예제 #1
0
def average_relevance_position(labels, predictions, weights=None, name=None):
  """Computes average relevance position (ARP).

  This can also be named as average_relevance_rank, but this can be confusing
  with mean_reciprocal_rank in acronyms. This name is more distinguishing and
  has been used historically for binary relevance as average_click_position.

  Args:
    labels: A `Tensor` of the same shape as `predictions`.
    predictions: A `Tensor` with shape [batch_size, list_size]. Each value is
      the ranking score of the corresponding example.
    weights: A `Tensor` of the same shape of predictions or [batch_size, 1]. The
      former case is per-example and the latter case is per-list.
    name: A string used as the name for this metric.

  Returns:
    A metric for the weighted average relevance position.
  """
  metric = metrics_impl.ARPMetric(name)
  with tf.compat.v1.name_scope(metric.name, 'average_relevance_position',
                               (labels, predictions, weights)):
    # TODO: Add mask argument for metric.compute() call
    per_list_arp, per_list_weights = metric.compute(labels, predictions,
                                                    weights)
  return tf.compat.v1.metrics.mean(per_list_arp, per_list_weights)
예제 #2
0
def compute_mean(metric_key,
                 labels,
                 predictions,
                 weights=None,
                 topn=None,
                 name=None):
    """Returns the mean of the specified metric given the inputs.

  Args:
    metric_key: A key in `RankingMetricKey`.
    labels: A `Tensor` of the same shape as `predictions` representing
      relevance.
    predictions: A `Tensor` with shape [batch_size, list_size]. Each value is
      the ranking score of the corresponding example.
    weights: A `Tensor` of the same shape of predictions or [batch_size, 1]. The
      former case is per-example and the latter case is per-list.
    topn: An `integer` specifying the cutoff of how many items are considered in
      the metric.
    name: A `string` used as the name for this metric.

  Returns:
    A scalar as the computed metric.
  """
    metric_dict = {
        RankingMetricKey.ARP: metrics_impl.ARPMetric(metric_key),
        RankingMetricKey.MRR: metrics_impl.MRRMetric(metric_key, topn),
        RankingMetricKey.NDCG: metrics_impl.NDCGMetric(name, topn),
        RankingMetricKey.DCG: metrics_impl.DCGMetric(name, topn),
        RankingMetricKey.PRECISION: metrics_impl.PrecisionMetric(name, topn),
        RankingMetricKey.RECALL: metrics_impl.RecallMetric(name, topn),
        RankingMetricKey.MAP:
        metrics_impl.MeanAveragePrecisionMetric(name, topn),
        RankingMetricKey.ORDERED_PAIR_ACCURACY: metrics_impl.OPAMetric(name),
        RankingMetricKey.BPREF: metrics_impl.BPrefMetric(name, topn),
        RankingMetricKey.HITS: metrics_impl.HitsMetric(metric_key, topn),
    }
    assert metric_key in metric_dict, ('metric_key %s not supported.' %
                                       metric_key)
    # TODO: Add mask argument for metric.compute() call
    metric, weight = metric_dict[metric_key].compute(labels, predictions,
                                                     weights)
    return tf.compat.v1.div_no_nan(tf.reduce_sum(input_tensor=metric * weight),
                                   tf.reduce_sum(input_tensor=weight))
예제 #3
0
파일: metrics.py 프로젝트: zanwenok/ranking
 def __init__(self, name=None, dtype=None, **kwargs):
   super(ARPMetric, self).__init__(name=name, dtype=dtype, **kwargs)
   self._metric = metrics_impl.ARPMetric(name=name)