예제 #1
0
def data_creator(config):
    # torch.manual_seed(args.seed + torch.distributed.get_rank())

    args = config["args"]

    train_dir = join(args.data, "train")
    val_dir = join(args.data, "val")

    if args.mock_data:
        util.mock_data(train_dir, val_dir)

    # todo: verbose should depend on rank
    data_config = resolve_data_config(vars(args), verbose=True)

    dataset_train = Dataset(join(args.data, "train"))
    dataset_eval = Dataset(join(args.data, "val"))

    collate_fn = None
    if args.prefetcher and args.mixup > 0:
        # collate conflict (need to support deinterleaving in collate mixup)
        assert args.num_aug_splits == 0
        collate_fn = FastCollateMixup(args.mixup, args.smoothing,
                                      args.num_classes)

    common_params = dict(
        input_size=data_config["input_size"],
        use_prefetcher=args.prefetcher,
        mean=data_config["mean"],
        std=data_config["std"],
        num_workers=1,
        distributed=args.distributed,
        pin_memory=args.pin_mem)

    train_loader = create_loader(
        dataset_train,
        is_training=True,
        batch_size=config[BATCH_SIZE],
        re_prob=args.reprob,
        re_mode=args.remode,
        re_count=args.recount,
        re_split=args.resplit,
        collate_fn=collate_fn,
        color_jitter=args.color_jitter,
        auto_augment=args.aa,
        interpolation=args.train_interpolation,
        num_aug_splits=args.num_aug_splits,  # always 0 right now
        **common_params)
    eval_loader = create_loader(
        dataset_eval,
        is_training=False,
        batch_size=args.validation_batch_size_multiplier * config[BATCH_SIZE],
        interpolation=data_config["interpolation"],
        crop_pct=data_config["crop_pct"],
        **common_params)

    return train_loader, eval_loader
예제 #2
0
def main():
    setup_default_logging()
    args, args_text = _parse_args()

    if args.log_wandb:
        if has_wandb:
            wandb.init(project=args.experiment, config=args)
        else:
            _logger.warning(
                "You've requested to log metrics to wandb but package not found. "
                "Metrics not being logged to wandb, try `pip install wandb`")

    args.prefetcher = not args.no_prefetcher
    args.distributed = False
    if 'WORLD_SIZE' in os.environ:
        args.distributed = int(os.environ['WORLD_SIZE']) > 1
    args.device = 'cuda:0'
    args.world_size = 1
    args.rank = 0  # global rank
    if args.distributed:
        args.device = 'cuda:%d' % args.local_rank
        torch.cuda.set_device(args.local_rank)
        torch.distributed.init_process_group(backend='nccl',
                                             init_method='env://')
        args.world_size = torch.distributed.get_world_size()
        args.rank = torch.distributed.get_rank()
        _logger.info(
            'Training in distributed mode with multiple processes, 1 GPU per process. Process %d, total %d.'
            % (args.rank, args.world_size))
    else:
        _logger.info('Training with a single process on 1 GPUs.')
    assert args.rank >= 0

    # resolve AMP arguments based on PyTorch / Apex availability
    use_amp = None
    if args.amp:
        # `--amp` chooses native amp before apex (APEX ver not actively maintained)
        if has_native_amp:
            args.native_amp = True
        elif has_apex:
            args.apex_amp = True
    if args.apex_amp and has_apex:
        use_amp = 'apex'
    elif args.native_amp and has_native_amp:
        use_amp = 'native'
    elif args.apex_amp or args.native_amp:
        _logger.warning(
            "Neither APEX or native Torch AMP is available, using float32. "
            "Install NVIDA apex or upgrade to PyTorch 1.6")

    random_seed(args.seed, args.rank)

    model_KD = None
    if args.kd_model_path is not None:
        model_KD = build_kd_model(args)

    model = create_model(
        args.model,
        pretrained=args.pretrained,
        num_classes=args.num_classes,
        drop_rate=args.drop,
        drop_connect_rate=args.drop_connect,  # DEPRECATED, use drop_path
        drop_path_rate=args.drop_path,
        drop_block_rate=args.drop_block,
        global_pool=args.gp,
        bn_momentum=args.bn_momentum,
        bn_eps=args.bn_eps,
        scriptable=args.torchscript,
        checkpoint_path=args.initial_checkpoint)
    if args.num_classes is None:
        assert hasattr(
            model, 'num_classes'
        ), 'Model must have `num_classes` attr if not set on cmd line/config.'
        args.num_classes = model.num_classes  # FIXME handle model default vs config num_classes more elegantly

    if args.local_rank == 0:
        _logger.info(
            f'Model {safe_model_name(args.model)} created, param count:{sum([m.numel() for m in model.parameters()])}'
        )

    data_config = resolve_data_config(vars(args),
                                      model=model,
                                      verbose=args.local_rank == 0)

    # setup augmentation batch splits for contrastive loss or split bn
    num_aug_splits = 0
    if args.aug_splits > 0:
        assert args.aug_splits > 1, 'A split of 1 makes no sense'
        num_aug_splits = args.aug_splits

    # enable split bn (separate bn stats per batch-portion)
    if args.split_bn:
        assert num_aug_splits > 1 or args.resplit
        model = convert_splitbn_model(model, max(num_aug_splits, 2))

    # move model to GPU, enable channels last layout if set
    model.cuda()
    if args.channels_last:
        model = model.to(memory_format=torch.channels_last)

    # setup synchronized BatchNorm for distributed training
    if args.distributed and args.sync_bn:
        assert not args.split_bn
        if has_apex and use_amp == 'apex':
            # Apex SyncBN preferred unless native amp is activated
            model = convert_syncbn_model(model)
        else:
            model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
        if args.local_rank == 0:
            _logger.info(
                'Converted model to use Synchronized BatchNorm. WARNING: You may have issues if using '
                'zero initialized BN layers (enabled by default for ResNets) while sync-bn enabled.'
            )

    if args.torchscript:
        assert not use_amp == 'apex', 'Cannot use APEX AMP with torchscripted model'
        assert not args.sync_bn, 'Cannot use SyncBatchNorm with torchscripted model'
        model = torch.jit.script(model)

    optimizer = create_optimizer_v2(model, **optimizer_kwargs(cfg=args))

    # setup automatic mixed-precision (AMP) loss scaling and op casting
    amp_autocast = suppress  # do nothing
    loss_scaler = None
    if use_amp == 'apex':
        model, optimizer = amp.initialize(model, optimizer, opt_level='O1')
        loss_scaler = ApexScaler()
        if args.local_rank == 0:
            _logger.info('Using NVIDIA APEX AMP. Training in mixed precision.')
    elif use_amp == 'native':
        amp_autocast = torch.cuda.amp.autocast
        loss_scaler = NativeScaler()
        if args.local_rank == 0:
            _logger.info(
                'Using native Torch AMP. Training in mixed precision.')
    else:
        if args.local_rank == 0:
            _logger.info('AMP not enabled. Training in float32.')

    # optionally resume from a checkpoint
    resume_epoch = None
    if args.resume:
        resume_epoch = resume_checkpoint(
            model,
            args.resume,
            optimizer=None if args.no_resume_opt else optimizer,
            loss_scaler=None if args.no_resume_opt else loss_scaler,
            log_info=args.local_rank == 0)

    # setup exponential moving average of model weights, SWA could be used here too
    model_ema = None
    if args.model_ema:
        # Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
        model_ema = ModelEmaV2(
            model,
            decay=args.model_ema_decay,
            device='cpu' if args.model_ema_force_cpu else None)
        if args.resume:
            load_checkpoint(model_ema.module, args.resume, use_ema=True)

    # setup distributed training
    if args.distributed:
        if has_apex and use_amp == 'apex':
            # Apex DDP preferred unless native amp is activated
            if args.local_rank == 0:
                _logger.info("Using NVIDIA APEX DistributedDataParallel.")
            model = ApexDDP(model, delay_allreduce=True)
        else:
            if args.local_rank == 0:
                _logger.info("Using native Torch DistributedDataParallel.")
            model = NativeDDP(model,
                              device_ids=[args.local_rank],
                              broadcast_buffers=not args.no_ddp_bb)
        # NOTE: EMA model does not need to be wrapped by DDP

    # setup learning rate schedule and starting epoch
    lr_scheduler, num_epochs = create_scheduler(args, optimizer)
    start_epoch = 0
    if args.start_epoch is not None:
        # a specified start_epoch will always override the resume epoch
        start_epoch = args.start_epoch
    elif resume_epoch is not None:
        start_epoch = resume_epoch
    if lr_scheduler is not None and start_epoch > 0:
        lr_scheduler.step(start_epoch)

    if args.local_rank == 0:
        _logger.info('Scheduled epochs: {}'.format(num_epochs))

    # create the train and eval datasets
    dataset_train = create_dataset(args.dataset,
                                   root=args.data_dir,
                                   split=args.train_split,
                                   is_training=True,
                                   class_map=args.class_map,
                                   download=args.dataset_download,
                                   batch_size=args.batch_size,
                                   repeats=args.epoch_repeats)
    dataset_eval = create_dataset(args.dataset,
                                  root=args.data_dir,
                                  split=args.val_split,
                                  is_training=False,
                                  class_map=args.class_map,
                                  download=args.dataset_download,
                                  batch_size=args.batch_size)

    # setup mixup / cutmix
    collate_fn = None
    mixup_fn = None
    mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
    if mixup_active:
        mixup_args = dict(mixup_alpha=args.mixup,
                          cutmix_alpha=args.cutmix,
                          cutmix_minmax=args.cutmix_minmax,
                          prob=args.mixup_prob,
                          switch_prob=args.mixup_switch_prob,
                          mode=args.mixup_mode,
                          label_smoothing=args.smoothing,
                          num_classes=args.num_classes)
        if args.prefetcher:
            assert not num_aug_splits  # collate conflict (need to support deinterleaving in collate mixup)
            collate_fn = FastCollateMixup(**mixup_args)
        else:
            mixup_fn = Mixup(**mixup_args)

    # wrap dataset in AugMix helper
    if num_aug_splits > 1:
        dataset_train = AugMixDataset(dataset_train, num_splits=num_aug_splits)

    # create data loaders w/ augmentation pipeiine
    train_interpolation = args.train_interpolation
    if args.no_aug or not train_interpolation:
        train_interpolation = data_config['interpolation']
    loader_train = create_loader(
        dataset_train,
        input_size=data_config['input_size'],
        batch_size=args.batch_size,
        is_training=True,
        use_prefetcher=args.prefetcher,
        no_aug=args.no_aug,
        re_prob=args.reprob,
        re_mode=args.remode,
        re_count=args.recount,
        re_split=args.resplit,
        scale=args.scale,
        ratio=args.ratio,
        hflip=args.hflip,
        vflip=args.vflip,
        color_jitter=args.color_jitter,
        auto_augment=args.aa,
        num_aug_repeats=args.aug_repeats,
        num_aug_splits=num_aug_splits,
        interpolation=train_interpolation,
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
        collate_fn=collate_fn,
        pin_memory=args.pin_mem,
        use_multi_epochs_loader=args.use_multi_epochs_loader,
        worker_seeding=args.worker_seeding,
    )

    loader_eval = create_loader(
        dataset_eval,
        input_size=data_config['input_size'],
        batch_size=args.validation_batch_size or args.batch_size,
        is_training=False,
        use_prefetcher=args.prefetcher,
        interpolation=data_config['interpolation'],
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
        crop_pct=data_config['crop_pct'],
        pin_memory=args.pin_mem,
    )

    # setup loss function
    if args.jsd_loss:
        assert num_aug_splits > 1  # JSD only valid with aug splits set
        train_loss_fn = JsdCrossEntropy(num_splits=num_aug_splits,
                                        smoothing=args.smoothing)
    elif mixup_active:
        # smoothing is handled with mixup target transform which outputs sparse, soft targets
        if args.bce_loss:
            train_loss_fn = BinaryCrossEntropy(
                target_threshold=args.bce_target_thresh)
        else:
            train_loss_fn = SoftTargetCrossEntropy()
    elif args.smoothing:
        if args.bce_loss:
            train_loss_fn = BinaryCrossEntropy(
                smoothing=args.smoothing,
                target_threshold=args.bce_target_thresh)
        else:
            train_loss_fn = LabelSmoothingCrossEntropy(
                smoothing=args.smoothing)
    else:
        train_loss_fn = nn.CrossEntropyLoss()
    train_loss_fn = train_loss_fn.cuda()
    validate_loss_fn = nn.CrossEntropyLoss().cuda()

    # setup checkpoint saver and eval metric tracking
    eval_metric = args.eval_metric
    best_metric = None
    best_epoch = None
    saver = None
    output_dir = None
    if args.rank == 0:
        if args.experiment:
            exp_name = args.experiment
        else:
            exp_name = '-'.join([
                datetime.now().strftime("%Y%m%d-%H%M%S"),
                safe_model_name(args.model),
                str(data_config['input_size'][-1])
            ])
        output_dir = get_outdir(
            args.output if args.output else './output/train', exp_name)
        decreasing = True if eval_metric == 'loss' else False
        saver = CheckpointSaver(model=model,
                                optimizer=optimizer,
                                args=args,
                                model_ema=model_ema,
                                amp_scaler=loss_scaler,
                                checkpoint_dir=output_dir,
                                recovery_dir=output_dir,
                                decreasing=decreasing,
                                max_history=args.checkpoint_hist)
        with open(os.path.join(output_dir, 'args.yaml'), 'w') as f:
            f.write(args_text)

    try:
        for epoch in range(start_epoch, num_epochs):
            if args.distributed and hasattr(loader_train.sampler, 'set_epoch'):
                loader_train.sampler.set_epoch(epoch)

            train_metrics = train_one_epoch(epoch,
                                            model,
                                            loader_train,
                                            optimizer,
                                            train_loss_fn,
                                            args,
                                            lr_scheduler=lr_scheduler,
                                            saver=saver,
                                            output_dir=output_dir,
                                            amp_autocast=amp_autocast,
                                            loss_scaler=loss_scaler,
                                            model_ema=model_ema,
                                            mixup_fn=mixup_fn,
                                            model_KD=model_KD)

            if args.distributed and args.dist_bn in ('broadcast', 'reduce'):
                if args.local_rank == 0:
                    _logger.info(
                        "Distributing BatchNorm running means and vars")
                distribute_bn(model, args.world_size, args.dist_bn == 'reduce')

            eval_metrics = validate(model,
                                    loader_eval,
                                    validate_loss_fn,
                                    args,
                                    amp_autocast=amp_autocast)

            if model_ema is not None and not args.model_ema_force_cpu:
                if args.distributed and args.dist_bn in ('broadcast',
                                                         'reduce'):
                    distribute_bn(model_ema, args.world_size,
                                  args.dist_bn == 'reduce')
                ema_eval_metrics = validate(model_ema.module,
                                            loader_eval,
                                            validate_loss_fn,
                                            args,
                                            amp_autocast=amp_autocast,
                                            log_suffix=' (EMA)')
                eval_metrics = ema_eval_metrics

            if lr_scheduler is not None:
                # step LR for next epoch
                lr_scheduler.step(epoch + 1, eval_metrics[eval_metric])

            if output_dir is not None:
                update_summary(epoch,
                               train_metrics,
                               eval_metrics,
                               os.path.join(output_dir, 'summary.csv'),
                               write_header=best_metric is None,
                               log_wandb=args.log_wandb and has_wandb)

            if saver is not None:
                # save proper checkpoint with eval metric
                save_metric = eval_metrics[eval_metric]
                best_metric, best_epoch = saver.save_checkpoint(
                    epoch, metric=save_metric)

    except KeyboardInterrupt:
        pass
    if best_metric is not None:
        _logger.info('*** Best metric: {0} (epoch {1})'.format(
            best_metric, best_epoch))
예제 #3
0
파일: train.py 프로젝트: joskid/sparseml
def main():
    setup_default_logging()
    args, args_text = _parse_args()

    args.prefetcher = not args.no_prefetcher
    args.distributed = False
    if 'WORLD_SIZE' in os.environ:
        args.distributed = int(os.environ['WORLD_SIZE']) > 1
    args.device = 'cuda:0'
    args.world_size = 1
    args.rank = 0  # global rank
    if args.distributed:
        args.device = 'cuda:%d' % args.local_rank
        torch.cuda.set_device(args.local_rank)
        torch.distributed.init_process_group(backend='nccl', init_method='env://')
        args.world_size = torch.distributed.get_world_size()
        args.rank = torch.distributed.get_rank()
        _logger.info('Training in distributed mode with multiple processes, 1 GPU per process. Process %d, total %d.'
                     % (args.rank, args.world_size))
    else:
        _logger.info('Training with a single process on 1 GPUs.')
    assert args.rank >= 0

    # resolve AMP arguments based on PyTorch / Apex availability
    use_amp = None
    if args.amp:
        # for backwards compat, `--amp` arg tries apex before native amp
        if has_apex:
            args.apex_amp = True
        elif has_native_amp:
            args.native_amp = True
    if args.apex_amp and has_apex:
        use_amp = 'apex'
    elif args.native_amp and has_native_amp:
        use_amp = 'native'
    elif args.apex_amp or args.native_amp:
        _logger.warning("Neither APEX or native Torch AMP is available, using float32. "
                        "Install NVIDA apex or upgrade to PyTorch 1.6")

    torch.manual_seed(args.seed + args.rank)

    ####################################################################################
    # Start - SparseML optional load weights from SparseZoo
    ####################################################################################
    if args.initial_checkpoint == "zoo":
        # Load checkpoint from base weights associated with given SparseZoo recipe
        if args.sparseml_recipe.startswith("zoo:"):
            args.initial_checkpoint = Zoo.download_recipe_base_framework_files(
                args.sparseml_recipe,
                extensions=[".pth.tar", ".pth"]
            )[0]
        else:
            raise ValueError(
                "Attempting to load weights from SparseZoo recipe, but not given a "
                "SparseZoo recipe stub.  When initial-checkpoint is set to 'zoo'. "
                "sparseml-recipe must start with 'zoo:' and be a SparseZoo model "
                f"stub. sparseml-recipe was set to {args.sparseml_recipe}"
            )
    elif args.initial_checkpoint.startswith("zoo:"):
        # Load weights from a SparseZoo model stub
        zoo_model = Zoo.load_model_from_stub(args.initial_checkpoint)
        args.initial_checkpoint = zoo_model.download_framework_files(extensions=[".pth"])
    ####################################################################################
    # End - SparseML optional load weights from SparseZoo
    ####################################################################################

    model = create_model(
        args.model,
        pretrained=args.pretrained,
        num_classes=args.num_classes,
        drop_rate=args.drop,
        drop_connect_rate=args.drop_connect,  # DEPRECATED, use drop_path
        drop_path_rate=args.drop_path,
        drop_block_rate=args.drop_block,
        global_pool=args.gp,
        bn_tf=args.bn_tf,
        bn_momentum=args.bn_momentum,
        bn_eps=args.bn_eps,
        scriptable=args.torchscript,
        checkpoint_path=args.initial_checkpoint)
    if args.num_classes is None:
        assert hasattr(model, 'num_classes'), 'Model must have `num_classes` attr if not set on cmd line/config.'
        args.num_classes = model.num_classes  # FIXME handle model default vs config num_classes more elegantly

    if args.local_rank == 0:
        _logger.info('Model %s created, param count: %d' %
                     (args.model, sum([m.numel() for m in model.parameters()])))

    data_config = resolve_data_config(vars(args), model=model, verbose=args.local_rank == 0)

    # setup augmentation batch splits for contrastive loss or split bn
    num_aug_splits = 0
    if args.aug_splits > 0:
        assert args.aug_splits > 1, 'A split of 1 makes no sense'
        num_aug_splits = args.aug_splits

    # enable split bn (separate bn stats per batch-portion)
    if args.split_bn:
        assert num_aug_splits > 1 or args.resplit
        model = convert_splitbn_model(model, max(num_aug_splits, 2))

    # move model to GPU, enable channels last layout if set
    model.cuda()
    if args.channels_last:
        model = model.to(memory_format=torch.channels_last)

    # setup synchronized BatchNorm for distributed training
    if args.distributed and args.sync_bn:
        assert not args.split_bn
        if has_apex and use_amp != 'native':
            # Apex SyncBN preferred unless native amp is activated
            model = convert_syncbn_model(model)
        else:
            model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
        if args.local_rank == 0:
            _logger.info(
                'Converted model to use Synchronized BatchNorm. WARNING: You may have issues if using '
                'zero initialized BN layers (enabled by default for ResNets) while sync-bn enabled.')

    if args.torchscript:
        assert not use_amp == 'apex', 'Cannot use APEX AMP with torchscripted model'
        assert not args.sync_bn, 'Cannot use SyncBatchNorm with torchscripted model'
        model = torch.jit.script(model)

    optimizer = create_optimizer(args, model)

    # setup automatic mixed-precision (AMP) loss scaling and op casting
    amp_autocast = suppress  # do nothing
    loss_scaler = None
    if use_amp == 'apex':
        model, optimizer = amp.initialize(model, optimizer, opt_level='O1')
        loss_scaler = ApexScaler()
        if args.local_rank == 0:
            _logger.info('Using NVIDIA APEX AMP. Training in mixed precision.')
    elif use_amp == 'native':
        amp_autocast = torch.cuda.amp.autocast
        loss_scaler = NativeScaler()
        if args.local_rank == 0:
            _logger.info('Using native Torch AMP. Training in mixed precision.')
    else:
        if args.local_rank == 0:
            _logger.info('AMP not enabled. Training in float32.')

