예제 #1
0
    def calculate_phase_angle(self, t_struct):
        """
        Calculates the phase angle of the planet, in degrees.
        """
        # For the moon, we will approximate phase angle by calculating the
        # elongation of the moon relative to the sun. This is accurate to within
        # about 1%.
        if self.id == planet_enum.MOON:
            moon_ra_dec = self.calculate_lunar_geocentric_location(t_struct)
            moon = gc_get_instance(moon_ra_dec.ra, moon_ra_dec.dec)

            sun_coords = hc_get_instance(
                t_struct=t_struct,
                planet=Planet(
                    planet_enum.SUN, res[planet_enum.SUN][0], res[planet_enum.SUN][1], res[planet_enum.SUN][2]
                ),
            )
            sun_ra_dec = calculate_ra_dec_dist(sun_coords)
            sun = gc_get_instance(sun_ra_dec.ra, sun_ra_dec.dec)

            return 180.0 - Geometry.radians_to_degrees(math.acos(sun.x * moon.x + sun.y * moon.y + sun.z * moon.z))

        # First, determine position in the solar system.
        planet_coords = hc_get_instance(planet=self, t_struct=t_struct)

        # Second, determine position relative to Earth
        earth_coords = hc_get_instance(
            t_struct=t_struct,
            planet=Planet(planet_enum.SUN, res[planet_enum.SUN][0], res[planet_enum.SUN][1], res[planet_enum.SUN][2]),
        )
        earth_distance = planet_coords.distance_from(earth_coords)

        # Finally, calculate the phase of the body.
        phase = Geometry.radians_to_degrees(
            math.acos(
                (
                    earth_distance * earth_distance
                    + planet_coords.radius * planet_coords.radius
                    - earth_coords.radius * earth_coords.radius
                )
                / (2.0 * earth_distance * planet_coords.radius)
            )
        )

        return phase
예제 #2
0
    def calculate_lunar_geocentric_location(self, t_struct):
        """
        Calculate the geocentric right ascension and declination of the moon using
        an approximation as described on page D22 of the 2008 Astronomical Almanac
        All of the variables in this method use the same names as those described
        in the text: lambda = Ecliptic longitude (degrees) beta = Ecliptic latitude
        (degrees) pi = horizontal parallax (degrees) r = distance (Earth radii)
        
        NOTE: The text does not give a specific time period where the approximation
        is valid, but it should be valid through at least 2009.
        """
        # First, calculate the number of Julian centuries from J2000.0.
        t = (calculate_julian_day(t_struct) - 2451545.0) / 36525.0

        # Second, calculate the approximate geocentric orbital elements.
        lambda_val = (
            218.32
            + 481267.881 * t
            + 6.29 * math.sin(Geometry.degrees_to_radians(135.0 + 477198.87 * t))
            - 1.27 * math.sin(Geometry.degrees_to_radians(259.3 - 413335.36 * t))
            + 0.66 * math.sin(Geometry.degrees_to_radians(235.7 + 890534.22 * t))
            + 0.21 * math.sin(Geometry.degrees_to_radians(269.9 + 954397.74 * t))
            - 0.19 * math.sin(Geometry.degrees_to_radians(357.5 + 35999.05 * t))
            - 0.11 * math.sin(Geometry.degrees_to_radians(186.5 + 966404.03 * t))
        )
        beta = (
            5.13 * math.sin(Geometry.degrees_to_radians(93.3 + 483202.02 * t))
            + 0.28 * math.sin(Geometry.degrees_to_radians(228.2 + 960400.89 * t))
            - 0.28 * math.sin(Geometry.degrees_to_radians(318.3 + 6003.15 * t))
            - 0.17 * math.sin(Geometry.degrees_to_radians(217.6 - 407332.21 * t))
        )

        # Third, convert to RA and Dec.
        l = math.cos(Geometry.degrees_to_radians(beta)) * math.cos(Geometry.degrees_to_radians(lambda_val))
        m = 0.9175 * math.cos(Geometry.degrees_to_radians(beta)) * math.sin(
            Geometry.degrees_to_radians(lambda_val)
        ) - 0.3978 * math.sin(Geometry.degrees_to_radians(beta))
        n = 0.3978 * math.cos(Geometry.degrees_to_radians(beta)) * math.sin(
            Geometry.degrees_to_radians(lambda_val)
        ) + 0.9175 * math.sin(Geometry.degrees_to_radians(beta))
        ra = Geometry.radians_to_degrees(Geometry.mod_2_pi(math.atan2(m, l)))
        dec = Geometry.radians_to_degrees(math.asin(n))

        return RaDec(ra, dec)
예제 #3
0
    def get_magnitude(self, t_struct):
        """
        Calculates the planet's magnitude for the given date.
        """
        if self.id == planet_enum.SUN:
            return -27.0
        if self.id == planet_enum.MOON:
            return -10.0

        # First, determine position in the solar system.
        planet_coords = hc_get_instance(planet=self, t_struct=t_struct)

        # Second, determine position relative to Earth
        earth_coords = hc_get_instance(
            t_struct=t_struct,
            planet=Planet(planet_enum.SUN, res[planet_enum.SUN][0], res[planet_enum.SUN][1], res[planet_enum.SUN][2]),
        )
        earth_distance = planet_coords.distance_from(earth_coords)

