def load_h5(file_name="pyfeat_aus_to_landmarks.h5"): """Load the h5 PLS model for plotting. Args: file_name (str, optional): Specify model to load.. Defaults to 'blue.h5'. Returns: model: PLS model """ try: hf = h5py.File(os.path.join(get_resource_path(), file_name), "r") d1 = hf.get("coef") d2 = hf.get("x_mean") d3 = hf.get("y_mean") d4 = hf.get("x_std") model = PLSRegression(len(d1)) model.coef_ = np.array(d1) if int(__version__.split(".")[1]) < 24: model.x_mean_ = np.array(d2) model.y_mean_ = np.array(d3) model.x_std_ = np.array(d4) else: model._x_mean = np.array(d2) model._y_mean = np.array(d3) model._x_std = np.array(d4) hf.close() except Exception as e: print("Unable to load data ", file_name, ":", e) return model
def _load_model(cls, fh): params = _parse_literal(fh) coef_shape = _parse_literal(fh) pls = PLSRegression().set_params(**params) pls.x_mean_ = np.fromstring(fh.read(coef_shape[0] * 8)) pls.y_mean_ = np.fromstring(fh.read(coef_shape[1] * 8)) pls.x_std_ = np.ones(coef_shape[0]) pls.y_std_ = np.ones(coef_shape[1]) n = coef_shape[0] * coef_shape[1] * 8 pls.coef_ = np.fromstring(fh.read(n)).reshape(coef_shape) return pls
def load_h5(file_name='blue.h5'): """Load the h5 PLS model for plotting. Args: file_name (str, optional): Specify model to load.. Defaults to 'blue.h5'. Returns: model: PLS model """ try: hf = h5py.File(os.path.join(get_resource_path(), file_name), 'r') d1 = hf.get('coef') d2 = hf.get('x_mean') d3 = hf.get('y_mean') d4 = hf.get('x_std') model = PLSRegression(len(d1)) model.coef_ = np.array(d1) model.x_mean_ = np.array(d2) model.y_mean_ = np.array(d3) model.x_std_ = np.array(d4) hf.close() except Exception as e: print('Unable to load data ', file_name, ':', e) return model