    # optionally resume from a checkpoint
    resume_epoch = None
    if args.resume:
        resume_epoch = resume_checkpoint(
            model, args.resume,
            optimizer=None if args.no_resume_opt else optimizer,
            loss_scaler=None if args.no_resume_opt else loss_scaler,
            log_info=args.local_rank == 0)

    # setup exponential moving average of model weights, SWA could be used here too
    model_ema = None
    if args.model_ema:
        # Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
        model_ema = ModelEmaV2(
            model, decay=args.model_ema_decay, device='cpu' if args.model_ema_force_cpu else None)
        if args.resume:
            load_checkpoint(model_ema.module, args.resume, use_ema=True)

    # setup distributed training
    if args.distributed:
        if has_apex and use_amp != 'native':
            # Apex DDP preferred unless native amp is activated
            if args.local_rank == 0:
                _logger.info("Using NVIDIA APEX DistributedDataParallel.")
            model = ApexDDP(model, delay_allreduce=True)
        else:
            if args.local_rank == 0:
                _logger.info("Using native Torch DistributedDataParallel.")
            model = NativeDDP(model, device_ids=[args.local_rank])  # can use device str in Torch >= 1.1
        # NOTE: EMA model does not need to be wrapped by DDP

    # setup learning rate schedule and starting epoch
    lr_scheduler, num_epochs = create_scheduler(args, optimizer)
    start_epoch = 0
    if args.start_epoch is not None:
        # a specified start_epoch will always override the resume epoch
        start_epoch = args.start_epoch
    elif resume_epoch is not None:
        start_epoch = resume_epoch
    if lr_scheduler is not None and start_epoch > 0:
        lr_scheduler.step(start_epoch)

    # create the train and eval datasets
    dataset_train = create_dataset(
        args.dataset, root=args.data_dir, split=args.train_split, is_training=True, batch_size=args.batch_size)
    dataset_eval = create_dataset(
        args.dataset, root=args.data_dir, split=args.val_split, is_training=False, batch_size=args.batch_size)

    # setup mixup / cutmix
    collate_fn = None
    mixup_fn = None
    mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
    if mixup_active:
        mixup_args = dict(
            mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax,
            prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode,
            label_smoothing=args.smoothing, num_classes=args.num_classes)
        if args.prefetcher:
            assert not num_aug_splits  # collate conflict (need to support deinterleaving in collate mixup)
            collate_fn = FastCollateMixup(**mixup_args)
        else:
            mixup_fn = Mixup(**mixup_args)

    # wrap dataset in AugMix helper
    if num_aug_splits > 1:
        dataset_train = AugMixDataset(dataset_train, num_splits=num_aug_splits)

    # create data loaders w/ augmentation pipeiine
    train_interpolation = args.train_interpolation
    if args.no_aug or not train_interpolation:
        train_interpolation = data_config['interpolation']
    loader_train = create_loader(
        dataset_train,
        input_size=data_config['input_size'],
        batch_size=args.batch_size,
        is_training=True,
        use_prefetcher=args.prefetcher,
        no_aug=args.no_aug,
        re_prob=args.reprob,
        re_mode=args.remode,
        re_count=args.recount,
        re_split=args.resplit,
        scale=args.scale,
        ratio=args.ratio,
        hflip=args.hflip,
        vflip=args.vflip,
        color_jitter=args.color_jitter,
        auto_augment=args.aa,
        num_aug_splits=num_aug_splits,
        interpolation=train_interpolation,
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
        collate_fn=collate_fn,
        pin_memory=args.pin_mem,
        use_multi_epochs_loader=args.use_multi_epochs_loader
    )

    loader_eval = create_loader(
        dataset_eval,
        input_size=data_config['input_size'],
        batch_size=args.validation_batch_size_multiplier * args.batch_size,
        is_training=False,
        use_prefetcher=args.prefetcher,
        interpolation=data_config['interpolation'],
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
        crop_pct=data_config['crop_pct'],
        pin_memory=args.pin_mem,
    )

    # setup loss function
    if args.jsd:
        assert num_aug_splits > 1  # JSD only valid with aug splits set
        train_loss_fn = JsdCrossEntropy(num_splits=num_aug_splits, smoothing=args.smoothing).cuda()
    elif mixup_active:
        # smoothing is handled with mixup target transform
        train_loss_fn = SoftTargetCrossEntropy().cuda()
    elif args.smoothing:
        train_loss_fn = LabelSmoothingCrossEntropy(smoothing=args.smoothing).cuda()
    else:
        train_loss_fn = nn.CrossEntropyLoss().cuda()
    validate_loss_fn = nn.CrossEntropyLoss().cuda()

    # setup checkpoint saver and eval metric tracking
    eval_metric = args.eval_metric
    best_metric = None
    best_epoch = None
    saver = None
    output_dir = ''
    if args.local_rank == 0:
        output_base = args.output if args.output else './output'
        exp_name = '-'.join([
            datetime.now().strftime("%Y%m%d-%H%M%S"),
            args.model,
            str(data_config['input_size'][-1])
        ])
        output_dir = get_outdir(output_base, 'train', exp_name)
        decreasing = True if eval_metric == 'loss' else False
        saver = CheckpointSaver(
            model=model, optimizer=optimizer, args=args, model_ema=model_ema, amp_scaler=loss_scaler,
            checkpoint_dir=output_dir, recovery_dir=output_dir, decreasing=decreasing, max_history=args.checkpoint_hist)
        with open(os.path.join(output_dir, 'args.yaml'), 'w') as f:
            f.write(args_text)

    ####################################################################################
    # Start SparseML Integration
    ####################################################################################
    sparseml_loggers = (
        [PythonLogger(), TensorBoardLogger(log_path=output_dir)]
        if output_dir
        else None
    )
    manager = ScheduledModifierManager.from_yaml(args.sparseml_recipe)
    optimizer = ScheduledOptimizer(
        optimizer,
        model,
        manager,
        steps_per_epoch=len(loader_train),
        loggers=sparseml_loggers
    )
    # override lr scheduler if recipe makes any LR updates
    if any("LearningRate" in str(modifier) for modifier in manager.modifiers):
        _logger.info("Disabling timm LR scheduler, managing LR using SparseML recipe")
        lr_scheduler = None
    if manager.max_epochs:
        _logger.info(
            f"Overriding max_epochs to {manager.max_epochs} from SparseML recipe"
        )
        num_epochs = manager.max_epochs or num_epochs
    ####################################################################################
    # End SparseML Integration
    ####################################################################################

    if args.local_rank == 0:
        _logger.info('Scheduled epochs: {}'.format(num_epochs))

    try:
        for epoch in range(start_epoch, num_epochs):
            if args.distributed and hasattr(loader_train.sampler, 'set_epoch'):
                loader_train.sampler.set_epoch(epoch)

            train_metrics = train_one_epoch(
                epoch, model, loader_train, optimizer, train_loss_fn, args,
                lr_scheduler=lr_scheduler, saver=saver, output_dir=output_dir,
                amp_autocast=amp_autocast, loss_scaler=loss_scaler, model_ema=model_ema, mixup_fn=mixup_fn)

            if args.distributed and args.dist_bn in ('broadcast', 'reduce'):
                if args.local_rank == 0:
                    _logger.info("Distributing BatchNorm running means and vars")
                distribute_bn(model, args.world_size, args.dist_bn == 'reduce')

            eval_metrics = validate(model, loader_eval, validate_loss_fn, args, amp_autocast=amp_autocast)

            if model_ema is not None and not args.model_ema_force_cpu:
                if args.distributed and args.dist_bn in ('broadcast', 'reduce'):
                    distribute_bn(model_ema, args.world_size, args.dist_bn == 'reduce')
                ema_eval_metrics = validate(
                    model_ema.module, loader_eval, validate_loss_fn, args, amp_autocast=amp_autocast, log_suffix=' (EMA)')
                eval_metrics = ema_eval_metrics

            if lr_scheduler is not None:
                # step LR for next epoch
                lr_scheduler.step(epoch + 1, eval_metrics[eval_metric])

            update_summary(
                epoch, train_metrics, eval_metrics, os.path.join(output_dir, 'summary.csv'),
                write_header=best_metric is None)

            if saver is not None:
                # save proper checkpoint with eval metric
                save_metric = eval_metrics[eval_metric]
                best_metric, best_epoch = saver.save_checkpoint(epoch, metric=save_metric)

        #################################################################################
        # Start SparseML ONNX Export
        #################################################################################
        if output_dir:
            _logger.info(
                f"training complete, exporting ONNX to {output_dir}/model.onnx"
            )
            exporter = ModuleExporter(model, output_dir)
            exporter.export_onnx(torch.randn((1, *data_config["input_size"])))
        #################################################################################
        # End SparseML ONNX Export
        #################################################################################

    except KeyboardInterrupt:
        pass
    if best_metric is not None:
        _logger.info('*** Best metric: {0} (epoch {1})'.format(best_metric, best_epoch))
예제 #4
0
def main():
    args = parser.parse_args()

    args.prefetcher = not args.no_prefetcher
    args.distributed = False
    if 'WORLD_SIZE' in os.environ:
        args.distributed = int(os.environ['WORLD_SIZE']) > 1
        if args.distributed and args.num_gpu > 1:
            print(
                'Using more than one GPU per process in distributed mode is not allowed. Setting num_gpu to 1.'
            )
            args.num_gpu = 1

    args.device = 'cuda:0'
    args.world_size = 1
    args.rank = 0  # global rank
    if args.distributed:
        args.num_gpu = 1
        args.device = 'cuda:%d' % args.local_rank
        torch.cuda.set_device(args.local_rank)
        torch.distributed.init_process_group(backend='nccl',
                                             init_method='env://')
        args.world_size = torch.distributed.get_world_size()
        args.rank = torch.distributed.get_rank()
    assert args.rank >= 0

    if args.distributed:
        print(
            'Training in distributed mode with multiple processes, 1 GPU per process. Process %d, total %d.'
            % (args.rank, args.world_size))
    else:
        print('Training with a single process on %d GPUs.' % args.num_gpu)

    torch.manual_seed(args.seed + args.rank)

    model = create_model(args.model,
                         pretrained=args.pretrained,
                         num_classes=args.num_classes,
                         drop_rate=args.drop,
                         global_pool=args.gp,
                         bn_tf=args.bn_tf,
                         bn_momentum=args.bn_momentum,
                         bn_eps=args.bn_eps,
                         checkpoint_path=args.initial_checkpoint)

    print('Model %s created, param count: %d' %
          (args.model, sum([m.numel() for m in model.parameters()])))

    data_config = resolve_data_config(model,
                                      args,
                                      verbose=args.local_rank == 0)

    # optionally resume from a checkpoint
    start_epoch = 0
    optimizer_state = None
    if args.resume:
        optimizer_state, start_epoch = resume_checkpoint(
            model, args.resume, args.start_epoch)

    if args.num_gpu > 1:
        if args.amp:
            print(
                'Warning: AMP does not work well with nn.DataParallel, disabling. '
                'Use distributed mode for multi-GPU AMP.')
            args.amp = False
        model = nn.DataParallel(model,
                                device_ids=list(range(args.num_gpu))).cuda()
    else:
        if args.distributed and args.sync_bn and has_apex:
            model = convert_syncbn_model(model)
        model.cuda()

    optimizer = create_optimizer(args, model)
    if optimizer_state is not None:
        optimizer.load_state_dict(optimizer_state)

    if has_apex and args.amp:
        model, optimizer = amp.initialize(model, optimizer, opt_level='O1')
        use_amp = True
        print('AMP enabled')
    else:
        use_amp = False
        print('AMP disabled')

    model_ema = None
    if args.model_ema:
        model_ema = ModelEma(model,
                             decay=args.model_ema_decay,
                             device='cpu' if args.model_ema_force_cpu else '',
                             resume=args.resume)

    if args.distributed:
        model = DDP(model, delay_allreduce=True)
        if model_ema is not None and not args.model_ema_force_cpu:
            # must also distribute EMA model to allow validation
            model_ema.ema = DDP(model_ema.ema, delay_allreduce=True)
            model_ema.ema_has_module = True

    lr_scheduler, num_epochs = create_scheduler(args, optimizer)
    if start_epoch > 0:
        lr_scheduler.step(start_epoch)
    if args.local_rank == 0:
        print('Scheduled epochs: ', num_epochs)

    train_dir = os.path.join(args.data, 'train')
    if not os.path.exists(train_dir):
        print('Error: training folder does not exist at: %s' % train_dir)
        exit(1)
    dataset_train = Dataset(train_dir)

    collate_fn = None
    if args.prefetcher and args.mixup > 0:
        collate_fn = FastCollateMixup(args.mixup, args.smoothing,
                                      args.num_classes)

    loader_train = create_loader(
        dataset_train,
        input_size=data_config['input_size'],
        batch_size=args.batch_size,
        is_training=True,
        use_prefetcher=args.prefetcher,
        rand_erase_prob=args.reprob,
        rand_erase_mode=args.remode,
        interpolation=
        'random',  # FIXME cleanly resolve this? data_config['interpolation'],
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
        collate_fn=collate_fn,
    )

    eval_dir = os.path.join(args.data, 'validation')
    if not os.path.isdir(eval_dir):
        print('Error: validation folder does not exist at: %s' % eval_dir)
        exit(1)
    dataset_eval = Dataset(eval_dir)

    loader_eval = create_loader(
        dataset_eval,
        input_size=data_config['input_size'],
        batch_size=4 * args.batch_size,
        is_training=False,
        use_prefetcher=args.prefetcher,
        interpolation=data_config['interpolation'],
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
    )

    if args.mixup > 0.:
        # smoothing is handled with mixup label transform
        train_loss_fn = SoftTargetCrossEntropy().cuda()
        validate_loss_fn = nn.CrossEntropyLoss().cuda()
    elif args.smoothing:
        train_loss_fn = LabelSmoothingCrossEntropy(
            smoothing=args.smoothing).cuda()
        validate_loss_fn = nn.CrossEntropyLoss().cuda()
    else:
        train_loss_fn = nn.CrossEntropyLoss().cuda()
        validate_loss_fn = train_loss_fn

    eval_metric = args.eval_metric
    best_metric = None
    best_epoch = None
    saver = None
    output_dir = ''
    if args.local_rank == 0:
        output_base = args.output if args.output else './output'
        exp_name = '-'.join([
            datetime.now().strftime("%Y%m%d-%H%M%S"), args.model,
            str(data_config['input_size'][-1])
        ])
        output_dir = get_outdir(output_base, 'train', exp_name)
        decreasing = True if eval_metric == 'loss' else False
        saver = CheckpointSaver(checkpoint_dir=output_dir,
                                decreasing=decreasing)

    try:
        for epoch in range(start_epoch, num_epochs):
            if args.distributed:
                loader_train.sampler.set_epoch(epoch)

            train_metrics = train_epoch(epoch,
                                        model,
                                        loader_train,
                                        optimizer,
                                        train_loss_fn,
                                        args,
                                        lr_scheduler=lr_scheduler,
                                        saver=saver,
                                        output_dir=output_dir,
                                        use_amp=use_amp,
                                        model_ema=model_ema)

            eval_metrics = validate(model, loader_eval, validate_loss_fn, args)

            if model_ema is not None and not args.model_ema_force_cpu:
                ema_eval_metrics = validate(model_ema.ema,
                                            loader_eval,
                                            validate_loss_fn,
                                            args,
                                            log_suffix=' (EMA)')
                eval_metrics = ema_eval_metrics

            if lr_scheduler is not None:
                lr_scheduler.step(epoch, eval_metrics[eval_metric])

            update_summary(epoch,
                           train_metrics,
                           eval_metrics,
                           os.path.join(output_dir, 'summary.csv'),
                           write_header=best_metric is None)

            if saver is not None:
                # save proper checkpoint with eval metric
                save_metric = eval_metrics[eval_metric]
                best_metric, best_epoch = saver.save_checkpoint(
                    model,
                    optimizer,
                    args,
                    epoch=epoch + 1,
                    model_ema=model_ema,
                    metric=save_metric)

    except KeyboardInterrupt:
        pass
    if best_metric is not None:
        print('*** Best metric: {0} (epoch {1})'.format(
            best_metric, best_epoch))
예제 #5
0
def main():

    setup_default_logging()
    args, args_text = _parse_args()

    args.prefetcher = not args.no_prefetcher
    args.distributed = False
    if 'WORLD_SIZE' in os.environ:
        args.distributed = int(os.environ['WORLD_SIZE']) > 1
    args.device = 'cuda:0'
    args.world_size = 1
    args.rank = 0  # global rank
    if args.distributed:
        args.device = 'cuda:%d' % args.local_rank
        torch.cuda.set_device(args.local_rank)
        torch.distributed.init_process_group(backend='nccl',
                                             init_method='env://')
        args.world_size = torch.distributed.get_world_size()
        args.rank = torch.distributed.get_rank()
        _logger.info(
            'Training in distributed mode with multiple processes, 1 GPU per process. Process %d, total %d.'
            % (args.rank, args.world_size))
    else:
        _logger.info('Training with a single process on 1 GPUs.')
    assert args.rank >= 0

    # resolve AMP arguments based on PyTorch / Apex availability
    use_amp = None
    if args.amp:
        # for backwards compat, `--amp` arg tries apex before native amp
        if has_apex:
            args.apex_amp = True
        elif has_native_amp:
            args.native_amp = True
    if args.apex_amp and has_apex:
        use_amp = 'apex'
    elif args.native_amp and has_native_amp:
        use_amp = 'native'
    elif args.apex_amp or args.native_amp:
        _logger.warning(
            "Neither APEX or native Torch AMP is available, using float32. "
            "Install NVIDA apex or upgrade to PyTorch 1.6")

    torch.manual_seed(args.seed + args.rank)

    model = create_model(
        args.model,
        pretrained=args.pretrained,
        num_classes=args.num_classes,
        drop_rate=args.drop,
        drop_connect_rate=args.drop_connect,  # DEPRECATED, use drop_path
        drop_path_rate=args.drop_path,
        drop_block_rate=args.drop_block,
        global_pool=args.gp,
        bn_tf=args.bn_tf,
        bn_momentum=args.bn_momentum,
        bn_eps=args.bn_eps,
        scriptable=args.torchscript,
        use_cos_reg=args.cos_reg_component > 0,
        checkpoint_path=args.initial_checkpoint)
    with torch.cuda.device(0):
        input = torch.randn(1, 3, 224, 224)
        size_for_madd = 224 if args.img_size is None else args.img_size
        # flops, params = get_model_complexity_info(model, (3, size_for_madd, size_for_madd), as_strings=True, print_per_layer_stat=True)
        # print("=>Flops:  " + flops)
        # print("=>Params: " + params)
    if args.local_rank == 0:
        _logger.info('Model %s created, param count: %d' %
                     (args.model, sum([m.numel()
                                       for m in model.parameters()])))

    data_config = resolve_data_config(vars(args),
                                      model=model,
                                      verbose=args.local_rank == 0)

    # setup augmentation batch splits for contrastive loss or split bn
    num_aug_splits = 0
    if args.aug_splits > 0:
        assert args.aug_splits > 1, 'A split of 1 makes no sense'
        num_aug_splits = args.aug_splits

    # enable split bn (separate bn stats per batch-portion)
    if args.split_bn:
        assert num_aug_splits > 1 or args.resplit
        model = convert_splitbn_model(model, max(num_aug_splits, 2))

    # move model to GPU, enable channels last layout if set
    model.cuda()
    if args.channels_last:
        model = model.to(memory_format=torch.channels_last)

    # setup synchronized BatchNorm for distributed training
    if args.distributed and args.sync_bn:
        assert not args.split_bn
        if has_apex and use_amp != 'native':
            # Apex SyncBN preferred unless native amp is activated
            model = convert_syncbn_model(model)
        else:
            model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
        if args.local_rank == 0:
            _logger.info(
                'Converted model to use Synchronized BatchNorm. WARNING: You may have issues if using '
                'zero initialized BN layers (enabled by default for ResNets) while sync-bn enabled.'
            )

    if args.torchscript:
        assert not use_amp == 'apex', 'Cannot use APEX AMP with torchscripted model'
        assert not args.sync_bn, 'Cannot use SyncBatchNorm with torchscripted model'
        model = torch.jit.script(model)

    optimizer = create_optimizer(args, model)

    # setup automatic mixed-precision (AMP) loss scaling and op casting
    amp_autocast = suppress  # do nothing
    loss_scaler = None
    if use_amp == 'apex':
        model, optimizer = amp.initialize(model, optimizer, opt_level='O1')
        loss_scaler = ApexScaler()
        if args.local_rank == 0:
            _logger.info('Using NVIDIA APEX AMP. Training in mixed precision.')
    elif use_amp == 'native':
        amp_autocast = torch.cuda.amp.autocast
        loss_scaler = NativeScaler()
        if args.local_rank == 0:
            _logger.info(
                'Using native Torch AMP. Training in mixed precision.')
    else:
        if args.local_rank == 0:
            _logger.info('AMP not enabled. Training in float32.')

    # optionally resume from a checkpoint
    resume_epoch = None
    if args.resume:
        resume_epoch = resume_checkpoint(
            model,
            args.resume,
            optimizer=None if args.no_resume_opt else optimizer,
            loss_scaler=None if args.no_resume_opt else loss_scaler,
            log_info=args.local_rank == 0)

    # setup exponential moving average of model weights, SWA could be used here too
    model_ema = None
    if args.model_ema:
        # Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
        model_ema = ModelEmaV2(
            model,
            decay=args.model_ema_decay,
            device='cpu' if args.model_ema_force_cpu else None)
        if args.resume:
            load_checkpoint(model_ema.module, args.resume, use_ema=True)

    # setup distributed training
    if args.distributed:
        if has_apex and use_amp != 'native':
            # Apex DDP preferred unless native amp is activated
            if args.local_rank == 0:
                _logger.info("Using NVIDIA APEX DistributedDataParallel.")
            model = ApexDDP(model, delay_allreduce=True)
        else:
            if args.local_rank == 0:
                _logger.info("Using native Torch DistributedDataParallel.")
            model = NativeDDP(model, device_ids=[
                args.local_rank
            ])  # can use device str in Torch >= 1.1
        # NOTE: EMA model does not need to be wrapped by DDP

    # setup learning rate schedule and starting epoch
    lr_scheduler, num_epochs = create_scheduler(args, optimizer)
    start_epoch = 0
    if args.start_epoch is not None:
        # a specified start_epoch will always override the resume epoch
        start_epoch = args.start_epoch
    elif resume_epoch is not None:
        start_epoch = resume_epoch
    if lr_scheduler is not None and start_epoch > 0:
        lr_scheduler.step(start_epoch)

    if args.local_rank == 0:
        _logger.info('Scheduled epochs: {}'.format(num_epochs))

    # create the train and eval datasets
    train_dir = os.path.join(args.data, 'train')
    if not os.path.exists(train_dir):
        _logger.error(
            'Training folder does not exist at: {}'.format(train_dir))
        exit(1)
    if args.use_lmdb:
        dataset_train = ImageFolderLMDB('../dataset_lmdb/train')
    else:
        dataset_train = Dataset(train_dir)
    # dataset_train = Dataset(train_dir)

    eval_dir = os.path.join(args.data, 'val')
    if not os.path.isdir(eval_dir):
        eval_dir = os.path.join(args.data, 'validation')
        if not os.path.isdir(eval_dir):
            _logger.error(
                'Validation folder does not exist at: {}'.format(eval_dir))
            exit(1)
    if args.use_lmdb:
        dataset_eval = ImageFolderLMDB('../dataset_lmdb/val')
    else:
        dataset_eval = Dataset(eval_dir)
    # dataset_eval = Dataset(eval_dir)

    # setup mixup / cutmix
    collate_fn = None
    mixup_fn = None
    mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
    if mixup_active:
        mixup_args = dict(mixup_alpha=args.mixup,
                          cutmix_alpha=args.cutmix,
                          cutmix_minmax=args.cutmix_minmax,
                          prob=args.mixup_prob,
                          switch_prob=args.mixup_switch_prob,
                          mode=args.mixup_mode,
                          label_smoothing=args.smoothing,
                          num_classes=args.num_classes)
        if args.prefetcher:
            assert not num_aug_splits  # collate conflict (need to support deinterleaving in collate mixup)
            collate_fn = FastCollateMixup(**mixup_args)
        else:
            mixup_fn = Mixup(**mixup_args)

    # wrap dataset in AugMix helper
    if num_aug_splits > 1:
        dataset_train = AugMixDataset(dataset_train, num_splits=num_aug_splits)

    # create data loaders w/ augmentation pipeiine
    train_interpolation = args.train_interpolation
    if args.no_aug or not train_interpolation:
        train_interpolation = data_config['interpolation']
    loader_train = create_loader(
        dataset_train,
        input_size=data_config['input_size'],
        batch_size=args.batch_size,
        is_training=True,
        use_prefetcher=args.prefetcher,
        no_aug=args.no_aug,
        re_prob=args.reprob,
        re_mode=args.remode,
        re_count=args.recount,
        re_split=args.resplit,
        scale=args.scale,
        ratio=args.ratio,
        hflip=args.hflip,
        vflip=args.vflip,
        color_jitter=args.color_jitter,
        auto_augment=args.aa,
        num_aug_splits=num_aug_splits,
        interpolation=train_interpolation,
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
        collate_fn=collate_fn,
        pin_memory=args.pin_mem,
        use_multi_epochs_loader=args.use_multi_epochs_loader,
        repeated_aug=args.use_repeated_aug,
        world_size=args.world_size,
        rank=args.rank)

    loader_eval = create_loader(
        dataset_eval,
        input_size=data_config['input_size'],
        batch_size=args.validation_batch_size_multiplier * args.batch_size,
        is_training=False,
        use_prefetcher=args.prefetcher,
        interpolation=data_config['interpolation'],
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
        crop_pct=data_config['crop_pct'],
        pin_memory=args.pin_mem,
    )

    loader_cali = create_loader(
        dataset_train,
        input_size=data_config['input_size'],
        batch_size=args.cali_batch_size,
        is_training=False,
        use_prefetcher=args.prefetcher,
        no_aug=True,
        re_prob=args.reprob,
        re_mode=args.remode,
        re_count=args.recount,
        re_split=args.resplit,
        scale=args.scale,
        ratio=args.ratio,
        hflip=args.hflip,
        vflip=args.vflip,
        color_jitter=args.color_jitter,
        auto_augment=args.aa,
        num_aug_splits=num_aug_splits,
        interpolation=train_interpolation,
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
        collate_fn=None,
        pin_memory=args.pin_mem,
        use_multi_epochs_loader=args.use_multi_epochs_loader,
        repeated_aug=args.use_repeated_aug,
        world_size=args.world_size,
        rank=args.rank)

    # setup loss function
    if args.jsd:
        assert num_aug_splits > 1  # JSD only valid with aug splits set
        train_loss_fn = JsdCrossEntropy(num_splits=num_aug_splits,
                                        smoothing=args.smoothing).cuda()
    elif mixup_active:
        # smoothing is handled with mixup target transform
        if args.cos_reg_component > 0:
            args.use_cos_reg_component = True
            train_loss_fn = SoftTargetCrossEntropyCosReg(
                n_comn=args.cos_reg_component).cuda()
        else:
            train_loss_fn = SoftTargetCrossEntropy().cuda()
            args.use_cos_reg_component = False

    elif args.smoothing:
        train_loss_fn = LabelSmoothingCrossEntropy(
            smoothing=args.smoothing).cuda()
    else:
        train_loss_fn = nn.CrossEntropyLoss().cuda()
    validate_loss_fn = nn.CrossEntropyLoss().cuda()