        # Third, calculate the phase of the body.
        phase = Geometry.radians_to_degrees(
            math.acos(
                (
                    earth_distance * earth_distance
                    + planet_coords.radius * planet_coords.radius
                    - earth_coords.radius * earth_coords.radius
                )
                / (2.0 * earth_distance * planet_coords.radius)
            )
        )
        p = phase / 100.0  # Normalized phase angle

        # Finally, calculate the magnitude of the body.
        mag = -100.0  # Apparent visual magnitude

        if self.id == planet_enum.MERCURY:
            mag = -0.42 + (3.80 - (2.73 - 2.00 * p) * p) * p
        elif self.id == planet_enum.VENUS:
            mag = -4.40 + (0.09 + (2.39 - 0.65 * p) * p) * p
        elif self.id == planet_enum.MARS:
            mag = -1.52 + 1.6 * p
        elif self.id == planet_enum.JUPITER:
            mag = -9.40 + 0.5 * p
        elif self.id == planet_enum.SATURN:
            mag = -8.75
        elif self.id == planet_enum.URANUS:
            mag = -7.19
        elif self.id == planet_enum.NEPTUNE:
            mag = -6.87
        elif self.id == planet_enum.PLUTO:
            mag = -1.0
        else:
            mag = 100
        return mag + 5.0 * math.log10(planet_coords.radius * earth_distance)
예제 #4
0
 def calculate_phase_angle(self, t_struct):
     '''
     Calculates the phase angle of the planet, in degrees.
     '''
     # For the moon, we will approximate phase angle by calculating the
     # elongation of the moon relative to the sun. This is accurate to within
     # about 1%.
     if self.id == planet_enum.MOON:
         moon_ra_dec = self.calculate_lunar_geocentric_location(t_struct)
         moon = gc_get_instance(moon_ra_dec.ra, moon_ra_dec.dec)
         
         sun_coords = hc_get_instance(t_struct=t_struct,
                                      planet=Planet(planet_enum.SUN, 
                                                    res[planet_enum.SUN][0], 
                                                    res[planet_enum.SUN][1], 
                                                    res[planet_enum.SUN][2]))
         sun_ra_dec = calculate_ra_dec_dist(sun_coords)
         sun = gc_get_instance(sun_ra_dec.ra, sun_ra_dec.dec)
         
         return 180.0 - \
             Geometry.radians_to_degrees(math.acos(sun.x * moon.x + sun.y * moon.y + sun.z * moon.z))
             
     # First, determine position in the solar system.
     planet_coords = hc_get_instance(planet=self, t_struct=t_struct)
     
     # Second, determine position relative to Earth
     earth_coords = hc_get_instance(t_struct=t_struct, 
                                    planet=Planet(planet_enum.SUN, 
                                                  res[planet_enum.SUN][0], 
                                                  res[planet_enum.SUN][1], 
                                                  res[planet_enum.SUN][2]))
     earth_distance = planet_coords.distance_from(earth_coords)
     
     # Finally, calculate the phase of the body.
     phase = Geometry.radians_to_degrees(\
             math.acos((earth_distance * earth_distance + \
                        planet_coords.radius * planet_coords.radius - \
                        earth_coords.radius * earth_coords.radius) / \
                        (2.0 * earth_distance * planet_coords.radius)))
                       
     return phase
예제 #5
0
 def calculate_lunar_geocentric_location(self, t_struct):
     '''
     Calculate the geocentric right ascension and declination of the moon using
     an approximation as described on page D22 of the 2008 Astronomical Almanac
     All of the variables in this method use the same names as those described
     in the text: lambda = Ecliptic longitude (degrees) beta = Ecliptic latitude
     (degrees) pi = horizontal parallax (degrees) r = distance (Earth radii)
     
     NOTE: The text does not give a specific time period where the approximation
     is valid, but it should be valid through at least 2009.
     '''
     # First, calculate the number of Julian centuries from J2000.0.
     t = ((calculate_julian_day(t_struct) - 2451545.0) / 36525.0)
     
     # Second, calculate the approximate geocentric orbital elements.
     lambda_val = 218.32 + 481267.881 * t + 6.29 \
         * math.sin(Geometry.degrees_to_radians(135.0 + 477198.87 * t)) - 1.27 \
         * math.sin(Geometry.degrees_to_radians(259.3 - 413335.36 * t)) + 0.66 \
         * math.sin(Geometry.degrees_to_radians(235.7 + 890534.22 * t)) + 0.21 \
         * math.sin(Geometry.degrees_to_radians(269.9 + 954397.74 * t)) - 0.19 \
         * math.sin(Geometry.degrees_to_radians(357.5 + 35999.05 * t)) - 0.11 \
         * math.sin(Geometry.degrees_to_radians(186.5 + 966404.03 * t))
     beta = 5.13 \
         * math.sin(Geometry.degrees_to_radians(93.3 + 483202.02 * t)) + 0.28 \
         * math.sin(Geometry.degrees_to_radians(228.2 + 960400.89 * t)) - 0.28 \
         * math.sin(Geometry.degrees_to_radians(318.3 + 6003.15 * t)) - 0.17 \
         * math.sin(Geometry.degrees_to_radians(217.6 - 407332.21 * t))
         
