예제 #1
0
#num_samples = 1000000

all_data_dict = dict()
max_length = 100
head_hidd_list = list()
tail_hidd_list = list()
#device = "cpu"
device = "cuda"

pretrained_weights = model
tokenizer = RobertaTokenizer.from_pretrained(pretrained_weights)

fine_tuned_weight = model
#model = RobertaForMaskedLM.from_pretrained(pretrained_weights, output_hidden_states=True,return_dict=True)
model = RobertaForMaskedLMDomainTask.from_pretrained(pretrained_weights,
                                                     output_hidden_states=True,
                                                     return_dict=True,
                                                     num_labels=3)
#model.load_state_dict(torch.load(fine_tuned_weight), strict=False)

#model.to(device).half()
model.to(device)
model.eval()

#num_samples = 1000000

old = torch.FloatTensor(768)
with open(file_in) as f:
    #data = json.load(f)
    for index, d in tqdm(enumerate(f)):
        #print(type(index),index)
        #if index == 1000000:
예제 #2
0
def main():
    parser = argparse.ArgumentParser()
    ## Required parameters
    ###############
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )
    parser.add_argument("--pretrain_model",
                        default='bert-case-uncased',
                        type=str,
                        required=True,
                        help="Pre-trained model")
    parser.add_argument("--num_labels_task",
                        default=None,
                        type=int,
                        required=True,
                        help="num_labels_task")
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        default=False,
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        default=False,
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--do_lower_case",
        default=False,
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        default=False,
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        default=False,
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument("--weight_decay",
                        default=0.0,
                        type=float,
                        help="Weight decay if we apply some.")
    parser.add_argument("--adam_epsilon",
                        default=1e-8,
                        type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm",
                        default=1.0,
                        type=float,
                        help="Max gradient norm.")
    parser.add_argument(
        '--fp16_opt_level',
        type=str,
        default='O1',
        help=
        "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html")
    parser.add_argument("--task",
                        default=None,
                        type=int,
                        required=True,
                        help="Choose Task")
    ###############

    args = parser.parse_args()

    processors = Processor_1

    num_labels = args.num_labels_task

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {}, n_gpu: {}, distributed training: {}, 16-bits training: {}"
        .format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = int(args.train_batch_size /
                                args.gradient_accumulation_steps)

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir) and args.do_train:
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir))
    os.makedirs(args.output_dir, exist_ok=True)

    tokenizer = RobertaTokenizer.from_pretrained(args.pretrain_model)

    train_examples = None
    num_train_steps = None
    aspect_list = None
    sentiment_list = None
    processor = processors()
    num_labels = num_labels
    train_examples, aspect_list, sentiment_list = processor.get_train_examples(
        args.data_dir)

    if args.task == 1:
        num_labels = len(aspect_list)
    elif args.task == 2:
        num_labels = len(sentiment_list)
    else:
        print("What's task?")
        exit()

    num_train_steps = int(
        len(train_examples) / args.train_batch_size /
        args.gradient_accumulation_steps * args.num_train_epochs)

    # Prepare model
    #model = RobertaForSequenceClassification.from_pretrained(args.pretrain_model, num_labels=args.num_labels_task, output_hidden_states=False, output_attentions=False, return_dict=True)
    model = RobertaForMaskedLMDomainTask.from_pretrained(
        args.pretrain_model,
        num_labels=args.num_labels_task,
        output_hidden_states=False,
        output_attentions=False,
        return_dict=True)

    # Prepare optimizer
    t_total = num_train_steps
    if args.local_rank != -1:
        t_total = t_total // torch.distributed.get_world_size()

    model.to(device)

    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    #no_decay = ['bias', 'LayerNorm.weight']
    no_grad = [
        'bert.encoder.layer.11.output.dense_ent',
        'bert.encoder.layer.11.output.LayerNorm_ent'
    ]
    param_optimizer = [(n, p) for n, p in param_optimizer
                       if not any(nd in n for nd in no_grad)]
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        args.weight_decay
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    optimizer = AdamW(optimizer_grouped_parameters,
                      lr=args.learning_rate,
                      eps=args.adam_epsilon)
    scheduler = get_linear_schedule_with_warmup(optimizer,
                                                num_warmup_steps=int(t_total *
                                                                     0.1),
                                                num_training_steps=t_total)
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
            )
            exit()

        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(
            model,
            device_ids=[args.local_rank],
            output_device=args.local_rank,
            find_unused_parameters=True)

    global_step = 0
    if args.do_train:
        train_features = convert_examples_to_features(train_examples,
                                                      aspect_list,
                                                      sentiment_list,
                                                      args.max_seq_length,
                                                      tokenizer, args.task)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_steps)