    # setup checkpoint saver and eval metric tracking
    eval_metric = args.eval_metric
    best_metric = None
    best_epoch = None
    saver = None
    output_dir = ''
    if args.local_rank == 0:
        output_base = args.output if args.output else './output'
        exp_name = '-'.join([
            datetime.now().strftime("%Y%m%d-%H%M%S"), args.model,
            str(data_config['input_size'][-1])
        ])
        output_dir = get_outdir(output_base, 'train', exp_name)
        code_dir = get_outdir(output_dir, 'code')
        copy_tree(os.getcwd(), code_dir)
        decreasing = True if eval_metric == 'loss' else False
        saver = CheckpointSaver(model=model,
                                optimizer=optimizer,
                                args=args,
                                model_ema=model_ema,
                                amp_scaler=loss_scaler,
                                checkpoint_dir=output_dir,
                                recovery_dir=output_dir,
                                decreasing=decreasing)
        with open(os.path.join(output_dir, 'args.yaml'), 'w') as f:
            f.write(args_text)

    try:
        for epoch in range(start_epoch, num_epochs):
            if args.distributed:
                loader_train.sampler.set_epoch(epoch)
            if not args.eval_only:
                train_metrics = train_epoch(epoch,
                                            model,
                                            loader_train,
                                            optimizer,
                                            train_loss_fn,
                                            args,
                                            lr_scheduler=lr_scheduler,
                                            saver=saver,
                                            output_dir=output_dir,
                                            amp_autocast=amp_autocast,
                                            loss_scaler=loss_scaler,
                                            model_ema=model_ema,
                                            mixup_fn=mixup_fn)

            if args.distributed and args.dist_bn in ('broadcast', 'reduce'):
                if args.local_rank == 0:
                    _logger.info(
                        "Distributing BatchNorm running means and vars")
                distribute_bn(model, args.world_size, args.dist_bn == 'reduce')
            if args.max_iter > 0:
                _ = validate(model,
                             loader_cali,
                             validate_loss_fn,
                             args,
                             amp_autocast=amp_autocast,
                             use_bn_calibration=True)
            eval_metrics = validate(model,
                                    loader_eval,
                                    validate_loss_fn,
                                    args,
                                    amp_autocast=amp_autocast)

            if model_ema is not None and not args.model_ema_force_cpu:
                if args.distributed and args.dist_bn in ('broadcast',
                                                         'reduce'):
                    distribute_bn(model_ema, args.world_size,
                                  args.dist_bn == 'reduce')
                ema_eval_metrics = validate(model_ema.module,
                                            loader_eval,
                                            validate_loss_fn,
                                            args,
                                            amp_autocast=amp_autocast,
                                            log_suffix=' (EMA)')
                eval_metrics = ema_eval_metrics

            if lr_scheduler is not None:
                # step LR for next epoch
                lr_scheduler.step(epoch + 1, eval_metrics[eval_metric])
            if not args.eval_only:
                update_summary(epoch,
                               train_metrics,
                               eval_metrics,
                               os.path.join(output_dir, 'summary.csv'),
                               write_header=best_metric is None)

            if saver is not None:
                # save proper checkpoint with eval metric
                save_metric = eval_metrics[eval_metric]
                best_metric, best_epoch = saver.save_checkpoint(
                    epoch, metric=save_metric)
                if args.eval_only:
                    break

    except KeyboardInterrupt:
        pass
    if best_metric is not None:
        _logger.info('*** Best metric: {0} (epoch {1})'.format(
            best_metric, best_epoch))
예제 #6
0
def main():
    setup_default_logging()
    args = parser.parse_args()
    args.prefetcher = not args.no_prefetcher
    args.distributed = False
    if 'WORLD_SIZE' in os.environ:
        args.distributed = int(os.environ['WORLD_SIZE']) > 1
        if args.distributed and args.num_gpu > 1:
            logging.warning(
                'Using more than one GPU per process in distributed mode is not allowed. Setting num_gpu to 1.'
            )
            args.num_gpu = 1

    args.device = 'cuda:0'
    args.world_size = 1
    args.rank = 0  # global rank
    if args.distributed:
        args.num_gpu = 1
        args.device = 'cuda:%d' % args.local_rank
        torch.cuda.set_device(args.local_rank)
        torch.distributed.init_process_group(backend='nccl',
                                             init_method='env://')
        args.world_size = torch.distributed.get_world_size()
        args.rank = torch.distributed.get_rank()
    assert args.rank >= 0

    if args.distributed:
        logging.info(
            'Training in distributed mode with multiple processes, 1 GPU per process. Process %d, total %d.'
            % (args.rank, args.world_size))
    else:
        logging.info('Training with a single process on %d GPUs.' %
                     args.num_gpu)

    torch.manual_seed(args.seed + args.rank)

    model = create_model(args.model,
                         pretrained=args.pretrained,
                         num_classes=args.num_classes,
                         drop_rate=args.drop,
                         global_pool=args.gp,
                         bn_tf=args.bn_tf,
                         bn_momentum=args.bn_momentum,
                         bn_eps=args.bn_eps,
                         drop_connect_rate=0.2,
                         checkpoint_path=args.initial_checkpoint,
                         args=args)
    flops, params = get_model_complexity_info(
        model, (3, 224, 224),
        as_strings=True,
        print_per_layer_stat=args.display_info)
    print('Flops:  ' + flops)
    print('Params: ' + params)
    if args.KD_train:
        teacher_model = create_model("efficientnet_b7_dq",
                                     pretrained=True,
                                     num_classes=args.num_classes,
                                     drop_rate=args.drop,
                                     global_pool=args.gp,
                                     bn_tf=args.bn_tf,
                                     bn_momentum=args.bn_momentum,
                                     bn_eps=args.bn_eps,
                                     drop_connect_rate=0.2,
                                     checkpoint_path=args.initial_checkpoint,
                                     args=args)

        flops_teacher, params_teacher = get_model_complexity_info(
            teacher_model, (3, 224, 224),
            as_strings=True,
            print_per_layer_stat=False)
        print("Using KD training...")
        print("FLOPs of teacher model: ", flops_teacher)
        print("Params of teacher model: ", params_teacher)

    if args.local_rank == 0:
        logging.info('Model %s created, param count: %d' %
                     (args.model, sum([m.numel()
                                       for m in model.parameters()])))

    data_config = resolve_data_config(model,
                                      args,
                                      verbose=args.local_rank == 0)

    # optionally resume from a checkpoint
    start_epoch = 0
    optimizer_state = None
    if args.resume:
        optimizer_state, start_epoch = resume_checkpoint(
            model, args.resume, args.start_epoch)
        # import pdb;pdb.set_trace()

    if args.num_gpu > 1:
        if args.amp:
            logging.warning(
                'AMP does not work well with nn.DataParallel, disabling. Use distributed mode for multi-GPU AMP.'
            )
            args.amp = False
        model = nn.DataParallel(model,
                                device_ids=list(range(args.num_gpu))).cuda()
        if args.KD_train:
            teacher_model = nn.DataParallel(teacher_model,
                                            device_ids=list(range(
                                                args.num_gpu))).cuda()
    else:
        model.cuda()
        if args.KD_train:
            teacher_model.cuda()

    optimizer = create_optimizer(args, model)
    if optimizer_state is not None:
        optimizer.load_state_dict(optimizer_state)

    use_amp = False
    if has_apex and args.amp:
        model, optimizer = amp.initialize(model, optimizer, opt_level='O1')
        use_amp = True
    if args.local_rank == 0:
        logging.info('NVIDIA APEX {}. AMP {}.'.format(
            'installed' if has_apex else 'not installed',
            'on' if use_amp else 'off'))

    model_ema = None
    if args.model_ema:
        # Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
        # import pdb; pdb.set_trace()
        model_ema = ModelEma(model,
                             decay=args.model_ema_decay,
                             device='cpu' if args.model_ema_force_cpu else '',
                             resume=args.resume)

    if args.distributed:
        if args.sync_bn:
            try:
                if has_apex:
                    model = convert_syncbn_model(model)
                else:
                    model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(
                        model)
                if args.local_rank == 0:
                    logging.info(
                        'Converted model to use Synchronized BatchNorm.')
            except Exception as e:
                logging.error(
                    'Failed to enable Synchronized BatchNorm. Install Apex or Torch >= 1.1'
                )
        if has_apex:
            model = DDP(model, delay_allreduce=True)
        else:
            if args.local_rank == 0:
                logging.info(
                    "Using torch DistributedDataParallel. Install NVIDIA Apex for Apex DDP."
                )
            model = DDP(model,
                        device_ids=[args.local_rank
                                    ])  # can use device str in Torch >= 1.1
        # NOTE: EMA model does not need to be wrapped by DDP

    lr_scheduler, num_epochs = create_scheduler(args, optimizer)
    if start_epoch > 0:
        lr_scheduler.step(start_epoch)
    if args.local_rank == 0:
        logging.info('Scheduled epochs: {}'.format(num_epochs))

    train_dir = os.path.join(args.data, 'train')
    if not os.path.exists(train_dir):
        logging.error(
            'Training folder does not exist at: {}'.format(train_dir))
        exit(1)
    dataset_train = Dataset(train_dir)

    collate_fn = None
    if args.prefetcher and args.mixup > 0:
        collate_fn = FastCollateMixup(args.mixup, args.smoothing,
                                      args.num_classes)

    if args.auto_augment:
        print('using auto data augumentation...')
    loader_train = create_loader(
        dataset_train,
        input_size=data_config['input_size'],
        batch_size=args.batch_size,
        is_training=True,
        use_prefetcher=args.prefetcher,
        rand_erase_prob=args.reprob,
        rand_erase_mode=args.remode,
        interpolation=
        'bicubic',  # FIXME cleanly resolve this? data_config['interpolation'],
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
        collate_fn=collate_fn,
        use_auto_aug=args.auto_augment,
        use_mixcut=args.mixcut,
    )

    eval_dir = os.path.join(args.data, 'val')
    if not os.path.isdir(eval_dir):
        logging.error(
            'Validation folder does not exist at: {}'.format(eval_dir))
        exit(1)
    dataset_eval = Dataset(eval_dir)

    loader_eval = create_loader(
        dataset_eval,
        input_size=data_config['input_size'],
        batch_size=4 * args.batch_size,
        is_training=False,
        use_prefetcher=args.prefetcher,
        interpolation=data_config['interpolation'],
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
    )

    if args.mixup > 0.:
        # smoothing is handled with mixup label transform
        train_loss_fn = SoftTargetCrossEntropy().cuda()
        validate_loss_fn = nn.CrossEntropyLoss().cuda()
    elif args.smoothing:
        train_loss_fn = LabelSmoothingCrossEntropy(
            smoothing=args.smoothing).cuda()
        validate_loss_fn = nn.CrossEntropyLoss().cuda()
    else:
        train_loss_fn = nn.CrossEntropyLoss().cuda()
        validate_loss_fn = train_loss_fn
    if args.KD_train:
        train_loss_fn = nn.KLDivLoss(reduction='batchmean').cuda()

    eval_metric = args.eval_metric
    best_metric = None
    best_epoch = None
    saver = None
    output_dir = ''
    if args.local_rank == 0:
        output_base = args.output if args.output else './output'
        exp_name = '-'.join([
            datetime.now().strftime("%Y%m%d-%H%M%S"), args.model,
            str(data_config['input_size'][-1])
        ])
        output_dir = get_outdir(output_base, 'train', exp_name)
        decreasing = True if eval_metric == 'loss' else False
        saver = CheckpointSaver(checkpoint_dir=output_dir,
                                decreasing=decreasing)

    try:
        # import pdb;pdb.set_trace()
        for epoch in range(start_epoch, num_epochs):
            if args.distributed:
                loader_train.sampler.set_epoch(epoch)
            # import pdb; pdb.set_trace()
            if args.KD_train:
                train_metrics = train_epoch(epoch,
                                            model,
                                            loader_train,
                                            optimizer,
                                            train_loss_fn,
                                            args,
                                            lr_scheduler=lr_scheduler,
                                            saver=saver,
                                            output_dir=output_dir,
                                            use_amp=use_amp,
                                            model_ema=model_ema,
                                            teacher_model=teacher_model)
            else:
                train_metrics = train_epoch(epoch,
                                            model,
                                            loader_train,
                                            optimizer,
                                            train_loss_fn,
                                            args,
                                            lr_scheduler=lr_scheduler,
                                            saver=saver,
                                            output_dir=output_dir,
                                            use_amp=use_amp,
                                            model_ema=model_ema)

            # def __init__(self, model, bits_activations=8, bits_parameters=8, bits_accum=32,
            #                 overrides=None, mode=LinearQuantMode.SYMMETRIC, clip_acts=ClipMode.NONE,
            #                 per_channel_wts=False, model_activation_stats=None, fp16=False, clip_n_stds=None,
            #                 scale_approx_mult_bits=None):
            # import distiller
            # import pdb; pdb.set_trace()
            # quantizer = quantization.PostTrainLinearQuantizer.from_args(model, args)
            # quantizer.prepare_model(distiller.get_dummy_input(input_shape=model.input_shape))
            # quantizer = distiller.quantization.PostTrainLinearQuantizer(model, bits_activations=8, bits_parameters=8)
            # quantizer.prepare_model()

            # distiller.utils.assign_layer_fq_names(model)
            # # msglogger.info("Generating quantization calibration stats based on {0} users".format(args.qe_calibration))
            # collector = distiller.data_loggers.QuantCalibrationStatsCollector(model)
            # with collector_context(collector):
            #     eval_metrics = validate(model, loader_eval, validate_loss_fn, args)
            #     # Here call your model evaluation function, making sure to execute only
            #     # the portion of the dataset specified by the qe_calibration argument
            # yaml_path = './dir/quantization_stats.yaml'
            # collector.save(yaml_path)

            eval_metrics = validate(model, loader_eval, validate_loss_fn, args)

            if model_ema is not None and not args.model_ema_force_cpu:
                ema_eval_metrics = validate(model_ema.ema,
                                            loader_eval,
                                            validate_loss_fn,
                                            args,
                                            log_suffix=' (EMA)')
                eval_metrics = ema_eval_metrics

            if lr_scheduler is not None:
                lr_scheduler.step(epoch, eval_metrics[eval_metric])

            update_summary(epoch,
                           train_metrics,
                           eval_metrics,
                           os.path.join(output_dir, 'summary.csv'),
                           write_header=best_metric is None)

            if saver is not None:
                # save proper checkpoint with eval metric
                save_metric = eval_metrics[eval_metric]
                best_metric, best_epoch = saver.save_checkpoint(
                    model,
                    optimizer,
                    args,
                    epoch=epoch + 1,
                    model_ema=model_ema,
                    metric=save_metric)

    except KeyboardInterrupt:
        pass
    if best_metric is not None:
        logging.info('*** Best metric: {0} (epoch {1})'.format(
            best_metric, best_epoch))
예제 #7
0
def main():
    get_logger("./")
    args = parser.parse_args()
    args.prefetcher = not args.no_prefetcher
    args.distributed = False
    if 'WORLD_SIZE' in os.environ:
        args.distributed = int(os.environ['WORLD_SIZE']) > 1
        if args.distributed and args.num_gpu > 1:
            logging.warning(
                'Using more than one GPU per process in distributed mode is not allowed. Setting num_gpu to 1.'
            )
            args.num_gpu = 1

    args.device = 'cuda:0'
    args.world_size = 1
    args.rank = 0  # global rank
    if args.distributed:
        args.num_gpu = 1
        args.device = 'cuda:%d' % args.local_rank
        torch.cuda.set_device(args.local_rank)
        torch.distributed.init_process_group(backend='nccl',
                                             init_method='env://')
        args.world_size = torch.distributed.get_world_size()
        args.rank = torch.distributed.get_rank()
    assert args.rank >= 0

    if args.distributed:
        logging.info(
            'Training in distributed mode with multiple processes, 1 GPU per process. Process %d, total %d.'
            % (args.rank, args.world_size))
    else:
        logging.info('Training with a single process on %d GPUs.' %
                     args.num_gpu)
    logging.info("Exponential : {}".format(args.model_ema_decay))
    logging.info("Color Jitter : {}".format(args.color_jitter))
    logging.info("Model EMA Decay : {}".format(args.model_ema_decay))

    torch.manual_seed(args.seed + args.rank)
    model = eval(args.model)(config_path=args.config_path,
                             target_flops=args.target_flops,
                             num_classes=args.num_classes,
                             bn_momentum=args.bn_momentum,
                             activation=args.activation,
                             se=args.se)

    if os.path.exists(args.initial_checkpoint):
        load_checkpoint(model, args.initial_checkpoint)

    if args.local_rank == 0:
        logging.info('Model %s created, param count: %d' %
                     (args.model, sum([m.numel()
                                       for m in model.parameters()])))

    data_config = resolve_data_config(vars(args),
                                      model=model,
                                      verbose=args.local_rank == 0)

    # optionally resume from a checkpoint
    optimizer_state = None
    resume_epoch = None
    if args.resume:
        optimizer_state, resume_epoch = resume_checkpoint(model, args.resume)

    if args.num_gpu > 1:
        if args.amp:
            logging.warning(
                'AMP does not work well with nn.DataParallel, disabling. Use distributed mode for multi-GPU AMP.'
            )
            args.amp = False
        model = nn.DataParallel(model,
                                device_ids=list(range(args.num_gpu))).cuda()
    else:
        model.cuda()

    logging.info(args.weight_decay)
    optimizer = create_optimizer(args, model)
    if optimizer_state is not None:
        optimizer.load_state_dict(optimizer_state["optimizer"])

    use_amp = False
    if has_apex and args.amp:
        model, optimizer = amp.initialize(model, optimizer, opt_level='O1')
        use_amp = True
    if args.local_rank == 0:
        logging.info('NVIDIA APEX {}. AMP {}.'.format(
            'installed' if has_apex else 'not installed',
            'on' if use_amp else 'off'))

    model_ema = None
    if args.model_ema:
        # Important to create EMA model after cuda(), DP wrapper, and AMP but
        # before SyncBN and DDP wrapper
        model_ema = ModelEma(model,
                             decay=args.model_ema_decay,
                             device='cpu' if args.model_ema_force_cpu else '',
                             resume=args.resume)

    if args.distributed:
        if args.sync_bn:
            try:
                if has_apex:
                    model = convert_syncbn_model(model)
                else:
                    model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(
                        model)
                if args.local_rank == 0:
                    logging.info(
                        'Converted model to use Synchronized BatchNorm.')
            except Exception as e:
                logging.error(
                    'Failed to enable Synchronized BatchNorm. Install Apex or Torch >= 1.1'
                )
        if has_apex:
            model = DDP(model, delay_allreduce=True)
        else:
            if args.local_rank == 0:
                logging.info(
                    "Using torch DistributedDataParallel. Install NVIDIA Apex for Apex DDP."
                )
            # can use device str in Torch >= 1.1
            model = DDP(model, device_ids=[args.local_rank])
        # NOTE: EMA model does not need to be wrapped by DDP

    lr_scheduler, num_epochs = create_scheduler(args, optimizer)
    start_epoch = 0
    if args.start_epoch is not None:
        # a specified start_epoch will always override the resume epoch
        start_epoch = args.start_epoch
    elif resume_epoch is not None:
        start_epoch = resume_epoch
    if start_epoch > 0:
        lr_scheduler.step(start_epoch)

    if args.local_rank == 0:
        logging.info('Scheduled epochs: {}'.format(num_epochs))

    if args.lmdb:
        train_dir = os.path.join(args.data, 'train_lmdb', 'train.lmdb')
        dataset_train = ImageFolderLMDB(train_dir, None, None)
    else:
        train_dir = os.path.join(args.data, 'train')
        dataset_train = Dataset(train_dir)

    collate_fn = None
    if args.prefetcher and args.mixup > 0:
        collate_fn = FastCollateMixup(args.mixup, args.smoothing,
                                      args.num_classes)

    loader_train = create_loader(
        dataset_train,
        input_size=data_config['input_size'],
        batch_size=args.batch_size,
        is_training=True,
        use_prefetcher=args.prefetcher,
        rand_erase_prob=args.reprob,
        rand_erase_mode=args.remode,
        color_jitter=args.color_jitter,
        interpolation='random',
        # FIXME cleanly resolve this? data_config['interpolation'],
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
        collate_fn=collate_fn,
    )

    if args.lmdb:
        eval_dir = os.path.join(args.data, 'test_lmdb', 'test.lmdb')
        dataset_eval = ImageFolderLMDB(eval_dir, None, None)
    else:
        eval_dir = os.path.join(args.data, 'val')
        dataset_eval = Dataset(eval_dir)

    loader_eval = create_loader(
        dataset_eval,
        input_size=data_config['input_size'],
        batch_size=4 * args.batch_size,
        is_training=False,
        use_prefetcher=args.prefetcher,
        interpolation=data_config['interpolation'],
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
    )

    if args.mixup > 0.:
        # smoothing is handled with mixup label transform
        train_loss_fn = SoftTargetCrossEntropy().cuda()
        validate_loss_fn = nn.CrossEntropyLoss().cuda()
    elif args.smoothing:
        train_loss_fn = LabelSmoothingCrossEntropy(
            smoothing=args.smoothing).cuda()
        validate_loss_fn = nn.CrossEntropyLoss().cuda()
    else:
        train_loss_fn = nn.CrossEntropyLoss().cuda()
        validate_loss_fn = train_loss_fn

    eval_metric = args.eval_metric
    best_metric = None
    best_epoch = None
    saver = None
    output_dir = ''
    if args.local_rank == 0:
        output_base = args.output if args.output else './output'
        exp_name = '-'.join([
            datetime.now().strftime("%Y%m%d-%H%M%S"), args.model,
            str(data_config['input_size'][-1])
        ])
        output_dir = get_outdir(output_base, 'train', exp_name)
        decreasing = True if eval_metric == 'loss' else False
        saver = CheckpointSaver(checkpoint_dir=output_dir,
                                decreasing=decreasing)

    try:
        for epoch in range(start_epoch, num_epochs):
            if args.distributed:
                loader_train.sampler.set_epoch(epoch)

            train_metrics = train_epoch(epoch,
                                        model,
                                        loader_train,
                                        optimizer,
                                        train_loss_fn,
                                        args,
                                        lr_scheduler=lr_scheduler,
                                        saver=saver,
                                        output_dir=output_dir,
                                        use_amp=use_amp,
                                        model_ema=model_ema)

            eval_metrics = validate(model, loader_eval, validate_loss_fn, args)

            if model_ema is not None and not args.model_ema_force_cpu:
                ema_eval_metrics = validate(model_ema.ema,
                                            loader_eval,
                                            validate_loss_fn,
                                            args,
                                            log_suffix=' (EMA)')
                eval_metrics = ema_eval_metrics

            if lr_scheduler is not None:
                # step LR for next epoch
                lr_scheduler.step(epoch + 1, eval_metrics[eval_metric])

            update_summary(epoch,
                           train_metrics,
                           eval_metrics,
                           os.path.join(output_dir, 'summary.csv'),
                           write_header=best_metric is None)

            if saver is not None:
                # save proper checkpoint with eval metric
                save_metric = eval_metrics[eval_metric]
                best_metric, best_epoch = saver.save_checkpoint(
                    model,
                    optimizer,
                    args,
                    epoch=epoch,
                    model_ema=model_ema,
                    metric=save_metric)

    except KeyboardInterrupt:
        pass
    if best_metric is not None:
        logging.info('*** Best metric: {0} (epoch {1})'.format(
            best_metric, best_epoch))
예제 #8
0
def main():
    setup_default_logging()
    args, args_text = _parse_args()

    args.prefetcher = not args.no_prefetcher
    args.distributed = False
    if 'WORLD_SIZE' in os.environ:
        args.distributed = int(os.environ['WORLD_SIZE']) > 1
        if args.distributed and args.num_gpu > 1:
            logging.warning(
                'Using more than one GPU per process in distributed mode is not allowed. Setting num_gpu to 1.'
            )
            args.num_gpu = 1

    args.device = 'cuda:0'
    args.world_size = 1
    args.rank = 0  # global rank
    if args.distributed:
        args.num_gpu = 1
        args.device = 'cuda:%d' % args.local_rank
        torch.cuda.set_device(args.local_rank)
        torch.distributed.init_process_group(backend='nccl',
                                             init_method='env://')
        args.world_size = torch.distributed.get_world_size()
        args.rank = torch.distributed.get_rank()
    assert args.rank >= 0
    DistributedManager.set_args(args)
    if args.distributed:
        logging.info(
            'Training in distributed mode with multiple processes, 1 GPU per process. Process %d, total %d.'
            % (args.rank, args.world_size))
    else:
        logging.info('Training with a single process on %d GPUs.' %
                     args.num_gpu)

    torch.manual_seed(args.seed + args.rank)

    model = create_model(args.model,
                         pretrained=args.pretrained,
                         num_classes=args.num_classes,
                         drop_rate=args.drop,
                         drop_connect_rate=args.drop_connect,
                         drop_path_rate=args.drop_path,
                         drop_block_rate=args.drop_block,
                         global_pool=args.gp,
                         bn_tf=args.bn_tf,
                         bn_momentum=args.bn_momentum,
                         bn_eps=args.bn_eps,
                         checkpoint_path=args.initial_checkpoint)

    if args.initial_checkpoint_pruned:
        try:
            data_config = resolve_data_config(vars(args),
                                              model=model,
                                              verbose=args.local_rank == 0)
            model2 = load_module_from_ckpt(
                model,
                args.initial_checkpoint_pruned,
                input_size=data_config['input_size'][1])
            logging.info("New pruned model adapted from the checkpoint")
        except Exception as e:
            raise RuntimeError(e)
    else:
        model2 = model

    if args.local_rank == 0:
        logging.info('Model %s created, param count: %d' %
                     (args.model, sum([m.numel()
                                       for m in model2.parameters()])))

    data_config = resolve_data_config(vars(args),
                                      model=model,
                                      verbose=args.local_rank == 0)

    num_aug_splits = 0
    if args.aug_splits > 0:
        assert args.aug_splits > 1, 'A split of 1 makes no sense'
        num_aug_splits = args.aug_splits

    if args.split_bn:
        assert num_aug_splits > 1 or args.resplit
        model = convert_splitbn_model(model, max(num_aug_splits, 2))

    if args.num_gpu > 1:
        model2 = nn.DataParallel(model2,
                                 device_ids=list(range(args.num_gpu))).cuda()
    else:
        model2.cuda()

