제 #2
0
파일: plsr_main.py 프로젝트: Ayagoz/connec
def PLSReg_loop(X, y, params, number_rnd):

    row = 0
    results = pd.DataFrame(columns=[
        'n_components', 'max_iter', 'random_state', 'r2_test', 'r2_train'
    ])

    n_components = params['n_components']
    max_iter = params['max_iter']
    random_states = np.random.randint(0, 10000, number_rnd)

    x_load = []
    y_load = []

    for n in n_components:
        for m in max_iter:
            x_loc = []
            y_loc = []
            for r in random_states:
                print(
                    'PARAMS n_components: {}, max_iter: {}, random_state: {}'.
                    format(n, m, r))
                plsr = PLSRegression()
                plsr.set_params(**{'n_components': n, 'max_iter': m})
                X_train, X_test, y_train, y_test = train_test_split(
                    X, y, test_size=0.2, random_state=r)
                #plsr.fit(X_train, y_train)

                #x_loc += [plsr.x_loadings_]
                #y_loc += [plsr.y_loadings_]

                r2_test = 0.  #plsr.score(X_test, y_test)
                r2_train = 0.  #plsr.score(X_train, y_train)

                results.loc[row] = [n, m, r, r2_test, r2_train]
                row += 1

            x_load += [np.array(x_loc)]
            y_load += [np.array(y_loc)]

    x_load = np.array(x_load)
    y_load = np.array(y_load)

    results.to_csv(params['name'] + '_results')

    with open(params['name'] + '_x_load', 'wb') as f:
        pickle.dump(x_load, f)

    with open(params['name'] + '_y_load', 'wb') as f:
        pickle.dump(y_load, f)
예제 #3
0
        l_p_t.append(vec_p)
        l_c_t.append(vec_c)
    j += 1

sorted_p = np.asarray(l_p)
sorted_c = np.asarray(l_c)  #Convert the input to an array

plc = PLSCanonical()
plc.fit_transform(sorted_c, sorted_p)
sorted_c, sorted_p = plc.transform(sorted_c, sorted_p)

sorted_c_test = np.asarray(l_c_t)
sorted_p_test = np.asarray(l_p_t)
sorted_c_test, sorted_p_test = plc.transform(sorted_c_test, sorted_p_test)

plr = PLSRegression()
plr.fit(sorted_c, sorted_p)
params = plr.get_params()
plr.set_params(**params)
y_score = plr.predict(sorted_c_test)
sim_count = 0

print("Test Similarity: ")
for i in range(len(y_score)):
    result_sim = 1 - spatial.distance.cosine(y_score[i], sorted_p_test[i])
    if result_sim >= 0.85:
        sim_count += 1
    print("Data " + str(i + 1) + " : " + str(result_sim))
accuracy = float(sim_count) / float(len(y_score))
print("Accuracy: " + str(accuracy))
예제 #4
0
            y_n.append(temp3)

npx = np.asarray(x, dtype=np.float64)
npy = np.asarray(y, dtype=np.float64)

npxn = np.asarray(x_n, dtype=np.float64)
npyn = np.asarray(y_n, dtype=np.float64)
cca = PLSCanonical(n_components=2)
cca.fit_transform(npx, npy)
npx, npy = cca.transform(npx, npy)
npxn, npyn = cca.transform(npxn, npyn)

pls.fit(npx, npy)
params = pls.get_params(deep=True)
print(params)
pls.set_params(**params)

y_score = pls.predict(npxn)

sim_count = 0
tol = 0.1

for index in range(len(y_score)):
    sub_result = np.subtract(y_score, npyn)
    result = 1 - spatial.distance.cosine(y_score[index], npyn[index])
    print("similarity of test example " + str(index) + " = " + str(result))
    if (1 - math.fabs(result)) <= tol:
        sim_count += 1

print "Count of correct prediction = ", sim_count
acc = float(sim_count) / float(len(y_score))