print " %s" % c i = 0 for f in filt_list: print "\n Filt set:",f file = folder_name + file_name + f + '_' + sample + flag + '.bpz' zt, zp, od = np.loadtxt(file,usecols= (zt_col, zp_col, od_col), unpack = True) dz = (zp - zt) / (1 + zt) dz_all = np.copy(dz) _, X = np.loadtxt(file, usecols= (0, col_list[c]), unpack = True) X_all = np.copy(X) od = tls.od_renorm(od) od = tls.od2eff(od) mask = (od > 0.5) dz = dz[mask] X = X[mask] print 'Completness=', 100*float(len(X))/float(len(X_all)) print len(dz), len(dz_all) dz_bin = pztls.binsplit(dz, X, binning[c]) dz_bin_all = pztls.binsplit(dz_all, X_all, binning[c]) k = 0 for e in estim_list: print " %s" % e
N_mpix = len(mpix2hpix) print "N_mpix =", N_mpix #Generating jacknife map conversion.............. jk_hmap = hp.ud_grade(mask_hmap, nside_jk) jkhpix2jkmpix = idmaskmap(jk_hmap) jkmpix2jkhpix = np.nonzero(jk_hmap)[0] N_jkmpix = len(jkmpix2jkhpix) print "N_jkpix =", len(jk_hmap) print "N_jkmpix =", N_jkmpix cat['p']['val']['mpix'] = hpix2mpix[cat['p']['val']['hpix']] for i in cat: #cat[i]['val']['od'] = odrescal(cat[i]['val']['od'], od_range) cat[i]['val']['od'] = tls.od_renorm(cat[i]['val']['od'], od_min = od_range[0]) od_cut = tls.od_cut(cat['s']['val']['od'], eff_cut) if(cat_list['s'] == True): #Generating Nz.................................... #if not os.path.exists('./Nz'): # os.makedirs('./Nz') mycolors = tls.spectral(n_od, 0.2,1.) for bin in zbin: c = 0 for od in od_cut: mask = cut(bin, od, cat['s']['val']['zp'], cat['s']['val']['od'])
#Template rescaling......... #cat_all['type'] -= 1 #cat_all['type'] *= 10 print "Catalog information:\n" for i in col_list: print "\n" + i + " min =", cat_all[i].min() print i + " max =", cat_all[i].max() zt_all, zp_all, od_all = np.loadtxt(file_path,usecols= (zt_col, zp_col, od_col), unpack = True) if (error == 'True'): od_all = pztls.err2od(od_all) od_all = tls.od_renorm(od_all) od_all = tls.od2eff(od_all) od_cut = eff_cut #od_cut = tls.od_cut(od_all, eff_cut) print "\nCatalog analysis:" n_od = len(od_cut) #mycolors = tls.spectral(n_od, 0.0, 1.0) cmap = plt.cm.get_cmap(name='jet') i_od = 0 for o in od_cut: print "\nodds>",o cat = {}