    use_amp = False

    if args.distributed:
        model2 = nn.parallel.distributed.DistributedDataParallel(
            model2,
            device_ids=[args.local_rank])  # can use device str in Torch >= 1.1
        # NOTE: EMA model does not need to be wrapped by DDP

    train_dir = os.path.join(args.data, 'train')
    if not os.path.exists(train_dir):
        logging.error(
            'Training folder does not exist at: {}'.format(train_dir))
        exit(1)
    dataset_train = Dataset(train_dir)

    collate_fn = None
    if args.prefetcher and args.mixup > 0:
        collate_fn = FastCollateMixup(args.mixup, args.smoothing,
                                      args.num_classes)

    loader_train = create_loader(
        dataset_train,
        input_size=data_config['input_size'],
        batch_size=args.batch_size,
        is_training=True,
        use_prefetcher=args.prefetcher,
        re_prob=args.reprob,
        re_mode=args.remode,
        re_count=args.recount,
        re_split=args.resplit,
        color_jitter=args.color_jitter,
        auto_augment=args.aa,
        num_aug_splits=num_aug_splits,
        interpolation=args.train_interpolation,
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
        collate_fn=collate_fn,
        pin_memory=args.pin_mem,
    )

    eval_dir = os.path.join(args.data, 'val')
    if not os.path.isdir(eval_dir):
        eval_dir = os.path.join(args.data, 'validation')
        if not os.path.isdir(eval_dir):
            eval_dir = os.path.join(args.data, 'test')
            if not os.path.isdir(eval_dir):
                logging.error(
                    'Validation folder does not exist at: {}'.format(eval_dir))
                exit(1)

    test_dir = os.path.join(args.data, 'test')
    if not os.path.isdir(test_dir):
        test_dir = os.path.join(args.data, 'validation')
        if not os.path.isdir(test_dir):
            test_dir = os.path.join(args.data, 'val')
            if not os.path.isdir(test_dir):
                logging.error(
                    'Test folder does not exist at: {}'.format(test_dir))
                exit(1)

    dataset_eval = Dataset(eval_dir)
    if args.prune_test:
        dataset_test = Dataset(test_dir)
    else:
        dataset_test = Dataset(train_dir)
    loader_eval = create_loader(
        dataset_eval,
        input_size=data_config['input_size'],
        batch_size=args.validation_batch_size_multiplier * args.batch_size,
        is_training=False,
        use_prefetcher=args.prefetcher,
        interpolation=data_config['interpolation'],
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
        crop_pct=data_config['crop_pct'],
        pin_memory=args.pin_mem,
    )
    len_loader = int(
        len(loader_eval) * (4 * args.batch_size) / args.batch_size_prune)
    if args.prune_test:
        len_loader = None
    if args.prune:
        loader_p = create_loader(
            dataset_test,
            input_size=data_config['input_size'],
            batch_size=args.batch_size_prune,
            is_training=False,
            use_prefetcher=args.prefetcher,
            interpolation=data_config['interpolation'],
            mean=data_config['mean'],
            std=data_config['std'],
            num_workers=args.workers,
            distributed=args.distributed,
            crop_pct=data_config['crop_pct'],
            pin_memory=args.pin_mem,
        )
        if 'resnet' in model2.__class__.__name__.lower() or (
                hasattr(model2, 'module')
                and 'resnet' in model2.module.__class__.__name__.lower()):
            list_channel_to_prune = compute_num_channels_per_layer_taylor(
                model2,
                data_config['input_size'],
                loader_p,
                pruning_ratio=args.pruning_ratio,
                taylor_file=args.taylor_file,
                local_rank=args.local_rank,
                len_data_loader=len_loader,
                prune_skip=args.prune_skip,
                taylor_abs=args.taylor_abs,
                prune_conv1=args.prune_conv1,
                use_time=args.use_time,
                distributed=args.distributed)
            new_net = redesign_module_resnet(
                model2,
                list_channel_to_prune,
                use_amp=use_amp,
                distributed=args.distributed,
                local_rank=args.local_rank,
                input_size=data_config['input_size'][1])
        else:
            list_channel_to_prune = compute_num_channels_per_layer_taylor(
                model2,
                data_config['input_size'],
                loader_p,
                pruning_ratio=args.pruning_ratio,
                taylor_file=args.taylor_file,
                local_rank=args.local_rank,
                len_data_loader=len_loader,
                prune_pwl=not args.no_pwl,
                taylor_abs=args.taylor_abs,
                use_se=not args.use_eca,
                use_time=args.use_time,
                distributed=args.distributed)
            new_net = redesign_module_efnet(
                model2,
                list_channel_to_prune,
                use_amp=use_amp,
                distributed=args.distributed,
                local_rank=args.local_rank,
                input_size=data_config['input_size'][1],
                use_se=not args.use_eca)

        new_net.train()
        model.train()
        if isinstance(model, nn.DataParallel) or isinstance(model, DDP):
            model = model.module
        else:
            model = model.cuda()

        co_mod = build_co_train_model(
            model,
            new_net.module.cpu() if hasattr(new_net, 'module') else new_net,
            gamma=args.gamma_knowledge,
            only_last=args.only_last,
            progressive_IKD_factor=args.progressive_IKD_factor)
        optimizer = create_optimizer(args, co_mod)

        del model
        del new_net
        gc.collect()
        torch.cuda.empty_cache()

        if args.num_gpu > 1:
            if args.amp:
                logging.warning(
                    'AMP does not work well with nn.DataParallel, disabling. Use distributed mode for multi-GPU AMP.'
                )
                args.amp = False
            co_mod = nn.DataParallel(co_mod,
                                     device_ids=list(range(
                                         args.num_gpu))).cuda()
        else:
            co_mod = co_mod.cuda()

        use_amp = False
        if has_apex and args.amp:
            co_mod, optimizer = amp.initialize(co_mod,
                                               optimizer,
                                               opt_level='O1')
            use_amp = True
        if args.local_rank == 0:
            logging.info('NVIDIA APEX {}. AMP {}.'.format(
                'installed' if has_apex else 'not installed',
                'on' if use_amp else 'off'))

        if args.distributed:
            if args.sync_bn:
                try:
                    if has_apex and use_amp:
                        co_mod = convert_syncbn_model(co_mod)
                    else:
                        co_mod = torch.nn.SyncBatchNorm.convert_sync_batchnorm(
                            co_mod)
                    if args.local_rank == 0:
                        logging.info(
                            'Converted model to use Synchronized BatchNorm.')
                except Exception as e:
                    logging.error(
                        'Failed to enable Synchronized BatchNorm. Install Apex or Torch >= 1.1'
                    )
            if has_apex and use_amp:
                co_mod = DDP(co_mod, delay_allreduce=False)
            else:
                if args.local_rank == 0 and use_amp:
                    logging.info(
                        "Using torch DistributedDataParallel. Install NVIDIA Apex for Apex DDP."
                    )
                co_mod = nn.parallel.distributed.DistributedDataParallel(
                    co_mod,
                    device_ids=[args.local_rank
                                ])  # can use device str in Torch >= 1.1
            # NOTE: EMA model does not need to be wrapped by DDP
            co_mod.train()

        lr_scheduler, num_epochs = create_scheduler(args, optimizer)
        start_epoch = 0
        if args.start_epoch is not None:
            # a specified start_epoch will always override the resume epoch
            start_epoch = args.start_epoch
        if lr_scheduler is not None and start_epoch > 0:
            lr_scheduler.step(start_epoch)

    if args.jsd:
        assert num_aug_splits > 1  # JSD only valid with aug splits set
        train_loss_fn = JsdCrossEntropy(num_splits=num_aug_splits,
                                        smoothing=args.smoothing).cuda()
        validate_loss_fn = nn.CrossEntropyLoss().cuda()
    elif args.mixup > 0.:
        # smoothing is handled with mixup label transform
        train_loss_fn = SoftTargetCrossEntropy().cuda()
        validate_loss_fn = nn.CrossEntropyLoss().cuda()
    elif args.smoothing:
        train_loss_fn = LabelSmoothingCrossEntropy(
            smoothing=args.smoothing).cuda()
        validate_loss_fn = nn.CrossEntropyLoss().cuda()
    else:
        train_loss_fn = nn.CrossEntropyLoss().cuda()
        validate_loss_fn = train_loss_fn

    eval_metric = args.eval_metric
    best_metric = None
    best_epoch = None
    saver = None
    output_dir = ''
    if args.local_rank == 0:
        output_base = args.output if args.output else './output'
        exp_name = '-'.join([
            datetime.now().strftime("%Y%m%d-%H%M%S"), args.model,
            str(data_config['input_size'][-1])
        ])
        output_dir = get_outdir(output_base, 'train', exp_name)
        decreasing = True if eval_metric == 'loss' else False
        saver = CheckpointSaver(checkpoint_dir=output_dir,
                                decreasing=decreasing)
        with open(os.path.join(output_dir, 'args.yaml'), 'w') as f:
            f.write(args_text)

    try:
        if args.local_rank == 0:
            logging.info(f'First validation')
        co_mod.eval()
        eval_metrics = validate(co_mod, loader_eval, validate_loss_fn, args)
        if args.local_rank == 0:
            logging.info(f'Prec@top1 : {eval_metrics["prec1"]}')
        co_mod.train()
        for epoch in range(start_epoch, num_epochs):
            torch.cuda.empty_cache()
            if args.distributed:
                loader_train.sampler.set_epoch(epoch)

            train_metrics = train_epoch(epoch,
                                        co_mod,
                                        loader_train,
                                        optimizer,
                                        train_loss_fn,
                                        args,
                                        lr_scheduler=lr_scheduler,
                                        saver=saver,
                                        output_dir=output_dir,
                                        use_amp=use_amp,
                                        model_ema=None)
            torch.cuda.empty_cache()
            eval_metrics = validate(co_mod, loader_eval, validate_loss_fn,
                                    args)

            if lr_scheduler is not None:
                # step LR for next epoch
                lr_scheduler.step(epoch + 1, eval_metrics[eval_metric])

            update_summary(epoch,
                           train_metrics,
                           eval_metrics,
                           os.path.join(output_dir, 'summary.csv'),
                           write_header=best_metric is None)

            if saver is not None:
                # save proper checkpoint with eval metric
                save_metric = eval_metrics[eval_metric]
                best_metric, best_epoch = saver.save_checkpoint(
                    co_mod,
                    optimizer,
                    args,
                    epoch=epoch,
                    model_ema=None,
                    metric=save_metric,
                    use_amp=use_amp)

    except KeyboardInterrupt:
        pass
    if best_metric is not None:
        logging.info('*** Best metric: {0} (epoch {1})'.format(
            best_metric, best_epoch))
def train_imagenet_dq():
    setup_default_logging()
    args = parser.parse_args()
    args.prefetcher = not args.no_prefetcher
    args.distributed = False
    if 'WORLD_SIZE' in os.environ:
        args.distributed = int(os.environ['WORLD_SIZE']) > 1
        if args.distributed and args.num_gpu > 1:
            logging.warning('Using more than one GPU per process in distributed mode is not allowed. Setting num_gpu to 1.')
            args.num_gpu = 1

    args.device = xm.xla_device()
    args.world_size = 1
    args.rank = 0  # global rank
    if args.distributed:
        args.num_gpu = 1
        args.device = 'cuda:%d' % args.local_rank
        torch.cuda.set_device(args.local_rank)
        torch.distributed.init_process_group(backend='nccl', init_method='env://')
        args.world_size = torch.distributed.get_world_size()
        args.rank = torch.distributed.get_rank()
    assert args.rank >= 0

    if args.distributed:
        logging.info('Training in distributed mode with multiple processes, 1 GPU per process. Process %d, total %d.'
                     % (args.rank, args.world_size))
    else:
        logging.info('Training with a single process on %d GPUs.' % args.num_gpu)

    torch.manual_seed(args.seed + args.rank)
    device = xm.xla_device()
    model = create_model(
        args.model,
        pretrained=args.pretrained,
        num_classes=args.num_classes,
        drop_rate=args.drop,
        global_pool=args.gp,
        bn_tf=args.bn_tf,
        bn_momentum=args.bn_momentum,
        bn_eps=args.bn_eps,
        drop_connect_rate=0.2,
        checkpoint_path=args.initial_checkpoint,
        args = args).to(device)
    flops, params = get_model_complexity_info(model, (3, 224, 224), as_strings=True, print_per_layer_stat=args.display_info)
    print('Flops:  ' + flops)
    print('Params: ' + params)
    if args.KD_train:
        teacher_model = create_model(
            "efficientnet_b7_dq",
            pretrained=True,
            num_classes=args.num_classes,
            drop_rate=args.drop,
            global_pool=args.gp,
            bn_tf=args.bn_tf,
            bn_momentum=args.bn_momentum,
            bn_eps=args.bn_eps,
            drop_connect_rate=0.2,
            checkpoint_path=args.initial_checkpoint,
            args = args)
        


        flops_teacher, params_teacher = get_model_complexity_info(teacher_model, (3, 224, 224), as_strings=True, print_per_layer_stat=False)
        print("Using KD training...")
        print("FLOPs of teacher model: ", flops_teacher)
        print("Params of teacher model: ", params_teacher)

    if args.local_rank == 0:
        logging.info('Model %s created, param count: %d' %
                     (args.model, sum([m.numel() for m in model.parameters()])))

    data_config = resolve_data_config(model, args, verbose=args.local_rank == 0)

    # optionally resume from a checkpoint
    start_epoch = 0
    optimizer_state = None
    if args.resume:
        optimizer_state, start_epoch = resume_checkpoint(model, args.resume, args.start_epoch)
        # import pdb;pdb.set_trace()
    torch.manual_seed(42)
    if args.num_gpu > 1:
        if args.amp:
            logging.warning(
                'AMP does not work well with nn.DataParallel, disabling. Use distributed mode for multi-GPU AMP.')
            args.amp = False
        # device = xm.xla_device()
        # devices = (
        #     xm.get_xla_supported_devices(
        #     max_devices=num_cores) if num_cores != 0 else [])
        # model = nn.DataParallel(model, device_ids=devices).cuda()
        # model = model.to(device)
        if args.KD_train:
            teacher_model = nn.DataParallel(teacher_model, device_ids=list(range(args.num_gpu))).cuda()
    else:
        # device = xm.xla_device()
        # model = model.to(device)
        if args.KD_train:
            teacher_model.cuda()

    optimizer = create_optimizer(args, model)
    if optimizer_state is not None:
        optimizer.load_state_dict(optimizer_state)

    use_amp = False
    if has_apex and args.amp:
        model, optimizer = amp.initialize(model, optimizer, opt_level='O1')
        use_amp = True
    if args.local_rank == 0:
        logging.info('NVIDIA APEX {}. AMP {}.'.format(
            'installed' if has_apex else 'not installed', 'on' if use_amp else 'off'))

    model_ema = None
    if args.model_ema:
        # Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
        # import pdb; pdb.set_trace()
        model_e = create_model(
            args.model,
            pretrained=args.pretrained,
            num_classes=args.num_classes,
            drop_rate=args.drop,
            global_pool=args.gp,
            bn_tf=args.bn_tf,
            bn_momentum=args.bn_momentum,
            bn_eps=args.bn_eps,
            drop_connect_rate=0.2,
            checkpoint_path=args.initial_checkpoint,
            args = args).to(device)
        model_ema = ModelEma(
            model_e,
            decay=args.model_ema_decay,
            device='cpu' if args.model_ema_force_cpu else '',
            resume=args.resume)

    if args.distributed:
        if args.sync_bn:
            try:
                if has_apex:
                    model = convert_syncbn_model(model)
                else:
                    model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
                if args.local_rank == 0:
                    logging.info('Converted model to use Synchronized BatchNorm.')
            except Exception as e:
                logging.error('Failed to enable Synchronized BatchNorm. Install Apex or Torch >= 1.1')
        if has_apex:
            model = DDP(model, delay_allreduce=True)
        else:
            if args.local_rank == 0:
                logging.info("Using torch DistributedDataParallel. Install NVIDIA Apex for Apex DDP.")
            model = DDP(model, device_ids=[args.local_rank])  # can use device str in Torch >= 1.1
        # NOTE: EMA model does not need to be wrapped by DDP

    lr_scheduler, num_epochs = create_scheduler(args, optimizer)
    if start_epoch > 0:
        lr_scheduler.step(start_epoch)
    if args.local_rank == 0:
        logging.info('Scheduled epochs: {}'.format(num_epochs))

    train_dir = os.path.join(args.data, 'train')
    if not os.path.exists(train_dir):
        logging.error('Training folder does not exist at: {}'.format(train_dir))
        exit(1)
    dataset_train = Dataset(train_dir)

    collate_fn = None
    if args.prefetcher and args.mixup > 0:
        collate_fn = FastCollateMixup(args.mixup, args.smoothing, args.num_classes)

    if args.auto_augment:
        print('using auto data augumentation...')
    loader_train = create_loader(
        dataset_train,
        input_size=data_config['input_size'],
        batch_size=args.batch_size,
        is_training=True,
        use_prefetcher=args.prefetcher,
        rand_erase_prob=args.reprob,
        rand_erase_mode=args.remode,
        interpolation='bicubic',  # FIXME cleanly resolve this? data_config['interpolation'],
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
        collate_fn=collate_fn,
        use_auto_aug=args.auto_augment,
        use_mixcut=args.mixcut,
    )

    eval_dir = os.path.join(args.data, 'val')
    if not os.path.isdir(eval_dir):
        logging.error('Validation folder does not exist at: {}'.format(eval_dir))
        exit(1)
    dataset_eval = Dataset(eval_dir)

    loader_eval = create_loader(
        dataset_eval,
        input_size=data_config['input_size'],
        batch_size = args.batch_size,
        is_training=False,
        use_prefetcher=args.prefetcher,
        interpolation=data_config['interpolation'],
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
    )

    if args.mixup > 0.:
        # smoothing is handled with mixup label transform
        train_loss_fn = SoftTargetCrossEntropy()
        validate_loss_fn = nn.CrossEntropyLoss()
    elif args.smoothing:
        train_loss_fn = LabelSmoothingCrossEntropy(smoothing=args.smoothing)
        validate_loss_fn = nn.CrossEntropyLoss()
    else:
        train_loss_fn = nn.CrossEntropyLoss()
        validate_loss_fn = train_loss_fn
    if args.KD_train:
        train_loss_fn = nn.KLDivLoss(reduction='batchmean')

    eval_metric = args.eval_metric
    best_metric = None
    best_epoch = None
    saver = None
    output_dir = ''
    if args.local_rank == 0:
        output_base = args.output if args.output else './output'
        exp_name = '-'.join([
            datetime.now().strftime("%Y%m%d-%H%M%S"),
            args.model,
            str(data_config['input_size'][-1])
        ])
        output_dir = get_outdir(output_base, 'train', exp_name)
        decreasing = True if eval_metric == 'loss' else False
        saver = CheckpointSaver(checkpoint_dir=output_dir, decreasing=decreasing)
    def train_epoch(
            epoch, model, loader, optimizer, loss_fn, args,
            lr_scheduler=None, saver=None, output_dir='', use_amp=False, model_ema=None, teacher_model = None, loader_len=0):

        if args.prefetcher and args.mixup > 0 and loader.mixup_enabled:
            if args.mixup_off_epoch and epoch >= args.mixup_off_epoch:
                loader.mixup_enabled = False

        batch_time_m = AverageMeter()
        data_time_m = AverageMeter()
        losses_m = AverageMeter()

        model.train()
        if args.KD_train:
            teacher_model.eval()

        end = time.time()
        last_idx = loader_len - 1
        num_updates = epoch * loader_len
        for batch_idx, (input, target) in loader:
            last_batch = batch_idx == last_idx
            data_time_m.update(time.time() - end)
            if not args.prefetcher:
                # input = input.cuda()
                # target = target.cuda()
                if args.mixup > 0.:
                    lam = 1.
                    if not args.mixup_off_epoch or epoch < args.mixup_off_epoch:
                        lam = np.random.beta(args.mixup, args.mixup)
                    input.mul_(lam).add_(1 - lam, input.flip(0))
                    target = mixup_target(target, args.num_classes, lam, args.smoothing)

            r = np.random.rand(1)
            if args.beta > 0 and r < args.cutmix_prob:
                # generate mixed sample
                lam = np.random.beta(args.beta, args.beta)
                rand_index = torch.randperm(input.size()[0])
                target_a = target
                target_b = target[rand_index]
                bbx1, bby1, bbx2, bby2 = rand_bbox(input.size(), lam)
                input[:, :, bbx1:bbx2, bby1:bby2] = input[rand_index, :, bbx1:bbx2, bby1:bby2]
                # adjust lambda to exactly match pixel ratio
                lam = 1 - ((bbx2 - bbx1) * (bby2 - bby1) / (input.size()[-1] * input.size()[-2]))
                # compute output
                input_var = torch.autograd.Variable(input, requires_grad=True)
                target_a_var = torch.autograd.Variable(target_a)
                target_b_var = torch.autograd.Variable(target_b)
                output = model(input_var)
                loss = loss_fn(output, target_a_var) * lam + loss_fn(output, target_b_var) * (1. - lam)
            else:
                # NOTE KD Train is exclusive with mixcut, FIX it later
                output = model(input)
                if args.KD_train:
                    # teacher_model.cuda()
                    teacher_outputs_tmp = []
                    assert(input.shape[0]%args.teacher_step == 0)
                    step_size = int(input.shape[0]//args.teacher_step)
                    with torch.no_grad():
                        for k in range(0,int(input.shape[0]),step_size):
                            input_tmp = input[k:k+step_size,:,:,:]
                            teacher_outputs_tmp.append(teacher_model(input_tmp))
                            # torch.cuda.empty_cache()
                    # import pdb; pdb.set_trace()
                    teacher_outputs = torch.cat(teacher_outputs_tmp)
                    alpha = args.KD_alpha
                    T = args.KD_temperature
                    loss = loss_fn(F.log_softmax(output/T, dim=1),
                                    F.softmax(teacher_outputs/T, dim=1)) * (alpha * T * T) + \
                    F.cross_entropy(output, target) * (1. - alpha)
                else:
                    loss = loss_fn(output, target)
            if not args.distributed:
                losses_m.update(loss.item(), input.size(0))

            optimizer.zero_grad()
            if use_amp:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()
            #optimizer.step()
            xm.optimizer_step(optimizer)

            # torch.cuda.synchronize()
            if model_ema is not None:
                model_ema.update(model)
            num_updates += 1

            batch_time_m.update(time.time() - end)
            if last_batch or batch_idx % args.log_interval == 0:
                lrl = [param_group['lr'] for param_group in optimizer.param_groups]
                lr = sum(lrl) / len(lrl)

                if args.distributed:
                    reduced_loss = reduce_tensor(loss.data, args.world_size)
                    losses_m.update(reduced_loss.item(), input.size(0))

                if args.local_rank == 0:
                    logging.info(
                        'Train: {} [{:>4d}/{} ({:>3.0f}%)]  '
                        'Loss: {loss.val:>9.6f} ({loss.avg:>6.4f})  '
                        'Time: {batch_time.val:.3f}s, {rate:>7.2f}/s  '
                        '({batch_time.avg:.3f}s, {rate_avg:>7.2f}/s)  '
                        'LR: {lr:.3e}  '
                        'Data: {data_time.val:.3f} ({data_time.avg:.3f})'.format(
                            epoch,
                            batch_idx, loader_len,
                            100. * batch_idx / last_idx,
                            loss=losses_m,
                            batch_time=batch_time_m,
                            rate=input.size(0) * args.world_size / batch_time_m.val,
                            rate_avg=input.size(0) * args.world_size / batch_time_m.avg,
                            lr=lr,
                            data_time=data_time_m))

                    if args.save_images and output_dir:
                        torchvision.utils.save_image(
                            input,
                            os.path.join(output_dir, 'train-batch-%d.jpg' % batch_idx),
                            padding=0,
                            normalize=True)

            if saver is not None and args.recovery_interval and (
                    last_batch or (batch_idx + 1) % args.recovery_interval == 0):
                save_epoch = epoch + 1 if last_batch else epoch
                saver.save_recovery(
                    model, optimizer, args, save_epoch, model_ema=model_ema, batch_idx=batch_idx)

            if lr_scheduler is not None:
                lr_scheduler.step_update(num_updates=num_updates, metric=losses_m.avg)

            end = time.time()

        return OrderedDict([('loss', losses_m.avg)])


    def validate(model, loader, loss_fn, args, log_suffix='',loader_len=0):
        batch_time_m = AverageMeter()
        losses_m = AverageMeter()
        prec1_m = AverageMeter()
        prec5_m = AverageMeter()

        model.eval()

        end = time.time()
        last_idx = loader_len - 1
        with torch.no_grad():
            for batch_idx, (input, target) in loader:
                last_batch = batch_idx == last_idx
                # if not args.prefetcher:
                #     input = input.cuda()
                #     target = target.cuda()

                output = model(input)
                if isinstance(output, (tuple, list)):
                    output = output[0]