     # Third, convert to RA and Dec.
     l = math.cos(Geometry.degrees_to_radians(beta)) \
         * math.cos(Geometry.degrees_to_radians(lambda_val))
     m = 0.9175 * math.cos(Geometry.degrees_to_radians(beta)) \
         * math.sin(Geometry.degrees_to_radians(lambda_val)) - 0.3978 \
         * math.sin(Geometry.degrees_to_radians(beta))
     n = 0.3978 * math.cos(Geometry.degrees_to_radians(beta)) \
         * math.sin(Geometry.degrees_to_radians(lambda_val)) + 0.9175 \
         * math.sin(Geometry.degrees_to_radians(beta))
     ra = Geometry.radians_to_degrees(Geometry.mod_2_pi(math.atan2(m, l)))
     dec = Geometry.radians_to_degrees(math.asin(n))
     
     return RaDec(ra, dec)
예제 #6
0
 def get_magnitude(self, t_struct):
     '''
     Calculates the planet's magnitude for the given date.
     '''
     if self.id == planet_enum.SUN:
         return -27.0
     if self.id == planet_enum.MOON:
         return -10.0
     
     # First, determine position in the solar system.
     planet_coords = hc_get_instance(planet=self, t_struct=t_struct)
     
     # Second, determine position relative to Earth
     earth_coords = hc_get_instance(t_struct=t_struct,
                                    planet=Planet(planet_enum.SUN, 
                                                  res[planet_enum.SUN][0], 
                                                  res[planet_enum.SUN][1], 
                                                  res[planet_enum.SUN][2]))
     earth_distance = planet_coords.distance_from(earth_coords)
     
     # Third, calculate the phase of the body.
     phase = Geometry.radians_to_degrees(\
                 math.acos((earth_distance * earth_distance + \
                 planet_coords.radius * planet_coords.radius - \
                 earth_coords.radius * earth_coords.radius) / \
                 (2.0 * earth_distance * planet_coords.radius)))
     p = phase/100.0     # Normalized phase angle
     
     # Finally, calculate the magnitude of the body.
     mag = -100.0      # Apparent visual magnitude
     
     if self.id == planet_enum.MERCURY:
         mag = -0.42 + (3.80 - (2.73 - 2.00 * p) * p) * p
     elif self.id == planet_enum.VENUS:
         mag = -4.40 + (0.09 + (2.39 - 0.65 * p) * p) * p
     elif self.id == planet_enum.MARS:
         mag = -1.52 + 1.6 * p
     elif self.id == planet_enum.JUPITER:
         mag = -9.40 + 0.5 * p
     elif self.id == planet_enum.SATURN:
         mag = -8.75
     elif self.id == planet_enum.URANUS:
         mag = -7.19
     elif self.id == planet_enum.NEPTUNE:
         mag = -6.87
     elif self.id == planet_enum.PLUTO:
         mag = -1.0
     else:
         mag = 100
     return (mag + 5.0 * math.log10(planet_coords.radius * earth_distance))
예제 #7
0
 def calculate_hour_angle(self, altitude, latitude, declination):
     '''
     Calculates the hour angle of a given declination for the given location.
     This is a helper application for the rise and set calculations. Its
     probably not worth using as a general purpose method.
     All values are in degrees.
     
     This method calculates the hour angle from the meridian using the
     following equation from the Astronomical Almanac (p487):
     cos ha = (sin alt - sin lat * sin dec) / (cos lat * cos dec)
     '''
     alt_rads = Geometry.degrees_to_radians(altitude)
     lat_rads = Geometry.degrees_to_radians(latitude)
     dec_rads = Geometry.degrees_to_radians(declination)
     cos_ha = (math.sin(alt_rads) - math.sin(lat_rads) * math.sin(dec_rads)) / \
         (math.cos(lat_rads) * math.cos(dec_rads))
 
     return Geometry.radians_to_degrees(math.acos(cos_ha))
예제 #8
0
    def calculate_hour_angle(self, altitude, latitude, declination):
        """
        Calculates the hour angle of a given declination for the given location.
        This is a helper application for the rise and set calculations. Its
        probably not worth using as a general purpose method.
        All values are in degrees.
        
        This method calculates the hour angle from the meridian using the
        following equation from the Astronomical Almanac (p487):
        cos ha = (sin alt - sin lat * sin dec) / (cos lat * cos dec)
        """
        alt_rads = Geometry.degrees_to_radians(altitude)
        lat_rads = Geometry.degrees_to_radians(latitude)
        dec_rads = Geometry.degrees_to_radians(declination)
        cos_ha = (math.sin(alt_rads) - math.sin(lat_rads) * math.sin(dec_rads)) / (
            math.cos(lat_rads) * math.cos(dec_rads)
        )

        return Geometry.radians_to_degrees(math.acos(cos_ha))