                # augmentation reduction
                reduce_factor = args.tta
                if reduce_factor > 1:
                    output = output.unfold(0, reduce_factor, reduce_factor).mean(dim=2)
                    target = target[0:target.size(0):reduce_factor]

                loss = loss_fn(output, target)
                prec1, prec5 = accuracy(output, target, topk=(1, 5))

                if args.distributed:
                    reduced_loss = reduce_tensor(loss.data, args.world_size)
                    prec1 = reduce_tensor(prec1, args.world_size)
                    prec5 = reduce_tensor(prec5, args.world_size)
                else:
                    reduced_loss = loss.data

                # torch.cuda.synchronize()

                losses_m.update(reduced_loss.item(), input.size(0))
                prec1_m.update(prec1.item(), output.size(0))
                prec5_m.update(prec5.item(), output.size(0))

                batch_time_m.update(time.time() - end)
                end = time.time()
                if args.local_rank == 0 and (last_batch or batch_idx % args.log_interval == 0):
                    log_name = 'Test' + log_suffix
                    logging.info(
                        '{0}: [{1:>4d}/{2}]  '
                        'Time: {batch_time.val:.3f} ({batch_time.avg:.3f})  '
                        'Loss: {loss.val:>7.4f} ({loss.avg:>6.4f})  '
                        'Prec@1: {top1.val:>7.4f} ({top1.avg:>7.4f})  '
                        'Prec@5: {top5.val:>7.4f} ({top5.avg:>7.4f})'.format(
                            log_name, batch_idx, last_idx,
                            batch_time=batch_time_m, loss=losses_m,
                            top1=prec1_m, top5=prec5_m))

        metrics = OrderedDict([('loss', losses_m.avg), ('prec1', prec1_m.avg), ('prec5', prec5_m.avg)])

        return metrics
    try:
        # import pdb;pdb.set_trace()
        for epoch in range(start_epoch, num_epochs):
            loader_len=len(loader_train)
            if args.distributed:
                loader_train.sampler.set_epoch(epoch)
            # import pdb; pdb.set_trace()
            if args.KD_train:
                train_metrics = train_epoch(
                    epoch, model, loader_train, optimizer, train_loss_fn, args,
                    lr_scheduler=lr_scheduler, saver=saver, output_dir=output_dir,
                    use_amp=use_amp, model_ema=model_ema, teacher_model = teacher_model)
            else:
                para_loader = dp.ParallelLoader(loader_train, [device])
                train_metrics = train_epoch(
                    epoch, model, para_loader.per_device_loader(device), optimizer, train_loss_fn, args,
                    lr_scheduler=lr_scheduler, saver=saver, output_dir=output_dir,
                    use_amp=use_amp, model_ema=model_ema, loader_len=loader_len)

            # def __init__(self, model, bits_activations=8, bits_parameters=8, bits_accum=32,
            #                 overrides=None, mode=LinearQuantMode.SYMMETRIC, clip_acts=ClipMode.NONE,
            #                 per_channel_wts=False, model_activation_stats=None, fp16=False, clip_n_stds=None,
            #                 scale_approx_mult_bits=None):
            # import distiller
            # import pdb; pdb.set_trace()
            # quantizer = quantization.PostTrainLinearQuantizer.from_args(model, args)
            # quantizer.prepare_model(distiller.get_dummy_input(input_shape=model.input_shape))
            # quantizer = distiller.quantization.PostTrainLinearQuantizer(model, bits_activations=8, bits_parameters=8)
            # quantizer.prepare_model()

            # distiller.utils.assign_layer_fq_names(model)
            # # msglogger.info("Generating quantization calibration stats based on {0} users".format(args.qe_calibration))
            # collector = distiller.data_loggers.QuantCalibrationStatsCollector(model)
            # with collector_context(collector):
            #     eval_metrics = validate(model, loader_eval, validate_loss_fn, args)
            #     # Here call your model evaluation function, making sure to execute only
            #     # the portion of the dataset specified by the qe_calibration argument
            # yaml_path = './dir/quantization_stats.yaml'
            # collector.save(yaml_path)
            loader_len_val = len(loader_eval)
            para_loader = dp.ParallelLoader(loader_eval, [device])
            eval_metrics = validate(model, para_loader.per_device_loader(device), validate_loss_fn, args, loader_len=loader_len_val)

            if model_ema is not None and not args.model_ema_force_cpu:
                ema_eval_metrics = validate(model_ema.ema, loader_eval, validate_loss_fn, args, log_suffix=' (EMA)')
                eval_metrics = ema_eval_metrics

            if lr_scheduler is not None:
                lr_scheduler.step(epoch, eval_metrics[eval_metric])

            update_summary(
                epoch, train_metrics, eval_metrics, os.path.join(output_dir, 'summary.csv'),
                write_header=best_metric is None)

            if saver is not None:
                # save proper checkpoint with eval metric
                save_metric = eval_metrics[eval_metric]
                best_metric, best_epoch = saver.save_checkpoint(
                    model, optimizer, args,
                    epoch=epoch + 1,
                    model_ema=model_ema,
                    metric=save_metric)

    except KeyboardInterrupt:
        pass
    if best_metric is not None:
        logging.info('*** Best metric: {0} (epoch {1})'.format(best_metric, best_epoch))
예제 #10
0
def main():
    setup_default_logging()
    args, args_text = _parse_args()

    args.prefetcher = not args.no_prefetcher
    args.distributed = False
    if 'WORLD_SIZE' in os.environ:
        args.distributed = int(os.environ['WORLD_SIZE']) > 1
    args.device = 'cuda:0'
    args.world_size = 1
    args.rank = 0  # global rank
    if args.distributed:
        args.device = 'cuda:%d' % args.local_rank
        torch.cuda.set_device(args.local_rank)
        torch.distributed.init_process_group(backend='nccl', init_method='env://')
        args.world_size = torch.distributed.get_world_size()
        args.rank = torch.distributed.get_rank()
        _logger.info('Training in distributed mode with multiple processes, 1 GPU per process. Process %d, total %d.'
                     % (args.rank, args.world_size))
    else:
        _logger.info('Training with a single process on 1 GPUs.')
    assert args.rank >= 0

    if args.control_amp == 'amp':
        args.amp = True
    elif args.control_amp == 'apex':
        args.apex_amp = True
    elif args.control_amp == 'native':
        args.native_amp = True

    # resolve AMP arguments based on PyTorch / Apex availability
    use_amp = None
    if args.amp:
        # for backwards compat, `--amp` arg tries apex before native amp
        if has_apex:
            args.apex_amp = True
        elif has_native_amp:
            args.native_amp = True
    if args.apex_amp and has_apex:
        use_amp = 'apex'
    elif args.native_amp and has_native_amp:
        use_amp = 'native'
    elif args.apex_amp or args.native_amp:
        _logger.warning("Neither APEX or native Torch AMP is available, using float32. "
                        "Install NVIDA apex or upgrade to PyTorch 1.6")

    _logger.info(
        '====================\n\n'
        'Actfun: {}\n'
        'LR: {}\n'
        'Epochs: {}\n'
        'p: {}\n'
        'k: {}\n'
        'g: {}\n'
        'Extra channel multiplier: {}\n'
        'AMP: {}\n'
        'Weight Init: {}\n'
        '\n===================='.format(args.actfun, args.lr, args.epochs, args.p, args.k, args.g,
                                        args.extra_channel_mult, use_amp, args.weight_init))

    torch.manual_seed(args.seed + args.rank)

    model = create_model(
        args.model,
        pretrained=args.pretrained,
        actfun=args.actfun,
        num_classes=args.num_classes,
        drop_rate=args.drop,
        drop_connect_rate=args.drop_connect,  # DEPRECATED, use drop_path
        drop_path_rate=args.drop_path,
        drop_block_rate=args.drop_block,
        global_pool=args.gp,
        bn_tf=args.bn_tf,
        bn_momentum=args.bn_momentum,
        bn_eps=args.bn_eps,
        scriptable=args.torchscript,
        checkpoint_path=args.initial_checkpoint,
        p=args.p,
        k=args.k,
        g=args.g,
        extra_channel_mult=args.extra_channel_mult,
        weight_init_name=args.weight_init,
        partial_ho_actfun=args.partial_ho_actfun
    )

    if args.tl:
        if args.data == 'caltech101' and not os.path.exists('caltech101'):
            dir_root = r'101_ObjectCategories'
            dir_new = r'caltech101'
            dir_new_train = os.path.join(dir_new, 'train')
            dir_new_val = os.path.join(dir_new, 'val')
            dir_new_test = os.path.join(dir_new, 'test')
            if not os.path.exists(dir_new):
                os.mkdir(dir_new)
                os.mkdir(dir_new_train)
                os.mkdir(dir_new_val)
                os.mkdir(dir_new_test)

            for dir2 in os.listdir(dir_root):
                if dir2 != 'BACKGROUND_Google':
                    curr_path = os.path.join(dir_root, dir2)
                    new_path_train = os.path.join(dir_new_train, dir2)
                    new_path_val = os.path.join(dir_new_val, dir2)
                    new_path_test = os.path.join(dir_new_test, dir2)
                    if not os.path.exists(new_path_train):
                        os.mkdir(new_path_train)
                    if not os.path.exists(new_path_val):
                        os.mkdir(new_path_val)
                    if not os.path.exists(new_path_test):
                        os.mkdir(new_path_test)

                    train_upper = int(0.8 * len(os.listdir(curr_path)))
                    val_upper = int(0.9 * len(os.listdir(curr_path)))
                    curr_files_all = os.listdir(curr_path)
                    curr_files_train = curr_files_all[:train_upper]
                    curr_files_val = curr_files_all[train_upper:val_upper]
                    curr_files_test = curr_files_all[val_upper:]

                    for file in curr_files_train:
                        copyfile(os.path.join(curr_path, file),
                                 os.path.join(new_path_train, file))
                    for file in curr_files_val:
                        copyfile(os.path.join(curr_path, file),
                                 os.path.join(new_path_val, file))
                    for file in curr_files_test:
                        copyfile(os.path.join(curr_path, file),
                                 os.path.join(new_path_test, file))
        time.sleep(5)

    if args.tl:
        pre_model = create_model(
            args.model,
            pretrained=True,
            actfun='swish',
            num_classes=args.num_classes,
            drop_rate=args.drop,
            drop_connect_rate=args.drop_connect,  # DEPRECATED, use drop_path
            drop_path_rate=args.drop_path,
            drop_block_rate=args.drop_block,
            global_pool=args.gp,
            bn_tf=args.bn_tf,
            bn_momentum=args.bn_momentum,
            bn_eps=args.bn_eps,
            scriptable=args.torchscript,
            checkpoint_path=args.initial_checkpoint,
            p=args.p,
            k=args.k,
            g=args.g,
            extra_channel_mult=args.extra_channel_mult,
            weight_init_name=args.weight_init,
            partial_ho_actfun=args.partial_ho_actfun
        )
        model = MLP.MLP(actfun=args.actfun,
                        input_dim=1280,
                        output_dim=args.num_classes,
                        k=args.k,
                        p=args.p,
                        g=args.g,
                        num_params=400_000,
                        permute_type='shuffle')
        pre_model_layers = list(pre_model.children())
        pre_model = torch.nn.Sequential(*pre_model_layers[:-1])
    else:
        pre_model = None

    if args.local_rank == 0:
        _logger.info('Model %s created, param count: %d' %
                     (args.model, sum([m.numel() for m in model.parameters()])))

    data_config = resolve_data_config(vars(args), model=model, verbose=args.local_rank == 0)

    # setup augmentation batch splits for contrastive loss or split bn
    num_aug_splits = 0
    if args.aug_splits > 0:
        assert args.aug_splits > 1, 'A split of 1 makes no sense'
        num_aug_splits = args.aug_splits

    # enable split bn (separate bn stats per batch-portion)
    if args.split_bn:
        assert num_aug_splits > 1 or args.resplit
        model = convert_splitbn_model(model, max(num_aug_splits, 2))

    # move model to GPU, enable channels last layout if set
    model.cuda()
    if args.tl:
        pre_model.cuda()
    if args.channels_last:
        model = model.to(memory_format=torch.channels_last)

    # setup synchronized BatchNorm for distributed training
    if args.distributed and args.sync_bn:
        assert not args.split_bn
        if has_apex and use_amp != 'native':
            # Apex SyncBN preferred unless native amp is activated
            model = convert_syncbn_model(model)
        else:
            model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
        if args.local_rank == 0:
            _logger.info(
                'Converted model to use Synchronized BatchNorm. WARNING: You may have issues if using '
                'zero initialized BN layers (enabled by default for ResNets) while sync-bn enabled.')

    if args.torchscript:
        assert not use_amp == 'apex', 'Cannot use APEX AMP with torchscripted model'
        assert not args.sync_bn, 'Cannot use SyncBatchNorm with torchscripted model'
        model = torch.jit.script(model)

    if args.tl:
        optimizer = torch.optim.Adam(model.parameters(), weight_decay=1e-5)
    else:
        optimizer = create_optimizer(args, model)

    # setup automatic mixed-precision (AMP) loss scaling and op casting
    amp_autocast = suppress  # do nothing
    loss_scaler = None
    if use_amp == 'apex':
        model, optimizer = amp.initialize(model, optimizer, opt_level='O1')
        loss_scaler = ApexScaler()
        if args.local_rank == 0:
            _logger.info('Using NVIDIA APEX AMP. Training in mixed precision.')
    elif use_amp == 'native':
        amp_autocast = torch.cuda.amp.autocast
        loss_scaler = NativeScaler()
        if args.local_rank == 0:
            _logger.info('Using native Torch AMP. Training in mixed precision.')
    else:
        if args.local_rank == 0:
            _logger.info('AMP not enabled. Training in float32.')

    if args.local_rank == 0:
        _logger.info('\n--------------------\nModel:\n' + repr(model) + '--------------------')

    # optionally resume from a checkpoint
    resume_epoch = None
    resume_path = os.path.join(args.resume, 'recover.pth.tar')
    if args.resume and os.path.exists(resume_path):
        resume_epoch = resume_checkpoint(
            model, resume_path,
            optimizer=None if args.no_resume_opt else optimizer,
            loss_scaler=None if args.no_resume_opt else loss_scaler,
            log_info=args.local_rank == 0)

    cp_loaded = None
    resume_epoch = None
    checkname = 'recover'
    if args.actfun != 'swish':
        checkname = '{}_'.format(args.actfun) + checkname
    check_path = os.path.join(args.check_path, checkname) + '.pth'
    loader = None
    if os.path.isfile(check_path):
        loader = check_path
    elif args.load_path != '' and os.path.isfile(args.load_path):
        loader = args.load_path
    if loader is not None:
        cp_loaded = torch.load(loader)
        model.load_state_dict(cp_loaded['model'])
        optimizer.load_state_dict(cp_loaded['optimizer'])
        resume_epoch = cp_loaded['epoch']
        model.cuda()
        loss_scaler.load_state_dict(cp_loaded['amp'])
        if args.channels_last:
            model = model.to(memory_format=torch.channels_last)
        _logger.info('============ LOADED CHECKPOINT: Epoch {}'.format(resume_epoch))

    model_raw = model

    # setup exponential moving average of model weights, SWA could be used here too
    model_ema = None
    if args.model_ema:
        # Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
        model_ema = ModelEmaV2(
            model, decay=args.model_ema_decay, device='cpu' if args.model_ema_force_cpu else None)
        if args.resume and os.path.exists(resume_path):
            load_checkpoint(model_ema.module, args.resume, use_ema=True)
        if cp_loaded is not None:
            model_ema.load_state_dict(cp_loaded['model_ema'])

    # setup distributed training
    if args.distributed:
        if has_apex and use_amp != 'native':
            # Apex DDP preferred unless native amp is activated
            if args.local_rank == 0:
                _logger.info("Using NVIDIA APEX DistributedDataParallel.")
            model = ApexDDP(model, delay_allreduce=True)
        else:
            if args.local_rank == 0:
                _logger.info("Using native Torch DistributedDataParallel.")
            model = NativeDDP(model, device_ids=[args.local_rank])  # can use device str in Torch >= 1.1
        # NOTE: EMA model does not need to be wrapped by DDP

    # setup mixup / cutmix
    collate_fn = None
    mixup_fn = None
    mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
    if mixup_active:
        mixup_args = dict(
            mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax,
            prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode,
            label_smoothing=args.smoothing, num_classes=args.num_classes)
        if args.prefetcher:
            assert not num_aug_splits  # collate conflict (need to support deinterleaving in collate mixup)
            collate_fn = FastCollateMixup(**mixup_args)
        else:
            mixup_fn = Mixup(**mixup_args)

    # create the train and eval datasets
    train_dir = os.path.join(args.data, 'train')
    if not os.path.exists(train_dir):
        _logger.error('Training folder does not exist at: {}'.format(train_dir))
        exit(1)
    dataset_train = Dataset(train_dir)

    eval_dir = os.path.join(args.data, 'val')
    if not os.path.isdir(eval_dir):
        eval_dir = os.path.join(args.data, 'validation')
        if not os.path.isdir(eval_dir):
            _logger.error('Validation folder does not exist at: {}'.format(eval_dir))
            exit(1)
    dataset_eval = Dataset(eval_dir)

    # wrap dataset in AugMix helper
    if num_aug_splits > 1:
        dataset_train = AugMixDataset(dataset_train, num_splits=num_aug_splits)

    # create data loaders w/ augmentation pipeline
    train_interpolation = args.train_interpolation
    if args.no_aug or not train_interpolation:
        train_interpolation = data_config['interpolation']
    loader_train = create_loader(
        dataset_train,
        input_size=data_config['input_size'],
        batch_size=args.batch_size,
        is_training=True,
        use_prefetcher=args.prefetcher,
        no_aug=args.no_aug,
        re_prob=args.reprob,
        re_mode=args.remode,
        re_count=args.recount,
        re_split=args.resplit,
        scale=args.scale,
        ratio=args.ratio,
        hflip=args.hflip,
        vflip=args.vflip,
        color_jitter=args.color_jitter,
        auto_augment=args.aa,
        num_aug_splits=num_aug_splits,
        interpolation=train_interpolation,
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
        collate_fn=collate_fn,
        pin_memory=args.pin_mem,
        use_multi_epochs_loader=args.use_multi_epochs_loader
    )

    loader_eval = create_loader(
        dataset_eval,
        input_size=data_config['input_size'],
        batch_size=args.validation_batch_size_multiplier * args.batch_size,
        is_training=False,
        use_prefetcher=args.prefetcher,
        interpolation=data_config['interpolation'],
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
        crop_pct=data_config['crop_pct'],
        pin_memory=args.pin_mem,
    )

    # setup learning rate schedule and starting epoch
    lr_scheduler, num_epochs = create_scheduler(args, optimizer, dataset_train)
    start_epoch = 0
    if args.start_epoch is not None:
        # a specified start_epoch will always override the resume epoch
        start_epoch = args.start_epoch
    elif resume_epoch is not None:
        start_epoch = resume_epoch
    if lr_scheduler is not None and start_epoch > 0:
        lr_scheduler.step(start_epoch)
    if cp_loaded is not None:
        lr_scheduler.load_state_dict(cp_loaded['scheduler'])

    if args.local_rank == 0:
        _logger.info('Scheduled epochs: {}'.format(num_epochs))

    # setup loss function
    if args.jsd:
        assert num_aug_splits > 1  # JSD only valid with aug splits set
        train_loss_fn = JsdCrossEntropy(num_splits=num_aug_splits, smoothing=args.smoothing).cuda()
    elif mixup_active:
        # smoothing is handled with mixup target transform
        train_loss_fn = SoftTargetCrossEntropy().cuda()
    elif args.smoothing:
        train_loss_fn = LabelSmoothingCrossEntropy(smoothing=args.smoothing).cuda()
    else:
        train_loss_fn = nn.CrossEntropyLoss().cuda()
    validate_loss_fn = nn.CrossEntropyLoss().cuda()

    # setup checkpoint saver and eval metric tracking
    eval_metric = args.eval_metric
    best_metric = None
    best_epoch = None
    saver = None
    output_dir = ''
    if args.local_rank == 0:
        output_base = args.output if args.output else './output'
        exp_name = '-'.join([
            datetime.now().strftime("%Y%m%d-%H%M%S"),
            args.model,
            str(data_config['input_size'][-1])
        ])
        output_dir = get_outdir(output_base, 'train', exp_name)
        decreasing = True if eval_metric == 'loss' else False
        saver = CheckpointSaver(
            model=model, optimizer=optimizer, args=args, model_ema=model_ema, amp_scaler=loss_scaler,
            checkpoint_dir=output_dir, recovery_dir=args.resume, decreasing=decreasing)
        with open(os.path.join(output_dir, 'args.yaml'), 'w') as f:
            f.write(args_text)

    fieldnames = ['seed', 'weight_init', 'actfun', 'epoch', 'max_lr', 'lr', 'train_loss', 'eval_loss', 'eval_acc1', 'eval_acc5', 'ema']
    filename = 'output'
    if args.actfun != 'swish':
        filename = '{}_'.format(args.actfun) + filename
    outfile_path = os.path.join(args.output, filename) + '.csv'
    if not os.path.exists(outfile_path):
        with open(outfile_path, mode='w') as out_file:
            writer = csv.DictWriter(out_file, fieldnames=fieldnames, lineterminator='\n')
            writer.writeheader()

    try:
        for epoch in range(start_epoch, num_epochs):

            if os.path.exists(args.check_path):
                amp_loss = None
                if use_amp == 'native':
                    amp_loss = loss_scaler.state_dict()
                elif use_amp == 'apex':
                    amp_loss = amp.state_dict()
                if model_ema is not None:
                    ema_save = model_ema.state_dict()
                else:
                    ema_save = None

                torch.save({'model': model_raw.state_dict(),
                            'model_ema': ema_save,
                            'optimizer': optimizer.state_dict(),
                            'scheduler': lr_scheduler.state_dict(),
                            'epoch': epoch,
                            'amp': amp_loss
                            }, check_path)
                _logger.info('============ SAVED CHECKPOINT: Epoch {}'.format(epoch))

            if args.distributed:
                loader_train.sampler.set_epoch(epoch)

            train_metrics = train_epoch(
                epoch, model, loader_train, optimizer, train_loss_fn, args,
                lr_scheduler=lr_scheduler, saver=saver, output_dir=output_dir,
                amp_autocast=amp_autocast, loss_scaler=loss_scaler, model_ema=model_ema, mixup_fn=mixup_fn,
                pre_model=pre_model)

            if args.distributed and args.dist_bn in ('broadcast', 'reduce'):
                if args.local_rank == 0:
                    _logger.info("Distributing BatchNorm running means and vars")
                distribute_bn(model, args.world_size, args.dist_bn == 'reduce')

            eval_metrics = validate(model, loader_eval, validate_loss_fn, args, amp_autocast=amp_autocast,
                                    pre_model=pre_model)

            with open(outfile_path, mode='a') as out_file:
                writer = csv.DictWriter(out_file, fieldnames=fieldnames, lineterminator='\n')
                writer.writerow({'seed': args.seed,
                                 'actfun': args.actfun,
                                 'epoch': epoch,
                                 'lr': train_metrics['lr'],
                                 'train_loss': train_metrics['loss'],
                                 'eval_loss': eval_metrics['loss'],
                                 'eval_acc1': eval_metrics['top1'],
                                 'eval_acc5': eval_metrics['top5'],
                                 'ema': False
                                 })

            if model_ema is not None and not args.model_ema_force_cpu:
                if args.distributed and args.dist_bn in ('broadcast', 'reduce'):
                    distribute_bn(model_ema, args.world_size, args.dist_bn == 'reduce')
                ema_eval_metrics = validate(
                    model_ema.module, loader_eval, validate_loss_fn, args, amp_autocast=amp_autocast, log_suffix=' (EMA)',
                    pre_model=pre_model)
                eval_metrics = ema_eval_metrics

                with open(outfile_path, mode='a') as out_file:
                    writer = csv.DictWriter(out_file, fieldnames=fieldnames, lineterminator='\n')
                    writer.writerow({'seed': args.seed,
                                     'weight_init': args.weight_init,
                                     'actfun': args.actfun,
                                     'epoch': epoch,
                                     'max_lr': args.lr,
                                     'lr': train_metrics['lr'],
                                     'train_loss': train_metrics['loss'],
                                     'eval_loss': eval_metrics['loss'],
                                     'eval_acc1': eval_metrics['top1'],
                                     'eval_acc5': eval_metrics['top5'],
                                     'ema': True
                                     })

            if lr_scheduler is not None and args.sched != 'onecycle':
                # step LR for next epoch
                lr_scheduler.step(epoch + 1, eval_metrics[eval_metric])

            update_summary(
                args.seed, epoch, args.lr, args.epochs, args.batch_size, args.actfun,
                train_metrics, eval_metrics, os.path.join(output_dir, 'summary.csv'),
                write_header=best_metric is None)

            if saver is not None:
                # save proper checkpoint with eval metric
                save_metric = eval_metrics[eval_metric]
                best_metric, best_epoch = saver.save_checkpoint(epoch, metric=save_metric)

    except KeyboardInterrupt:
        pass
    if best_metric is not None:
        _logger.info('*** Best metric: {0} (epoch {1})'.format(best_metric, best_epoch))
예제 #11
0
    def _resume_fit(self, train_data, val_data, time_limit=math.inf):
        tic = time.time()
        # TODO: regression not implemented
        if self._problem_type != REGRESSION and (not self.classes or not self.num_class):
            raise ValueError('This is a classification problem and we are not able to determine classes of dataset')

        if max(self.start_epoch, self.epoch) >= self.epochs:
            return {'time': self._time_elapsed}

        # wrap DP if possible
        if self.found_gpu:
            self.net = torch.nn.DataParallel(self.net, device_ids=[int(i) for i in self.valid_gpus])
        self.net = self.net.to(self.ctx[0])

        # prepare dataset
        train_dataset = train_data.to_torch()
        val_dataset = val_data.to_torch()

        # setup mixup / cutmix
        self._collate_fn = None
        self._mixup_fn = None
        self.mixup_active = self._augmentation_cfg.mixup > 0 or self._augmentation_cfg.cutmix > 0. or self._augmentation_cfg.cutmix_minmax is not None
        if self.mixup_active:
            mixup_args = dict(
                mixup_alpha=self._augmentation_cfg.mixup, cutmix_alpha=self._augmentation_cfg.cutmix,
                cutmix_minmax=self._augmentation_cfg.cutmix_minmax, prob=self._augmentation_cfg.mixup_prob,
                switch_prob=self._augmentation_cfg.mixup_switch_prob, mode=self._augmentation_cfg.mixup_mode,
                label_smoothing=self._augmentation_cfg.smoothing, num_classes=self.num_class)
            if self._misc_cfg.prefetcher:
                self._collate_fn = FastCollateMixup(**mixup_args)
            else:
                self._mixup_fn = Mixup(**mixup_args)

        # create data loaders w/ augmentation pipeiine
        train_interpolation = self._augmentation_cfg.train_interpolation
        if self._augmentation_cfg.no_aug or not train_interpolation:
            train_interpolation = self._data_cfg.interpolation
        train_loader = create_loader(
            train_dataset,
            input_size=self._data_cfg.input_size,
            batch_size=self._train_cfg.batch_size,
            is_training=True,
            use_prefetcher=self._misc_cfg.prefetcher,
            no_aug=self._augmentation_cfg.no_aug,
            scale=self._augmentation_cfg.scale,
            ratio=self._augmentation_cfg.ratio,
            hflip=self._augmentation_cfg.hflip,
            vflip=self._augmentation_cfg.vflip,
            color_jitter=self._augmentation_cfg.color_jitter,
            auto_augment=self._augmentation_cfg.auto_augment,
            interpolation=train_interpolation,
            mean=self._data_cfg.mean,
            std=self._data_cfg.std,
            num_workers=self._misc_cfg.num_workers,
            distributed=False,
            collate_fn=self._collate_fn,
            pin_memory=self._misc_cfg.pin_mem,
            use_multi_epochs_loader=self._misc_cfg.use_multi_epochs_loader
        )

        val_loader = create_loader(
            val_dataset,
            input_size=self._data_cfg.input_size,
            batch_size=self._data_cfg.validation_batch_size_multiplier * self._train_cfg.batch_size,
            is_training=False,
            use_prefetcher=self._misc_cfg.prefetcher,
            interpolation=self._data_cfg.interpolation,
            mean=self._data_cfg.mean,
            std=self._data_cfg.std,
            num_workers=self._misc_cfg.num_workers,
            distributed=False,
            crop_pct=self._data_cfg.crop_pct,
            pin_memory=self._misc_cfg.pin_mem,
        )

        self._time_elapsed += time.time() - tic
        return self._train_loop(train_loader, val_loader, time_limit=time_limit)
예제 #12
0
def main():
    global args
    setup_default_logging()
    args, args_text = _parse_args()

    args.prefetcher = not args.no_prefetcher
    args.distributed = False
    if 'WORLD_SIZE' in os.environ:
        args.distributed = int(os.environ['WORLD_SIZE']) > 1
        if args.distributed and args.num_gpu > 1:
            logging.warning(
                'Using more than one GPU per process in distributed mode is not allowed. Setting num_gpu to 1.'
            )
            args.num_gpu = 1

    args.device = 'cuda:0'
    args.world_size = 1
    args.rank = 0  # global rank
    if args.distributed:
        args.num_gpu = 1
        args.device = 'cuda:%d' % args.local_rank
        torch.cuda.set_device(args.local_rank)
        torch.distributed.init_process_group(backend='nccl',
                                             init_method='env://')
        args.world_size = torch.distributed.get_world_size()
        args.rank = torch.distributed.get_rank()
    assert args.rank >= 0

    if args.distributed:
        logging.info(
            'Training in distributed mode with multiple processes, 1 GPU per process. Process %d, total %d.'
            % (args.rank, args.world_size))
    else:
        logging.info('Training with a single process on %d GPUs.' %
                     args.num_gpu)

    torch.manual_seed(args.seed + args.rank)
    np.random.seed(args.seed + args.rank)

    model = create_model(args.model,
                         pretrained=args.pretrained,
                         num_classes=args.num_classes,
                         drop_rate=args.drop,
                         global_pool=args.gp,
                         bn_tf=args.bn_tf,
                         bn_momentum=args.bn_momentum,
                         bn_eps=args.bn_eps,
                         checkpoint_path=args.initial_checkpoint)

    if args.binarizable:
        Model_binary_patch(model)

    if args.local_rank == 0:
        logging.info('Model %s created, param count: %d' %
                     (args.model, sum([m.numel()
                                       for m in model.parameters()])))

    data_config = resolve_data_config(vars(args),
                                      model=model,
                                      verbose=args.local_rank == 0)

    if args.num_gpu > 1:
        if args.amp:
            logging.warning(
                'AMP does not work well with nn.DataParallel, disabling. Use distributed mode for multi-GPU AMP.'
            )
            args.amp = False
        model = nn.DataParallel(model,
                                device_ids=list(range(args.num_gpu))).cuda()

    else:
        model.cuda()

    optimizer = create_optimizer(args, model)

    use_amp = False
    if has_apex and args.amp:
        print('Using amp with --opt-level {}.'.format(args.opt_level))
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level=args.opt_level)
        use_amp = True
    else:
        print('Do NOT use amp.')
    if args.local_rank == 0:
        logging.info('NVIDIA APEX {}. AMP {}.'.format(
            'installed' if has_apex else 'not installed',
            'on' if use_amp else 'off'))

    # optionally resume from a checkpoint
    resume_state = {}
    resume_epoch = None
    if args.resume:
        resume_state, resume_epoch = resume_checkpoint(model, args.resume)
    if resume_state and not args.no_resume_opt:
        if 'optimizer' in resume_state:
            if args.local_rank == 0:
                logging.info('Restoring Optimizer state from checkpoint')
            optimizer.load_state_dict(resume_state['optimizer'])
        if use_amp and 'amp' in resume_state and 'load_state_dict' in amp.__dict__:
            if args.local_rank == 0:
                logging.info('Restoring NVIDIA AMP state from checkpoint')
            amp.load_state_dict(resume_state['amp'])
    resume_state = None

    if args.freeze_binary:
        Model_freeze_binary(model)

    if args.distributed:
        if args.sync_bn:
            try:
                if has_apex:
                    model = convert_syncbn_model(model)
                else:
                    model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(
                        model)
                if args.local_rank == 0:
                    logging.info(
                        'Converted model to use Synchronized BatchNorm.')
            except Exception as e:
                logging.error(
                    'Failed to enable Synchronized BatchNorm. Install Apex or Torch >= 1.1'
                )
        if has_apex:
            model = DDP(model, delay_allreduce=True)
        else:
            if args.local_rank == 0:
                logging.info(
                    "Using torch DistributedDataParallel. Install NVIDIA Apex for Apex DDP."
                )
            model = DDP(model,
                        device_ids=[args.local_rank
                                    ])  # can use device str in Torch >= 1.1
        # NOTE: EMA model does not need to be wrapped by DDP

    lr_scheduler, num_epochs = create_scheduler(args, optimizer)
    print(num_epochs)
    # start_epoch = 0 #
    if args.start_epoch is not None:
        # a specified start_epoch will always override the resume epoch
        start_epoch = args.start_epoch
    elif resume_epoch is not None:
        start_epoch = resume_epoch
    if args.reset_lr_scheduler is not None:
        lr_scheduler.base_values = len(
            lr_scheduler.base_values) * [args.reset_lr_scheduler]
        lr_scheduler.step(start_epoch)

    if lr_scheduler is not None and start_epoch > 0:
        lr_scheduler.step(start_epoch)

    if args.local_rank == 0:
        logging.info('Scheduled epochs: {}'.format(num_epochs))

    # Using pruner to get sparse weights
    if args.prune:
        pruner = Pruner_mixed(model, 0, 100, args.pruner)
    else:
        pruner = None

    dataset_train = torchvision.datasets.CIFAR100(root='~/Downloads/CIFAR100',
                                                  train=True,
                                                  download=True)

    collate_fn = None
    if args.prefetcher and args.mixup > 0:
        collate_fn = FastCollateMixup(args.mixup, args.smoothing,
                                      args.num_classes)

    loader_train = create_loader_CIFAR100(
        dataset_train,
        input_size=data_config['input_size'],
        batch_size=args.batch_size,
        is_training=True,
        use_prefetcher=args.prefetcher,
        rand_erase_prob=args.reprob,
        rand_erase_mode=args.remode,
        rand_erase_count=args.recount,
        color_jitter=args.color_jitter,
        auto_augment=args.aa,
        interpolation='random',
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
        collate_fn=collate_fn,
        is_clean_data=args.clean_train,
    )

    dataset_eval = torchvision.datasets.CIFAR100(root='~/Downloads/CIFAR100',
                                                 train=False,
                                                 download=True)

    loader_eval = create_loader_CIFAR100(
        dataset_eval,
        input_size=data_config['input_size'],
        batch_size=4 * args.batch_size,
        is_training=False,
        use_prefetcher=args.prefetcher,
        interpolation=data_config['interpolation'],
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
    )

    if args.mixup > 0.:
        # smoothing is handled with mixup label transform
        train_loss_fn = SoftTargetCrossEntropy(
            multiplier=args.softmax_multiplier).cuda()
        validate_loss_fn = nn.CrossEntropyLoss().cuda()
    elif args.smoothing:
        train_loss_fn = LabelSmoothingCrossEntropy(
            smoothing=args.smoothing).cuda()
        validate_loss_fn = nn.CrossEntropyLoss().cuda()
    else:
        train_loss_fn = nn.CrossEntropyLoss().cuda()
        validate_loss_fn = train_loss_fn

    eval_metric = args.eval_metric
    best_metric = None
    best_epoch = None
    saver = None
    saver_last_10_epochs = None
    output_dir = ''
    if args.local_rank == 0:
        output_base = args.output if args.output else './output'
        exp_name = '-'.join([
            datetime.now().strftime("%Y%m%d-%H%M%S"), args.model,
            str(data_config['input_size'][-1])
        ])
        output_dir = get_outdir(output_base, 'train', exp_name)
        decreasing = True if eval_metric == 'loss' else False
        os.makedirs(output_dir + '/Top')
        os.makedirs(output_dir + '/Last')
        saver = CheckpointSaver(
            checkpoint_dir=output_dir + '/Top',
            decreasing=decreasing,
            max_history=10)  # Save the results of the top 10 epochs
        saver_last_10_epochs = CheckpointSaver(
            checkpoint_dir=output_dir + '/Last',
            decreasing=decreasing,
            max_history=10)  # Save the results of the last 10 epochs
        with open(os.path.join(output_dir, 'args.yaml'), 'w') as f:
            f.write(args_text)
            f.write('==============================\n')
            f.write(model.__str__())
            # if pruner:
            #     f.write('\n Sparsity \n')
            #     #f.write(pruner.threshold_dict.__str__())
            #     f.write('\n pruner.start_epoch={}, pruner.end_epoch={}'.format(pruner.start_epoch, pruner.end_epoch))

    tensorboard_writer = SummaryWriter(output_dir)

    try:
        for epoch in range(start_epoch, num_epochs):

            global alpha
            alpha = get_alpha(epoch, args)

            if args.distributed:
                loader_train.sampler.set_epoch(epoch)

            if pruner:
                pruner.on_epoch_begin(epoch)  # pruning

            train_metrics = train_epoch(epoch,
                                        model,
                                        loader_train,
                                        optimizer,
                                        train_loss_fn,
                                        args,
                                        lr_scheduler=lr_scheduler,
                                        saver=saver,
                                        output_dir=output_dir,
                                        use_amp=use_amp,
                                        tensorboard_writer=tensorboard_writer,
                                        pruner=pruner)

            if pruner:
                pruner.print_statistics()

            eval_metrics = validate(model,
                                    loader_eval,
                                    validate_loss_fn,
                                    args,
                                    tensorboard_writer=tensorboard_writer,
                                    epoch=epoch)

            if lr_scheduler is not None:
                # step LR for next epoch
                lr_scheduler.step(epoch + 1, eval_metrics[eval_metric])

            update_summary(epoch,
                           train_metrics,
                           eval_metrics,
                           os.path.join(output_dir, 'summary.csv'),
                           write_header=best_metric is None)

            if saver is not None:
                # save proper checkpoint with eval metric
                save_metric = eval_metrics[eval_metric]
                best_metric, best_epoch = saver.save_checkpoint(
                    model,
                    optimizer,
                    args,
                    epoch=epoch,
                    metric=save_metric,
                    use_amp=use_amp)
            if saver_last_10_epochs is not None:
                # save the checkpoint in the last 5 epochs
                _, _ = saver_last_10_epochs.save_checkpoint(model,
                                                            optimizer,
                                                            args,
                                                            epoch=epoch,
                                                            metric=epoch,
                                                            use_amp=use_amp)

    except KeyboardInterrupt:
        pass
    if best_metric is not None:
        logging.info('*** Best metric: {0} (epoch {1})'.format(
            best_metric, best_epoch))
예제 #13
0
def main(fold_i=0, data_=None, train_index=None, val_index=None):
    setup_default_logging()
    args, args_text = _parse_args()

    args.prefetcher = not args.no_prefetcher
    args.distributed = False
    if 'WORLD_SIZE' in os.environ:
        args.distributed = int(os.environ['WORLD_SIZE']) > 1
    args.device = 'cuda:0'
    args.world_size = 1
    args.rank = 0  # global rank
    best_score = 0.0
    args.output = args.output + 'fold_' + str(fold_i)
    if args.distributed:
        args.device = 'cuda:%d' % args.local_rank
        torch.cuda.set_device(args.local_rank)
        if fold_i == 0:
            torch.distributed.init_process_group(backend='nccl',
                                                 init_method='env://')
        args.world_size = torch.distributed.get_world_size()
        args.rank = torch.distributed.get_rank()
        _logger.info(
            'Training in distributed mode with multiple processes, 1 GPU per process. Process %d, total %d.'
            % (args.rank, args.world_size))
    else:
        _logger.info('Training with a single process on 1 GPUs.')
    assert args.rank >= 0

    # resolve AMP arguments based on PyTorch / Apex availability
    use_amp = None
    if args.amp:
        # for backwards compat, `--amp` arg tries apex before native amp
        if has_apex:
            args.apex_amp = True
        elif has_native_amp:
            args.native_amp = True
    if args.apex_amp and has_apex:
        use_amp = 'apex'
    elif args.native_amp and has_native_amp:
        use_amp = 'native'
    elif args.apex_amp or args.native_amp:
        _logger.warning(
            "Neither APEX or native Torch AMP is available, using float32. "
            "Install NVIDA apex or upgrade to PyTorch 1.6")

    torch.manual_seed(args.seed + args.rank)

    model = create_model(
        args.model,
        pretrained=args.pretrained,
        num_classes=args.num_classes,
        drop_rate=args.drop,
        drop_connect_rate=args.drop_connect,  # DEPRECATED, use drop_path
        drop_path_rate=args.drop_path,
        drop_block_rate=args.drop_block,
        global_pool=args.gp,
        bn_tf=args.bn_tf,
        bn_momentum=args.bn_momentum,
        bn_eps=args.bn_eps,
        scriptable=args.torchscript,
        checkpoint_path=args.initial_checkpoint)

    if args.local_rank == 0:
        _logger.info('Model %s created, param count: %d' %
                     (args.model, sum([m.numel()
                                       for m in model.parameters()])))

    data_config = resolve_data_config(vars(args),
                                      model=model,
                                      verbose=args.local_rank == 0)

    # setup augmentation batch splits for contrastive loss or split bn
    num_aug_splits = 0
    if args.aug_splits > 0:
        assert args.aug_splits > 1, 'A split of 1 makes no sense'
        num_aug_splits = args.aug_splits

    # enable split bn (separate bn stats per batch-portion)
    if args.split_bn:
        assert num_aug_splits > 1 or args.resplit
        model = convert_splitbn_model(model, max(num_aug_splits, 2))

    # move model to GPU, enable channels last layout if set
    model = nn.DataParallel(model)
    model.cuda()
    if args.channels_last:
        model = model.to(memory_format=torch.channels_last)

    # setup synchronized BatchNorm for distributed training
    if args.distributed and args.sync_bn:
        assert not args.split_bn
        if has_apex and use_amp != 'native':
            # Apex SyncBN preferred unless native amp is activated
            model = convert_syncbn_model(model)
        else:
            model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
        if args.local_rank == 0:
            _logger.info(
                'Converted model to use Synchronized BatchNorm. WARNING: You may have issues if using '
                'zero initialized BN layers (enabled by default for ResNets) while sync-bn enabled.'
            )

    if args.torchscript:
        assert not use_amp == 'apex', 'Cannot use APEX AMP with torchscripted model'
        assert not args.sync_bn, 'Cannot use SyncBatchNorm with torchscripted model'
        model = torch.jit.script(model)

    optimizer = create_optimizer(args, model)

    #optimizer = torch.optim.SGD(model.parameters(), lr=0.1, weight_decay=1e-6)
    # setup automatic mixed-precision (AMP) loss scaling and op casting

    amp_autocast = suppress  # do nothing
    loss_scaler = None
    if use_amp == 'apex':
        model, optimizer = amp.initialize(model, optimizer, opt_level='O1')
        loss_scaler = ApexScaler()
        if args.local_rank == 0:
            _logger.info('Using NVIDIA APEX AMP. Training in mixed precision.')
    elif use_amp == 'native':
        amp_autocast = torch.cuda.amp.autocast
        loss_scaler = NativeScaler()
        if args.local_rank == 0:
            _logger.info(
                'Using native Torch AMP. Training in mixed precision.')
    else:
        if args.local_rank == 0:
            _logger.info('AMP not enabled. Training in float32.')

    # optionally resume from a checkpoint
    resume_epoch = None
    if args.resume:
        resume_epoch = resume_checkpoint(
            model,
            args.resume,
            optimizer=None if args.no_resume_opt else optimizer,
            loss_scaler=None if args.no_resume_opt else loss_scaler,
            log_info=args.local_rank == 0)

    # setup exponential moving average of model weights, SWA could be used here too
    model_ema = None
    if args.model_ema:
        # Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
        model_ema = ModelEmaV2(
            model,
            decay=args.model_ema_decay,
            device='cpu' if args.model_ema_force_cpu else None)
        if args.resume:
            load_checkpoint(model_ema.module, args.resume, use_ema=True)

    # setup distributed training
    if args.distributed:
        if has_apex and use_amp != 'native':
            # Apex DDP preferred unless native amp is activated
            if args.local_rank == 0:
                _logger.info("Using NVIDIA APEX DistributedDataParallel.")
            model = ApexDDP(model, delay_allreduce=True)
        else:
            if args.local_rank == 0:
                _logger.info("Using native Torch DistributedDataParallel.")
            model = NativeDDP(model, device_ids=[
                args.local_rank
            ])  # can use device str in Torch >= 1.1
        # NOTE: EMA model does not need to be wrapped by DDP
    lr_scheduler, num_epochs = create_scheduler(args, optimizer)
    # lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=10, T_mult=1, eta_min=1e-6, last_epoch=-1)

    if args.local_rank == 0:
        _logger.info('Scheduled epochs: {}'.format(20))

    ##create DataLoader
    train_trans = get_riadd_train_transforms(args)
    valid_trans = get_riadd_valid_transforms(args)

    train_data = data_.iloc[train_index, :].reset_index(drop=True)
    dataset_train = RiaddDataSet(image_ids=train_data, baseImgPath=args.data)

    val_data = data_.iloc[val_index, :].reset_index(drop=True)
    dataset_eval = RiaddDataSet(image_ids=val_data, baseImgPath=args.data)

    # setup mixup / cutmix
    collate_fn = None
    mixup_fn = None
    mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
    if mixup_active:
        mixup_args = dict(mixup_alpha=args.mixup,
                          cutmix_alpha=args.cutmix,
                          cutmix_minmax=args.cutmix_minmax,
                          prob=args.mixup_prob,
                          switch_prob=args.mixup_switch_prob,
                          mode=args.mixup_mode,
                          label_smoothing=args.smoothing,
                          num_classes=args.num_classes)
        if args.prefetcher:
            assert not num_aug_splits  # collate conflict (need to support deinterleaving in collate mixup)
            collate_fn = FastCollateMixup(**mixup_args)
        else:
            mixup_fn = Mixup(**mixup_args)

    # wrap dataset in AugMix helper
    if num_aug_splits > 1:
        dataset_train = AugMixDataset(dataset_train, num_splits=num_aug_splits)

    # create data loaders w/ augmentation pipeiine
    train_interpolation = args.train_interpolation
    if args.no_aug or not train_interpolation:
        train_interpolation = data_config['interpolation']
    train_trans = get_riadd_train_transforms(args)
    loader_train = create_loader(
        dataset_train,
        input_size=data_config['input_size'],
        batch_size=args.batch_size,
        is_training=True,
        use_prefetcher=args.prefetcher,
        no_aug=args.no_aug,
        re_prob=args.reprob,
        re_mode=args.remode,
        re_count=args.recount,
        re_split=args.resplit,
        scale=args.scale,
        ratio=args.ratio,
        hflip=args.hflip,
        vflip=args.vflip,
        color_jitter=args.color_jitter,
        auto_augment=args.aa,
        num_aug_splits=num_aug_splits,
        interpolation=train_interpolation,
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
        collate_fn=collate_fn,
        pin_memory=args.pin_mem,
        use_multi_epochs_loader=args.use_multi_epochs_loader,
        transform=train_trans)

    valid_trans = get_riadd_valid_transforms(args)
    loader_eval = create_loader(
        dataset_eval,
        input_size=data_config['input_size'],
        batch_size=args.validation_batch_size_multiplier * args.batch_size,
        is_training=False,
        use_prefetcher=args.prefetcher,
        interpolation=data_config['interpolation'],
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
        crop_pct=data_config['crop_pct'],
        pin_memory=args.pin_mem,
        transform=valid_trans)

    # # setup loss function
    # if args.jsd:
    #     assert num_aug_splits > 1  # JSD only valid with aug splits set
    #     train_loss_fn = JsdCrossEntropy(num_splits=num_aug_splits, smoothing=args.smoothing).cuda()
    # elif mixup_active:
    #     # smoothing is handled with mixup target transform
    #     train_loss_fn = SoftTargetCrossEntropy().cuda()
    # elif args.smoothing:
    #     train_loss_fn = LabelSmoothingCrossEntropy(smoothing=args.smoothing).cuda()
    # else:
    #     train_loss_fn = nn.CrossEntropyLoss().cuda()

    validate_loss_fn = nn.BCEWithLogitsLoss().cuda()
    train_loss_fn = nn.BCEWithLogitsLoss().cuda()

    # setup checkpoint saver and eval metric tracking
    eval_metric = args.eval_metric
    best_metric = None
    best_epoch = None
    saver = None
    vis = None
    output_dir = ''
    if args.local_rank == 0:
        output_base = args.output if args.output else './output'
        exp_name = '-'.join([
            datetime.now().strftime("%Y%m%d-%H%M%S"), args.model,
            str(data_config['input_size'][-1])
        ])
        output_dir = get_outdir(output_base, 'train', exp_name)
        decreasing = True if eval_metric == 'loss' else False
        saver = CheckpointSaver(model=model,
                                optimizer=optimizer,
                                args=args,
                                model_ema=model_ema,
                                amp_scaler=loss_scaler,
                                checkpoint_dir=output_dir,
                                recovery_dir=output_dir,
                                decreasing=decreasing)
        with open(os.path.join(output_dir, 'args.yaml'), 'w') as f:
            f.write(args_text)
        vis = Visualizer(env=args.output)

    try:
        for epoch in range(0, args.epochs):
            if args.distributed:
                loader_train.sampler.set_epoch(epoch)

            train_metrics = train_epoch(epoch,
                                        model,
                                        loader_train,
                                        optimizer,
                                        train_loss_fn,
                                        args,
                                        lr_scheduler=lr_scheduler,
                                        saver=saver,
                                        output_dir=output_dir,
                                        amp_autocast=amp_autocast,
                                        loss_scaler=loss_scaler,
                                        model_ema=model_ema,
                                        mixup_fn=mixup_fn)

            if args.distributed and args.dist_bn in ('broadcast', 'reduce'):
                if args.local_rank == 0:
                    _logger.info(
                        "Distributing BatchNorm running means and vars")
                distribute_bn(model, args.world_size, args.dist_bn == 'reduce')

            eval_metrics = validate(model,
                                    loader_eval,
                                    validate_loss_fn,
                                    args,
                                    amp_autocast=amp_autocast)
            score, scores = get_score(eval_metrics['valid_label'],
                                      eval_metrics['predictions'])
            ##visdom
            if vis is not None:
                vis.plot_curves({'None': epoch},
                                iters=epoch,
                                title='None',
                                xlabel='iters',
                                ylabel='None')
                vis.plot_curves(
                    {'learing rate': optimizer.param_groups[0]['lr']},
                    iters=epoch,
                    title='lr',
                    xlabel='iters',
                    ylabel='learing rate')
                vis.plot_curves({'train loss': float(train_metrics['loss'])},
                                iters=epoch,
                                title='train loss',
                                xlabel='iters',
                                ylabel='train loss')
                vis.plot_curves({'val loss': float(eval_metrics['loss'])},
                                iters=epoch,
                                title='val loss',
                                xlabel='iters',
                                ylabel='val loss')
                vis.plot_curves({'val score': float(score)},
                                iters=epoch,
                                title='val score',
                                xlabel='iters',
                                ylabel='val score')

            if model_ema is not None and not args.model_ema_force_cpu:
                if args.distributed and args.dist_bn in ('broadcast',
                                                         'reduce'):
                    distribute_bn(model_ema, args.world_size,
                                  args.dist_bn == 'reduce')
                ema_eval_metrics = validate(model_ema.module,
                                            loader_eval,
                                            validate_loss_fn,
                                            args,
                                            amp_autocast=amp_autocast,
                                            log_suffix=' (EMA)')
                eval_metrics = ema_eval_metrics

            if lr_scheduler is not None:
                # step LR for next epoch
                # lr_scheduler.step(epoch + 1, eval_metrics[eval_metric])
                lr_scheduler.step(epoch + 1, score)

            update_summary(epoch,
                           train_metrics,
                           eval_metrics,
                           os.path.join(output_dir, 'summary.csv'),
                           write_header=best_metric is None)

            if saver is not None and score > best_score:
                # save proper checkpoint with eval metric
                best_score = score
                save_metric = best_score
                best_metric, best_epoch = saver.save_checkpoint(
                    epoch, metric=save_metric)
        del model
        del optimizer
        torch.cuda.empty_cache()
    except KeyboardInterrupt:
        pass
    if best_metric is not None:
        _logger.info('*** Best metric: {0} (epoch {1})'.format(
            best_metric, best_epoch))
예제 #14
0
def main():
    setup_default_logging()
    args, args_text = _parse_args()

    args.prefetcher = not args.no_prefetcher
    args.distributed = False
    if 'WORLD_SIZE' in os.environ:
        args.distributed = int(os.environ['WORLD_SIZE']) > 1
        if args.distributed and args.num_gpu > 1:
            _logger.warning(
                'Using more than one GPU per process in distributed mode is not allowed.Setting num_gpu to 1.')
            args.num_gpu = 1

    args.device = 'cuda:0'
    args.world_size = 1
    args.rank = 0  # global rank
    if args.distributed:
        args.num_gpu = 1
        args.device = 'cuda:%d' % args.local_rank
        torch.cuda.set_device(args.local_rank)
        torch.distributed.init_process_group(backend='nccl', init_method='env://')
        args.world_size = torch.distributed.get_world_size()
        args.rank = torch.distributed.get_rank()
    assert args.rank >= 0

    if args.distributed:
        _logger.info('Training in distributed mode with multiple processes, 1 GPU per process. Process %d, total %d.'
                     % (args.rank, args.world_size))
    else:
        _logger.info('Training with a single process on %d GPUs.' % args.num_gpu)

    torch.manual_seed(args.seed + args.rank)

    model = create_model(
        args.model,
        pretrained=args.pretrained,
        num_classes=args.num_classes,
        drop_rate=args.drop,
        drop_connect_rate=args.drop_connect,  # DEPRECATED, use drop_path
        drop_path_rate=args.drop_path,
        drop_block_rate=args.drop_block,
        global_pool=args.gp,
        bn_tf=args.bn_tf,
        bn_momentum=args.bn_momentum,
        bn_eps=args.bn_eps,
        checkpoint_path=args.initial_checkpoint)

    if args.local_rank == 0:
        _logger.info('Model %s created, param count: %d' %
                     (args.model, sum([m.numel() for m in model.parameters()])))

    data_config = resolve_data_config(vars(args), model=model, verbose=args.local_rank == 0)

    num_aug_splits = 0
    if args.aug_splits > 0:
        assert args.aug_splits > 1, 'A split of 1 makes no sense'
        num_aug_splits = args.aug_splits

    if args.split_bn:
        assert num_aug_splits > 1 or args.resplit
        model = convert_splitbn_model(model, max(num_aug_splits, 2))

    use_amp = None
    if args.amp:
        # for backwards compat, `--amp` arg tries apex before native amp
        if has_apex:
            args.apex_amp = True
        elif has_native_amp:
            args.native_amp = True
    if args.apex_amp and has_apex:
        use_amp = 'apex'
    elif args.native_amp and has_native_amp:
        use_amp = 'native'
    elif args.apex_amp or args.native_amp:
        _logger.warning("Neither APEX or native Torch AMP is available, using float32. "
                        "Install NVIDA apex or upgrade to PyTorch 1.6")

    if args.num_gpu > 1:
        if use_amp == 'apex':
            _logger.warning(
                'Apex AMP does not work well with nn.DataParallel, disabling. Use DDP or Torch AMP.')
            use_amp = None
        model = nn.DataParallel(model, device_ids=list(range(args.num_gpu))).cuda()
        assert not args.channels_last, "Channels last not supported with DP, use DDP."
    else:
        model.cuda()
        if args.channels_last:
            model = model.to(memory_format=torch.channels_last)

    optimizer = create_optimizer(args, model)

    amp_autocast = suppress  # do nothing
    loss_scaler = None
    if use_amp == 'apex':
        model, optimizer = amp.initialize(model, optimizer, opt_level='O1')
        loss_scaler = ApexScaler()
        if args.local_rank == 0:
            _logger.info('Using NVIDIA APEX AMP. Training in mixed precision.')
    elif use_amp == 'native':
        amp_autocast = torch.cuda.amp.autocast
        loss_scaler = NativeScaler()
        if args.local_rank == 0:
            _logger.info('Using native Torch AMP. Training in mixed precision.')
    else:
        if args.local_rank == 0:
            _logger.info('AMP not enabled. Training in float32.')

    # optionally resume from a checkpoint
    resume_epoch = None
    if args.resume:
        resume_epoch = resume_checkpoint(
            model, args.resume,
            optimizer=None if args.no_resume_opt else optimizer,
            loss_scaler=None if args.no_resume_opt else loss_scaler,
            log_info=args.local_rank == 0)

    model_ema = None
    if args.model_ema:
        # Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
        model_ema = ModelEma(
            model,
            decay=args.model_ema_decay,
            device='cpu' if args.model_ema_force_cpu else '',
            resume=args.resume)

    if args.distributed:
        if args.sync_bn:
            assert not args.split_bn
            try:
                if has_apex and use_amp != 'native':
                    # Apex SyncBN preferred unless native amp is activated
                    model = convert_syncbn_model(model)
                else:
                    model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
                if args.local_rank == 0:
                    _logger.info(
                        'Converted model to use Synchronized BatchNorm. WARNING: You may have issues if using '
                        'zero initialized BN layers (enabled by default for ResNets) while sync-bn enabled.')
            except Exception as e:
                _logger.error('Failed to enable Synchronized BatchNorm. Install Apex or Torch >= 1.1')
        if has_apex and use_amp != 'native':
            # Apex DDP preferred unless native amp is activated
            if args.local_rank == 0:
                _logger.info("Using NVIDIA APEX DistributedDataParallel.")
            model = ApexDDP(model, delay_allreduce=True)
        else:
            if args.local_rank == 0:
                _logger.info("Using native Torch DistributedDataParallel.")
            model = NativeDDP(model, device_ids=[args.local_rank])  # can use device str in Torch >= 1.1
        # NOTE: EMA model does not need to be wrapped by DDP

    lr_scheduler, num_epochs = create_scheduler(args, optimizer)
    start_epoch = 0
    if args.start_epoch is not None:
        # a specified start_epoch will always override the resume epoch
        start_epoch = args.start_epoch
    elif resume_epoch is not None:
        start_epoch = resume_epoch
    if lr_scheduler is not None and start_epoch > 0:
        lr_scheduler.step(start_epoch)

    if args.local_rank == 0:
        _logger.info('Scheduled epochs: {}'.format(num_epochs))

    train_dir = os.path.join(args.data, 'train')
    if not os.path.exists(train_dir):
        _logger.error('Training folder does not exist at: {}'.format(train_dir))
        exit(1)
    dataset_train = Dataset(train_dir)

    collate_fn = None
    mixup_fn = None
    mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
    if mixup_active:
        mixup_args = dict(
            mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax,
            prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode,
            label_smoothing=args.smoothing, num_classes=args.num_classes)
        if args.prefetcher:
            assert not num_aug_splits  # collate conflict (need to support deinterleaving in collate mixup)
            collate_fn = FastCollateMixup(**mixup_args)
        else:
            mixup_fn = Mixup(**mixup_args)

    if num_aug_splits > 1:
        dataset_train = AugMixDataset(dataset_train, num_splits=num_aug_splits)

    train_interpolation = args.train_interpolation
    if args.no_aug or not train_interpolation:
        train_interpolation = data_config['interpolation']
    loader_train = create_loader(
        dataset_train,
        input_size=data_config['input_size'],
        batch_size=args.batch_size,
        is_training=True,
        use_prefetcher=args.prefetcher,
        no_aug=args.no_aug,
        re_prob=args.reprob,
        re_mode=args.remode,
        re_count=args.recount,
        re_split=args.resplit,
        scale=args.scale,
        ratio=args.ratio,
        hflip=args.hflip,
        vflip=args.vflip,
        color_jitter=args.color_jitter,
        auto_augment=args.aa,
        num_aug_splits=num_aug_splits,
        interpolation=train_interpolation,
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
        collate_fn=collate_fn,
        pin_memory=args.pin_mem,
        use_multi_epochs_loader=args.use_multi_epochs_loader
    )

    eval_dir = os.path.join(args.data, 'val')
    if not os.path.isdir(eval_dir):
        eval_dir = os.path.join(args.data, 'validation')
        if not os.path.isdir(eval_dir):
            _logger.error('Validation folder does not exist at: {}'.format(eval_dir))
            exit(1)
    dataset_eval = Dataset(eval_dir)

    loader_eval = create_loader(
        dataset_eval,
        input_size=data_config['input_size'],
        batch_size=args.validation_batch_size_multiplier * args.batch_size,
        is_training=False,
        use_prefetcher=args.prefetcher,
        interpolation=data_config['interpolation'],
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
        crop_pct=data_config['crop_pct'],
        pin_memory=args.pin_mem,
    )

    if args.jsd:
        assert num_aug_splits > 1  # JSD only valid with aug splits set
        train_loss_fn = JsdCrossEntropy(num_splits=num_aug_splits, smoothing=args.smoothing).cuda()
    elif mixup_active:
        # smoothing is handled with mixup target transform
        train_loss_fn = SoftTargetCrossEntropy().cuda()
    elif args.smoothing:
        train_loss_fn = LabelSmoothingCrossEntropy(smoothing=args.smoothing).cuda()
    else:
        train_loss_fn = nn.CrossEntropyLoss().cuda()
    validate_loss_fn = nn.CrossEntropyLoss().cuda()

    eval_metric = args.eval_metric
    best_metric = None
    best_epoch = None
    saver = None
    output_dir = ''
    if args.local_rank == 0:
        output_base = args.output if args.output else './output'
        exp_name = '-'.join([
            datetime.now().strftime("%Y%m%d-%H%M%S"),
            args.model,
            str(data_config['input_size'][-1])
        ])
        output_dir = get_outdir(output_base, 'train', exp_name)
        decreasing = True if eval_metric == 'loss' else False
        saver = CheckpointSaver(
            model=model, optimizer=optimizer, args=args, model_ema=model_ema, amp_scaler=loss_scaler,
            checkpoint_dir=output_dir, recovery_dir=output_dir, decreasing=decreasing)
        with open(os.path.join(output_dir, 'args.yaml'), 'w') as f:
            f.write(args_text)

    try:
        for epoch in range(start_epoch, num_epochs):
            if args.distributed:
                loader_train.sampler.set_epoch(epoch)

            train_metrics = train_epoch(
                epoch, model, loader_train, optimizer, train_loss_fn, args,
                lr_scheduler=lr_scheduler, saver=saver, output_dir=output_dir,
                amp_autocast=amp_autocast, loss_scaler=loss_scaler, model_ema=model_ema, mixup_fn=mixup_fn)

            if args.distributed and args.dist_bn in ('broadcast', 'reduce'):
                if args.local_rank == 0:
                    _logger.info("Distributing BatchNorm running means and vars")
                distribute_bn(model, args.world_size, args.dist_bn == 'reduce')

            eval_metrics = validate(model, loader_eval, validate_loss_fn, args, amp_autocast=amp_autocast)

            if model_ema is not None and not args.model_ema_force_cpu:
                if args.distributed and args.dist_bn in ('broadcast', 'reduce'):
                    distribute_bn(model_ema, args.world_size, args.dist_bn == 'reduce')
                ema_eval_metrics = validate(
                    model_ema.ema, loader_eval, validate_loss_fn, args, amp_autocast=amp_autocast, log_suffix=' (EMA)')
                eval_metrics = ema_eval_metrics

            if lr_scheduler is not None:
                # step LR for next epoch
                lr_scheduler.step(epoch + 1, eval_metrics[eval_metric])

            update_summary(
                epoch, train_metrics, eval_metrics, os.path.join(output_dir, 'summary.csv'),
                write_header=best_metric is None)

            if saver is not None:
                # save proper checkpoint with eval metric
                save_metric = eval_metrics[eval_metric]
                best_metric, best_epoch = saver.save_checkpoint(epoch, metric=save_metric)

                # if saver.cmp(best_metric, save_metric):
                #     _logger.info(f"Metric is no longer improving [BEST: {best_metric}, CURRENT: {save_metric}]"
                #                  f"\nFinishing training process")
                #     if epoch > 15:
                #         break

    except KeyboardInterrupt:
        pass
    if best_metric is not None:
        message = '*** Best metric: <{0:.2f}>, epoch: <{1}>, path: <{2}> ***'\
            .format(best_metric, best_epoch, output_dir)
        _logger.info(message)
        print(message)
def train_imagenet():
    torch.manual_seed(42)

    device = xm.xla_device()
    # model = get_model_property('model_fn')().to(device)
    model = create_model(
        FLAGS.model,
        pretrained=FLAGS.pretrained,
        num_classes=FLAGS.num_classes,
        drop_rate=FLAGS.drop,
        global_pool=FLAGS.gp,
        bn_tf=FLAGS.bn_tf,
        bn_momentum=FLAGS.bn_momentum,
        bn_eps=FLAGS.bn_eps,
        drop_connect_rate=0.2,
        checkpoint_path=FLAGS.initial_checkpoint,
        args = FLAGS).to(device)
    model_ema=None
    if FLAGS.model_ema:
        # Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
        # import pdb; pdb.set_trace()
        model_e = create_model(
            FLAGS.model,
            pretrained=FLAGS.pretrained,
            num_classes=FLAGS.num_classes,
            drop_rate=FLAGS.drop,
            global_pool=FLAGS.gp,
            bn_tf=FLAGS.bn_tf,
            bn_momentum=FLAGS.bn_momentum,
            bn_eps=FLAGS.bn_eps,
            drop_connect_rate=0.2,
            checkpoint_path=FLAGS.initial_checkpoint,
            args = FLAGS).to(device)
        model_ema = ModelEma(
            model_e,
            decay=FLAGS.model_ema_decay,
            device='cpu' if FLAGS.model_ema_force_cpu else '',
            resume=FLAGS.resume)
    print('==> Preparing data..')
    img_dim = 224
    if FLAGS.fake_data:
        train_dataset_len = 1200000  # Roughly the size of Imagenet dataset.
        train_loader = xu.SampleGenerator(
            data=(torch.zeros(FLAGS.batch_size, 3, img_dim, img_dim),
                    torch.zeros(FLAGS.batch_size, dtype=torch.int64)),
            sample_count=train_dataset_len // FLAGS.batch_size //
            xm.xrt_world_size())
        test_loader = xu.SampleGenerator(
            data=(torch.zeros(FLAGS.batch_size, 3, img_dim, img_dim),
                    torch.zeros(FLAGS.batch_size, dtype=torch.int64)),
            sample_count=50000 // FLAGS.batch_size // xm.xrt_world_size())
    # else:
    #     normalize = transforms.Normalize(
    #         mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    #     train_dataset = torchvision.datasets.ImageFolder(
    #         os.path.join(FLAGS.data, 'train'),
    #         transforms.Compose([
    #             transforms.RandomResizedCrop(img_dim),
    #             transforms.RandomHorizontalFlip(),
    #             transforms.ToTensor(),
    #             normalize,
    #         ]))
    #     train_dataset_len = len(train_dataset.imgs)
    #     resize_dim = max(img_dim, 256)
    #     test_dataset = torchvision.datasets.ImageFolder(
    #         os.path.join(FLAGS.data, 'val'),
    #         # Matches Torchvision's eval transforms except Torchvision uses size
    #         # 256 resize for all models both here and in the train loader. Their
    #         # version crashes during training on 299x299 images, e.g. inception.
    #         transforms.Compose([
    #             transforms.Resize(resize_dim),
    #             transforms.CenterCrop(img_dim),
    #             transforms.ToTensor(),
    #             normalize,
    #         ]))

    #     train_sampler = None
    #     if xm.xrt_world_size() > 1:
    #         train_sampler = torch.utils.data.distributed.DistributedSampler(
    #             train_dataset,
    #             num_replicas=xm.xrt_world_size(),
    #             rank=xm.get_ordinal(),
    #             shuffle=True)
    #     train_loader = torch.utils.data.DataLoader(
    #         train_dataset,
    #         batch_size=FLAGS.batch_size,
    #         sampler=train_sampler,
    #         shuffle=False if train_sampler else True,
    #         num_workers=FLAGS.workers)
    #     test_loader = torch.utils.data.DataLoader(
    #         test_dataset,
    #         batch_size=FLAGS.batch_size,
    #         shuffle=False,
    #         num_workers=FLAGS.workers)
    else:
        train_dir = os.path.join(FLAGS.data, 'train')
        data_config = resolve_data_config(model, FLAGS, verbose=FLAGS.local_rank == 0)
        dataset_train = Dataset(train_dir)

        collate_fn = None
        if not FLAGS.no_prefetcher and FLAGS.mixup > 0:
            collate_fn = FastCollateMixup(FLAGS.mixup, FLAGS.smoothing, FLAGS.num_classes)
        train_loader = create_loader(
            dataset_train,
            input_size=data_config['input_size'],
            batch_size=FLAGS.batch_size,
            is_training=True,
            use_prefetcher=not FLAGS.no_prefetcher,
            rand_erase_prob=FLAGS.reprob,
            rand_erase_mode=FLAGS.remode,
            interpolation='bicubic',  # FIXME cleanly resolve this? data_config['interpolation'],
            mean=data_config['mean'],
            std=data_config['std'],
            num_workers=FLAGS.workers,
            distributed=FLAGS.distributed,
            collate_fn=collate_fn,
            use_auto_aug=FLAGS.auto_augment,
            use_mixcut=FLAGS.mixcut,
        )

        eval_dir = os.path.join(FLAGS.data, 'val')
        train_dataset_len = len(train_loader)
        if not os.path.isdir(eval_dir):
            logging.error('Validation folder does not exist at: {}'.format(eval_dir))
            exit(1)
        dataset_eval = Dataset(eval_dir)

        test_loader = create_loader(
            dataset_eval,
            input_size=data_config['input_size'],
            batch_size = FLAGS.batch_size,
            is_training=False,
            use_prefetcher=FLAGS.prefetcher,
            interpolation=data_config['interpolation'],
            mean=data_config['mean'],
            std=data_config['std'],
            num_workers=FLAGS.workers,
            distributed=FLAGS.distributed,
        )


    writer = None
    start_epoch = 0
    if FLAGS.output and xm.is_master_ordinal():
        writer = SummaryWriter(log_dir=FLAGS.output)
    optimizer = create_optimizer(flags, model)
    lr_scheduler, num_epochs = create_scheduler(flags, optimizer)
    if start_epoch > 0:
        lr_scheduler.step(start_epoch)
    # optimizer = optim.SGD(
    #     model.parameters(),
    #     lr=FLAGS.lr,
    #     momentum=FLAGS.momentum,
    #     weight_decay=5e-4)
    num_training_steps_per_epoch = train_dataset_len // (
        FLAGS.batch_size * xm.xrt_world_size())
        
    lr_scheduler = schedulers.wrap_optimizer_with_scheduler(
        optimizer,
        scheduler_type=getattr(FLAGS, 'lr_scheduler_type', None),
        scheduler_divisor=getattr(FLAGS, 'lr_scheduler_divisor', None),
        scheduler_divide_every_n_epochs=getattr(
            FLAGS, 'lr_scheduler_divide_every_n_epochs', None),
        num_steps_per_epoch=num_training_steps_per_epoch,
        summary_writer=writer)
    train_loss_fn = LabelSmoothingCrossEntropy(smoothing=flags.smoothing)
    validate_loss_fn = nn.CrossEntropyLoss()
    # loss_fn = nn.CrossEntropyLoss()

    def train_loop_fn(loader):
        tracker = xm.RateTracker()
        model.train()
        for x, (data, target) in loader:
            optimizer.zero_grad()
            output = model(data)
            loss = train_loss_fn(output, target)
            loss.backward()
            xm.optimizer_step(optimizer)
            tracker.add(FLAGS.batch_size)
            if model_ema is not None:
                model_ema.update(model)
            if lr_scheduler:
                lr_scheduler.step()
            if x % FLAGS.log_steps == 0:
                test_utils.print_training_update(device, x, loss.item(), tracker.rate(),
                                            tracker.global_rate())

    def test_loop_fn(loader):
        total_samples = 0
        correct = 0
        model.eval()
        for x, (data, target) in loader:
            output = model(data)
            pred = output.max(1, keepdim=True)[1]
            correct += pred.eq(target.view_as(pred)).sum().item()
            total_samples += data.size()[0]

        accuracy = 100.0 * correct / total_samples
        test_utils.print_test_update(device, accuracy)
        return accuracy
    def test_loop_fn_ema(loader):
            total_samples = 0
            correct = 0
            model_ema.eval()
            for x, (data, target) in loader:
                output = model_ema(data)
                pred = output.max(1, keepdim=True)[1]
                correct += pred.eq(target.view_as(pred)).sum().item()
                total_samples += data.size()[0]

            accuracy = 100.0 * correct / total_samples
            test_utils.print_test_update(device, accuracy)
            return accuracy
    accuracy = 0.0
    for epoch in range(1, FLAGS.epochs + 1):
        para_loader = dp.ParallelLoader(train_loader, [device])
        train_loop_fn(para_loader.per_device_loader(device))

        para_loader = dp.ParallelLoader(test_loader, [device])
        accuracy = test_loop_fn(para_loader.per_device_loader(device))
        print('Epoch: {}, Mean Accuracy: {:.2f}%'.format(epoch, accuracy))
        if model_ema is not None:
            accuracy = test_loop_fn_ema(para_loader.per_device_loader(device))
            print('Epoch: {}, Mean Accuracy: {:.2f}%'.format(epoch, accuracy))
        test_utils.add_scalar_to_summary(writer, 'Accuracy/test', accuracy, epoch)

        if FLAGS.metrics_debug:
            print(torch_xla._XLAC._xla_metrics_report())

    return accuracy
예제 #16
0
def main():
    setup_default_logging()
    args, args_text = _parse_args()

    args.prefetcher = not args.no_prefetcher
    args.distributed = False
    if 'WORLD_SIZE' in os.environ:
        args.distributed = int(os.environ['WORLD_SIZE']) > 1
        if args.distributed and args.num_gpu > 1:
            logging.warning(
                'Using more than one GPU per process in distributed mode is not allowed. Setting num_gpu to 1.'
            )
            args.num_gpu = 1

    args.device = 'cuda:0'
    args.world_size = 1
    args.rank = 0  # global rank
    if args.distributed:
        args.num_gpu = 1
        args.device = 'cuda:%d' % args.local_rank
        torch.cuda.set_device(args.local_rank)
        torch.distributed.init_process_group(backend='nccl',
                                             init_method='env://')
        args.world_size = torch.distributed.get_world_size()
        args.rank = torch.distributed.get_rank()
    assert args.rank >= 0

    if args.distributed:
        logging.info(
            'Training in distributed mode with multiple processes, 1 GPU per process. Process %d, total %d.'
            % (args.rank, args.world_size))
    else:
        logging.info('Training with a single process on %d GPUs.' %
                     args.num_gpu)

    torch.manual_seed(args.seed + args.rank)

    model = create_model(args.model,
                         pretrained=args.pretrained,
                         num_classes=args.num_classes,
                         drop_rate=args.drop,
                         drop_connect_rate=args.drop_connect,
                         global_pool=args.gp,
                         bn_tf=args.bn_tf,
                         bn_momentum=args.bn_momentum,
                         bn_eps=args.bn_eps,
                         checkpoint_path=args.initial_checkpoint)

    if args.local_rank == 0:
        logging.info('Model %s created, param count: %d' %
                     (args.model, sum([m.numel()
                                       for m in model.parameters()])))

    data_config = resolve_data_config(vars(args),
                                      model=model,
                                      verbose=args.local_rank == 0)

    num_aug_splits = 0
    if args.aug_splits > 0:
        assert args.aug_splits > 1, 'A split of 1 makes no sense'
        num_aug_splits = args.aug_splits

    if args.split_bn:
        assert num_aug_splits > 1 or args.resplit
        model = convert_splitbn_model(model, max(num_aug_splits, 2))

    if args.num_gpu > 1:
        if args.amp:
            logging.warning(
                'AMP does not work well with nn.DataParallel, disabling. Use distributed mode for multi-GPU AMP.'
            )
            args.amp = False
        model = nn.DataParallel(model,
                                device_ids=list(range(args.num_gpu))).cuda()
    else:
        model.cuda()

    optimizer = create_optimizer(args, model)

    use_amp = False
    if has_apex and args.amp:
        model, optimizer = amp.initialize(model, optimizer, opt_level='O1')
        use_amp = True
    if args.local_rank == 0:
        logging.info('NVIDIA APEX {}. AMP {}.'.format(
            'installed' if has_apex else 'not installed',
            'on' if use_amp else 'off'))

    # optionally resume from a checkpoint
    resume_state = {}
    resume_epoch = None
    if args.resume:
        resume_state, resume_epoch = resume_checkpoint(model, args.resume)
    if resume_state and not args.no_resume_opt:
        if 'optimizer' in resume_state:
            if args.local_rank == 0:
                logging.info('Restoring Optimizer state from checkpoint')
            optimizer.load_state_dict(resume_state['optimizer'])
        if use_amp and 'amp' in resume_state and 'load_state_dict' in amp.__dict__:
            if args.local_rank == 0:
                logging.info('Restoring NVIDIA AMP state from checkpoint')
            amp.load_state_dict(resume_state['amp'])
    del resume_state

    model_ema = None
    if args.model_ema:
        # Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
        model_ema = ModelEma(model,
                             decay=args.model_ema_decay,
                             device='cpu' if args.model_ema_force_cpu else '',
                             resume=args.resume)

    if args.distributed:
        if args.sync_bn:
            assert not args.split_bn
            try:
                if has_apex:
                    model = convert_syncbn_model(model)
                else:
                    model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(
                        model)
                if args.local_rank == 0:
                    logging.info(
                        'Converted model to use Synchronized BatchNorm. WARNING: You may have issues if using '
                        'zero initialized BN layers (enabled by default for ResNets) while sync-bn enabled.'
                    )
            except Exception as e:
                logging.error(
                    'Failed to enable Synchronized BatchNorm. Install Apex or Torch >= 1.1'
                )
        if has_apex:
            model = DDP(model, delay_allreduce=True)
        else:
            if args.local_rank == 0:
                logging.info(
                    "Using torch DistributedDataParallel. Install NVIDIA Apex for Apex DDP."
                )
            model = DDP(model,
                        device_ids=[args.local_rank
                                    ])  # can use device str in Torch >= 1.1
        # NOTE: EMA model does not need to be wrapped by DDP

    lr_scheduler, num_epochs = create_scheduler(args, optimizer)
    start_epoch = 0
    if args.start_epoch is not None:
        # a specified start_epoch will always override the resume epoch
        start_epoch = args.start_epoch
    elif resume_epoch is not None:
        start_epoch = resume_epoch
    if lr_scheduler is not None and start_epoch > 0:
        lr_scheduler.step(start_epoch)

    if args.local_rank == 0:
        logging.info('Scheduled epochs: {}'.format(num_epochs))

    train_dir = os.path.join(args.data, 'train')
    if not os.path.exists(train_dir):
        logging.error(
            'Training folder does not exist at: {}'.format(train_dir))
        exit(1)
    dataset_train = Dataset(train_dir)

    collate_fn = None
    if args.prefetcher and args.mixup > 0:
        assert not num_aug_splits  # collate conflict (need to support deinterleaving in collate mixup)
        collate_fn = FastCollateMixup(args.mixup, args.smoothing,
                                      args.num_classes)

    if num_aug_splits > 1:
        dataset_train = AugMixDataset(dataset_train, num_splits=num_aug_splits)

    loader_train = create_loader(
        dataset_train,
        input_size=data_config['input_size'],
        batch_size=args.batch_size,
        is_training=True,
        use_prefetcher=args.prefetcher,
        re_prob=args.reprob,
        re_mode=args.remode,
        re_count=args.recount,
        re_split=args.resplit,
        color_jitter=args.color_jitter,
        auto_augment=args.aa,
        num_aug_splits=num_aug_splits,
        interpolation=args.train_interpolation,
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
        collate_fn=collate_fn,
        pin_memory=args.pin_mem,
    )

    eval_dir = os.path.join(args.data, 'val')
    if not os.path.isdir(eval_dir):
        eval_dir = os.path.join(args.data, 'validation')
        if not os.path.isdir(eval_dir):
            logging.error(
                'Validation folder does not exist at: {}'.format(eval_dir))
            exit(1)
    dataset_eval = Dataset(eval_dir)

    loader_eval = create_loader(
        dataset_eval,
        input_size=data_config['input_size'],
        batch_size=4 * args.batch_size,
        is_training=False,
        use_prefetcher=args.prefetcher,
        interpolation=data_config['interpolation'],
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
        crop_pct=data_config['crop_pct'],
        pin_memory=args.pin_mem,
    )

    if args.jsd:
        assert num_aug_splits > 1  # JSD only valid with aug splits set
        train_loss_fn = JsdCrossEntropy(num_splits=num_aug_splits,
                                        smoothing=args.smoothing).cuda()
        validate_loss_fn = nn.CrossEntropyLoss().cuda()
    elif args.mixup > 0.:
        # smoothing is handled with mixup label transform
        train_loss_fn = SoftTargetCrossEntropy().cuda()
        validate_loss_fn = nn.CrossEntropyLoss().cuda()
    elif args.smoothing:
        train_loss_fn = LabelSmoothingCrossEntropy(
            smoothing=args.smoothing).cuda()
        validate_loss_fn = nn.CrossEntropyLoss().cuda()
    else:
        train_loss_fn = nn.CrossEntropyLoss().cuda()
        validate_loss_fn = train_loss_fn

    eval_metric = args.eval_metric
    best_metric = None
    best_epoch = None
    saver = None
    output_dir = ''
    if args.local_rank == 0:
        output_base = args.output if args.output else './output'
        exp_name = '-'.join([
            datetime.now().strftime("%Y%m%d-%H%M%S"), args.model,
            str(data_config['input_size'][-1])
        ])
        output_dir = get_outdir(output_base, 'train', exp_name)
        decreasing = True if eval_metric == 'loss' else False
        saver = CheckpointSaver(checkpoint_dir=output_dir,
                                decreasing=decreasing)
        with open(os.path.join(output_dir, 'args.yaml'), 'w') as f:
            f.write(args_text)

    try:
        for epoch in range(start_epoch, num_epochs):
            if args.distributed:
                loader_train.sampler.set_epoch(epoch)

            train_metrics = train_epoch(epoch,
                                        model,
                                        loader_train,
                                        optimizer,
                                        train_loss_fn,
                                        args,
                                        lr_scheduler=lr_scheduler,
                                        saver=saver,
                                        output_dir=output_dir,
                                        use_amp=use_amp,
                                        model_ema=model_ema)

            if args.distributed and args.dist_bn in ('broadcast', 'reduce'):
                if args.local_rank == 0:
                    logging.info(
                        "Distributing BatchNorm running means and vars")
                distribute_bn(model, args.world_size, args.dist_bn == 'reduce')

            eval_metrics = validate(model, loader_eval, validate_loss_fn, args)

            if model_ema is not None and not args.model_ema_force_cpu:
                if args.distributed and args.dist_bn in ('broadcast',
                                                         'reduce'):
                    distribute_bn(model_ema, args.world_size,
                                  args.dist_bn == 'reduce')

                ema_eval_metrics = validate(model_ema.ema,
                                            loader_eval,
                                            validate_loss_fn,
                                            args,
                                            log_suffix=' (EMA)')
                eval_metrics = ema_eval_metrics

            if lr_scheduler is not None:
                # step LR for next epoch
                lr_scheduler.step(epoch + 1, eval_metrics[eval_metric])

            update_summary(epoch,
                           train_metrics,
                           eval_metrics,
                           os.path.join(output_dir, 'summary.csv'),
                           write_header=best_metric is None)

            if saver is not None:
                # save proper checkpoint with eval metric
                save_metric = eval_metrics[eval_metric]
                best_metric, best_epoch = saver.save_checkpoint(
                    model,
                    optimizer,
                    args,
                    epoch=epoch,
                    model_ema=model_ema,
                    metric=save_metric,
                    use_amp=use_amp)

    except KeyboardInterrupt:
        pass
    if best_metric is not None:
        logging.info('*** Best metric: {0} (epoch {1})'.format(
            best_metric, best_epoch))
예제 #17
0
def main():
    setup_default_logging()
    args, args_text = _parse_args()

    args.prefetcher = not args.no_prefetcher
    args.distributed = False
    args.device = 'cuda:0'
    args.world_size = 1
    args.rank = 0  # global rank

    use_cuda = torch.cuda.is_available()
    device = torch.device("cuda" if use_cuda else "cpu")

    _logger.info('====================\n\n'
                 'Actfun: {}\n'
                 'LR: {}\n'
                 'Epochs: {}\n'
                 'p: {}\n'
                 'k: {}\n'
                 'g: {}\n'
                 'Extra channel multiplier: {}\n'
                 'Weight Init: {}\n'
                 '\n===================='.format(args.actfun, args.lr,
                                                 args.epochs, args.p, args.k,
                                                 args.g,
                                                 args.extra_channel_mult,
                                                 args.weight_init))

    # ================================================================================= Loading models
    pre_model = create_model(
        args.model,
        pretrained=True,
        actfun='swish',
        num_classes=args.num_classes,
        drop_rate=args.drop,
        drop_connect_rate=args.drop_connect,  # DEPRECATED, use drop_path
        drop_path_rate=args.drop_path,
        drop_block_rate=args.drop_block,
        global_pool=args.gp,
        bn_tf=args.bn_tf,
        bn_momentum=args.bn_momentum,
        bn_eps=args.bn_eps,
        scriptable=args.torchscript,
        checkpoint_path=args.initial_checkpoint,
        p=args.p,
        k=args.k,
        g=args.g,
        extra_channel_mult=args.extra_channel_mult,
        weight_init_name=args.weight_init,
        partial_ho_actfun=args.partial_ho_actfun)
    pre_model_layers = list(pre_model.children())
    pre_model = torch.nn.Sequential(*pre_model_layers[:-1])
    pre_model.to(device)

    model = MLP.MLP(actfun=args.actfun,
                    input_dim=1280,
                    output_dim=args.num_classes,
                    k=args.k,
                    p=args.p,
                    g=args.g,
                    num_params=1_000_000,
                    permute_type='shuffle')
    model.to(device)

    # ================================================================================= Loading dataset
    util.seed_all(args.seed)
    if args.data == 'caltech101' and not os.path.exists('caltech101'):
        dir_root = r'101_ObjectCategories'
        dir_new = r'caltech101'
        dir_new_train = os.path.join(dir_new, 'train')
        dir_new_val = os.path.join(dir_new, 'val')
        dir_new_test = os.path.join(dir_new, 'test')
        if not os.path.exists(dir_new):
            os.mkdir(dir_new)
            os.mkdir(dir_new_train)
            os.mkdir(dir_new_val)
            os.mkdir(dir_new_test)

        for dir2 in os.listdir(dir_root):
            if dir2 != 'BACKGROUND_Google':
                curr_path = os.path.join(dir_root, dir2)
                new_path_train = os.path.join(dir_new_train, dir2)
                new_path_val = os.path.join(dir_new_val, dir2)
                new_path_test = os.path.join(dir_new_test, dir2)
                if not os.path.exists(new_path_train):
                    os.mkdir(new_path_train)
                if not os.path.exists(new_path_val):
                    os.mkdir(new_path_val)
                if not os.path.exists(new_path_test):
                    os.mkdir(new_path_test)

                train_upper = int(0.8 * len(os.listdir(curr_path)))
                val_upper = int(0.9 * len(os.listdir(curr_path)))
                curr_files_all = os.listdir(curr_path)
                curr_files_train = curr_files_all[:train_upper]
                curr_files_val = curr_files_all[train_upper:val_upper]
                curr_files_test = curr_files_all[val_upper:]

                for file in curr_files_train:
                    copyfile(os.path.join(curr_path, file),
                             os.path.join(new_path_train, file))
                for file in curr_files_val:
                    copyfile(os.path.join(curr_path, file),
                             os.path.join(new_path_val, file))
                for file in curr_files_test:
                    copyfile(os.path.join(curr_path, file),
                             os.path.join(new_path_test, file))
    time.sleep(5)

    # create the train and eval datasets
    train_dir = os.path.join(args.data, 'train')
    if not os.path.exists(train_dir):
        _logger.error(
            'Training folder does not exist at: {}'.format(train_dir))
        exit(1)
    dataset_train = Dataset(train_dir)

    eval_dir = os.path.join(args.data, 'val')
    if not os.path.isdir(eval_dir):
        eval_dir = os.path.join(args.data, 'validation')
        if not os.path.isdir(eval_dir):
            _logger.error(
                'Validation folder does not exist at: {}'.format(eval_dir))
            exit(1)
    dataset_eval = Dataset(eval_dir)

    # setup augmentation batch splits for contrastive loss or split bn
    num_aug_splits = 0
    if args.aug_splits > 0:
        assert args.aug_splits > 1, 'A split of 1 makes no sense'
        num_aug_splits = args.aug_splits

    # enable split bn (separate bn stats per batch-portion)
    if args.split_bn:
        assert num_aug_splits > 1 or args.resplit
        model = convert_splitbn_model(model, max(num_aug_splits, 2))

    # setup mixup / cutmix
    collate_fn = None
    mixup_fn = None
    mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
    if mixup_active:
        mixup_args = dict(mixup_alpha=args.mixup,
                          cutmix_alpha=args.cutmix,
                          cutmix_minmax=args.cutmix_minmax,
                          prob=args.mixup_prob,
                          switch_prob=args.mixup_switch_prob,
                          mode=args.mixup_mode,
                          label_smoothing=args.smoothing,
                          num_classes=args.num_classes)
        if args.prefetcher:
            assert not num_aug_splits  # collate conflict (need to support deinterleaving in collate mixup)
            collate_fn = FastCollateMixup(**mixup_args)
        else:
            mixup_fn = Mixup(**mixup_args)

    # create data loaders w/ augmentation pipeline
    train_interpolation = args.train_interpolation
    data_config = resolve_data_config(vars(args),
                                      model=model,
                                      verbose=args.local_rank == 0)
    if args.no_aug or not train_interpolation:
        train_interpolation = data_config['interpolation']
    loader_train = create_loader(
        dataset_train,
        input_size=data_config['input_size'],
        batch_size=args.batch_size,
        is_training=True,
        use_prefetcher=args.prefetcher,
        no_aug=args.no_aug,
        re_prob=args.reprob,
        re_mode=args.remode,
        re_count=args.recount,
        re_split=args.resplit,
        scale=args.scale,
        ratio=args.ratio,
        hflip=args.hflip,
        vflip=args.vflip,
        color_jitter=args.color_jitter,
        auto_augment=args.aa,
        num_aug_splits=num_aug_splits,
        interpolation=train_interpolation,
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
        collate_fn=collate_fn,
        pin_memory=args.pin_mem,
        use_multi_epochs_loader=args.use_multi_epochs_loader)

    loader_eval = create_loader(
        dataset_eval,
        input_size=data_config['input_size'],
        batch_size=args.validation_batch_size_multiplier * args.batch_size,
        is_training=False,
        use_prefetcher=args.prefetcher,
        interpolation=data_config['interpolation'],
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
        crop_pct=data_config['crop_pct'],
        pin_memory=args.pin_mem,
    )

    # ================================================================================= Optimizer / scheduler
    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), weight_decay=1e-5)
    scheduler = OneCycleLR(
        optimizer,
        max_lr=args.lr,
        epochs=args.epochs,
        steps_per_epoch=int(math.floor(len(dataset_train) / args.batch_size)),
        cycle_momentum=False)

    # ================================================================================= Save file / checkpoints
    fieldnames = [
        'dataset', 'seed', 'epoch', 'time', 'actfun', 'model', 'batch_size',
        'alpha_primes', 'alphas', 'num_params', 'k', 'p', 'g', 'perm_method',
        'gen_gap', 'epoch_train_loss', 'epoch_train_acc',
        'epoch_aug_train_loss', 'epoch_aug_train_acc', 'epoch_val_loss',
        'epoch_val_acc', 'curr_lr', 'found_lr', 'epochs'
    ]
    filename = 'out_{}_{}_{}_{}'.format(datetime.date.today(), args.actfun,
                                        args.data, args.seed)
    outfile_path = os.path.join(args.output, filename) + '.csv'
    checkpoint_path = os.path.join(args.check_path, filename) + '.pth'
    if not os.path.exists(outfile_path):
        with open(outfile_path, mode='w') as out_file:
            writer = csv.DictWriter(out_file,
                                    fieldnames=fieldnames,
                                    lineterminator='\n')
            writer.writeheader()

    epoch = 1
    checkpoint = torch.load(checkpoint_path) if os.path.exists(
        checkpoint_path) else None
    if checkpoint is not None:
        pre_model.load_state_dict(checkpoint['pre_model_state_dict'])
        model.load_state_dict(checkpoint['model_state_dict'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        scheduler.load_state_dict(checkpoint['scheduler'])
        epoch = checkpoint['epoch']
        pre_model.to(device)
        model.to(device)
        print("*** LOADED CHECKPOINT ***"
              "\n{}"
              "\nSeed: {}"
              "\nEpoch: {}"
              "\nActfun: {}"
              "\np: {}"
              "\nk: {}"
              "\ng: {}"
              "\nperm_method: {}".format(checkpoint_path,
                                         checkpoint['curr_seed'],
                                         checkpoint['epoch'],
                                         checkpoint['actfun'], checkpoint['p'],
                                         checkpoint['k'], checkpoint['g'],
                                         checkpoint['perm_method']))

    args.mix_pre_apex = False
    if args.control_amp == 'apex':
        args.mix_pre_apex = True
        model, optimizer = amp.initialize(model, optimizer, opt_level="O2")

    # ================================================================================= Training
    while epoch <= args.epochs:

        if args.check_path != '':
            torch.save(
                {
                    'pre_model_state_dict': pre_model.state_dict(),
                    'model_state_dict': model.state_dict(),
                    'optimizer': optimizer.state_dict(),
                    'scheduler': scheduler.state_dict(),
                    'curr_seed': args.seed,
                    'epoch': epoch,
                    'actfun': args.actfun,
                    'p': args.p,
                    'k': args.k,
                    'g': args.g,
                    'perm_method': 'shuffle'
                }, checkpoint_path)

        util.seed_all((args.seed * args.epochs) + epoch)
        start_time = time.time()
        args.mix_pre = False
        if args.control_amp == 'native':
            args.mix_pre = True
            scaler = torch.cuda.amp.GradScaler()

        # ---- Training
        model.train()
        total_train_loss, n, num_correct, num_total = 0, 0, 0, 0
        for batch_idx, (x, targetx) in enumerate(loader_train):
            x, targetx = x.to(device), targetx.to(device)
            optimizer.zero_grad()
            if args.mix_pre:
                with torch.cuda.amp.autocast():
                    with torch.no_grad():
                        x = pre_model(x)
                    output = model(x)
                    train_loss = criterion(output, targetx)
                total_train_loss += train_loss
                n += 1
                scaler.scale(train_loss).backward()
                scaler.step(optimizer)
                scaler.update()
            elif args.mix_pre_apex:
                with torch.no_grad():
                    x = pre_model(x)
                output = model(x)
                train_loss = criterion(output, targetx)
                total_train_loss += train_loss
                n += 1
                with amp.scale_loss(train_loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
                optimizer.step()
            else:
                with torch.no_grad():
                    x = pre_model(x)
                output = model(x)
                train_loss = criterion(output, targetx)
                total_train_loss += train_loss
                n += 1
                train_loss.backward()
                optimizer.step()
            scheduler.step()
            _, prediction = torch.max(output.data, 1)
            num_correct += torch.sum(prediction == targetx.data)
            num_total += len(prediction)
        epoch_aug_train_loss = total_train_loss / n
        epoch_aug_train_acc = num_correct * 1.0 / num_total

        alpha_primes = []
        alphas = []
        if model.actfun == 'combinact':
            for i, layer_alpha_primes in enumerate(model.all_alpha_primes):
                curr_alpha_primes = torch.mean(layer_alpha_primes, dim=0)
                curr_alphas = F.softmax(curr_alpha_primes, dim=0).data.tolist()
                curr_alpha_primes = curr_alpha_primes.tolist()
                alpha_primes.append(curr_alpha_primes)
                alphas.append(curr_alphas)

        model.eval()
        with torch.no_grad():
            total_val_loss, n, num_correct, num_total = 0, 0, 0, 0
            for batch_idx, (y, targety) in enumerate(loader_eval):
                y, targety = y.to(device), targety.to(device)
                with torch.no_grad():
                    y = pre_model(y)
                output = model(y)
                val_loss = criterion(output, targety)
                total_val_loss += val_loss
                n += 1
                _, prediction = torch.max(output.data, 1)
                num_correct += torch.sum(prediction == targety.data)
                num_total += len(prediction)
            epoch_val_loss = total_val_loss / n
            epoch_val_acc = num_correct * 1.0 / num_total
        lr_curr = 0
        for param_group in optimizer.param_groups:
            lr_curr = param_group['lr']
        print(
            "    Epoch {}: LR {:1.5f} ||| aug_train_acc {:1.4f} | val_acc {:1.4f} ||| "
            "aug_train_loss {:1.4f} | val_loss {:1.4f} ||| time = {:1.4f}".
            format(epoch, lr_curr, epoch_aug_train_acc, epoch_val_acc,
                   epoch_aug_train_loss, epoch_val_loss,
                   (time.time() - start_time)),
            flush=True)

        epoch_train_loss = 0
        epoch_train_acc = 0
        if epoch == args.epochs:
            with torch.no_grad():
                total_train_loss, n, num_correct, num_total = 0, 0, 0, 0
                for batch_idx, (x, targetx) in enumerate(loader_train):
                    x, targetx = x.to(device), targetx.to(device)
                    with torch.no_grad():
                        x = pre_model(x)
                    output = model(x)
                    train_loss = criterion(output, targetx)
                    total_train_loss += train_loss
                    n += 1
                    _, prediction = torch.max(output.data, 1)
                    num_correct += torch.sum(prediction == targetx.data)
                    num_total += len(prediction)
                epoch_aug_train_loss = total_train_loss / n
                epoch_aug_train_acc = num_correct * 1.0 / num_total

                total_train_loss, n, num_correct, num_total = 0, 0, 0, 0
                for batch_idx, (x, targetx) in enumerate(loader_eval):
                    x, targetx = x.to(device), targetx.to(device)
                    with torch.no_grad():
                        x = pre_model(x)
                    output = model(x)
                    train_loss = criterion(output, targetx)
                    total_train_loss += train_loss
                    n += 1
                    _, prediction = torch.max(output.data, 1)
                    num_correct += torch.sum(prediction == targetx.data)
                    num_total += len(prediction)
                epoch_train_loss = total_val_loss / n
                epoch_train_acc = num_correct * 1.0 / num_total

        # Outputting data to CSV at end of epoch
        with open(outfile_path, mode='a') as out_file:
            writer = csv.DictWriter(out_file,
                                    fieldnames=fieldnames,
                                    lineterminator='\n')
            writer.writerow({
                'dataset': args.data,
                'seed': args.seed,
                'epoch': epoch,
                'time': (time.time() - start_time),
                'actfun': model.actfun,
                'model': args.model,
                'batch_size': args.batch_size,
                'alpha_primes': alpha_primes,
                'alphas': alphas,
                'num_params': util.get_model_params(model),
                'k': args.k,
                'p': args.p,
                'g': args.g,
                'perm_method': 'shuffle',
                'gen_gap': float(epoch_val_loss - epoch_train_loss),
                'epoch_train_loss': float(epoch_train_loss),
                'epoch_train_acc': float(epoch_train_acc),
                'epoch_aug_train_loss': float(epoch_aug_train_loss),
                'epoch_aug_train_acc': float(epoch_aug_train_acc),
                'epoch_val_loss': float(epoch_val_loss),
                'epoch_val_acc': float(epoch_val_acc),
                'curr_lr': lr_curr,
                'found_lr': args.lr,
                'epochs': args.epochs
            })

        epoch += 1