        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_attention_mask = torch.tensor(
            [f.attention_mask for f in train_features], dtype=torch.long)
        if args.task == 1:
            print("Excuting the task 1")
        elif args.task == 2:
            all_segment_ids = torch.tensor(
                [f.segment_ids for f in train_features], dtype=torch.long)
        else:
            print("Wrong here2")

        all_label_ids = torch.tensor([f.label_id for f in train_features],
                                     dtype=torch.long)

        if args.task == 1:
            train_data = TensorDataset(all_input_ids, all_attention_mask,
                                       all_label_ids)
        elif args.task == 2:
            train_data = TensorDataset(all_input_ids, all_attention_mask,
                                       all_segment_ids, all_label_ids)
        else:
            print("Wrong here1")
        '''
        print("========")
        print(train_data)
        print(type(train_data))
        exit()
        '''

        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        output_loss_file = os.path.join(args.output_dir, "loss")
        loss_fout = open(output_loss_file, 'w')
        model.train()

        ##########Pre-Pprocess#########
        ###############################

        for epoch in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                #batch = tuple(t.to(device) if i != 3 else t for i, t in enumerate(batch))
                batch = tuple(t.to(device) for i, t in enumerate(batch))

                if args.task == 1:
                    input_ids, attention_mask, label_ids = batch
                elif args.task == 2:
                    input_ids, attention_mask, segment_ids, label_ids = batch
                else:
                    print("Wrong here3")

                if args.task == 1:
                    #loss, logits, hidden_states, attentions
                    #output = model(input_ids=input_ids, token_type_ids=None, attention_mask=attention_mask, labels=label_ids)
                    #loss = output.loss
                    loss, logit = model(input_ids_org=input_ids,
                                        token_type_ids=None,
                                        attention_mask=attention_mask,
                                        sentence_label=label_ids,
                                        func="task_class")
                elif args.task == 2:
                    #loss, logits, hidden_states, attentions
                    #output = model(input_ids=input_ids, token_type_ids=segment_ids, attention_mask=attention_mask, labels=label_ids)
                    #output = model(input_ids=input_ids, token_type_ids=segment_ids, attention_mask=attention_mask, labels=label_ids)
                    #output = model(input_ids=input_ids, token_type_ids=None, attention_mask=attention_mask, labels=label_ids)
                    #loss = output.loss
                    loss, logit = model(input_ids_org=input_ids,
                                        token_type_ids=None,
                                        attention_mask=attention_mask,
                                        sentence_label=label_ids,
                                        func="task_class")
                else:
                    print("Wrong!!")

                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    ###
                    #optimizer.backward(loss)
                    with amp.scale_loss(loss, optimizer) as scaled_loss:
                        scaled_loss.backward()
                    ###
                else:
                    loss.backward()

                loss_fout.write("{}\n".format(loss.item()))
                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    # modify learning rate with special warm up BERT uses
                    ###
                    if args.fp16:
                        torch.nn.utils.clip_grad_norm_(
                            amp.master_params(optimizer), args.max_grad_norm)
                    else:
                        torch.nn.utils.clip_grad_norm_(model.parameters(),
                                                       args.max_grad_norm)
                    optimizer.step()
                    scheduler.step()
                    model.zero_grad()
                    global_step += 1
                    ###
            if epoch < 2:
                continue
            else:
                model_to_save = model.module if hasattr(model,
                                                        'module') else model
                #output_model_file = os.path.join(args.output_dir, "pytorch_model.bin_{}".format(global_step))
                output_model_file = os.path.join(
                    args.output_dir, "pytorch_model.bin_{}".format(epoch))
                torch.save(model_to_save.state_dict(), output_model_file)

        # Save a trained model
        model_to_save = model.module if hasattr(
            model, 'module') else model  # Only save the model it-self
        output_model_file = os.path.join(args.output_dir, "pytorch_model.bin")
        torch.save(model_to_save.state_dict(), output_model_file)
def main():
    parser = argparse.ArgumentParser()
    ## Required parameters
    ###############
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )
    parser.add_argument("--pretrain_model",
                        default='bert-case-uncased',
                        type=str,
                        required=True,
                        help="Pre-trained model")
    parser.add_argument("--num_labels_task",
                        default=None,
                        type=int,
                        required=True,
                        help="num_labels_task")
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        default=False,
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        default=False,
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--do_lower_case",
        default=False,
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--eval_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        default=False,
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        default=False,
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument("--weight_decay",
                        default=0.0,
                        type=float,
                        help="Weight decay if we apply some.")
    parser.add_argument("--adam_epsilon",
                        default=1e-8,
                        type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm",
                        default=1.0,
                        type=float,
                        help="Max gradient norm.")
    parser.add_argument(
        '--fp16_opt_level',
        type=str,
        default='O1',
        help=
        "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html")
    parser.add_argument("--task",
                        default=None,
                        type=int,
                        required=True,
                        help="Choose Task")
    ###############

    args = parser.parse_args()
    #print(args.do_train, args.do_eval)
    #exit()

    processors = Processor_1

    num_labels = args.num_labels_task

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {}, n_gpu: {}, distributed training: {}, 16-bits training: {}"
        .format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    #args.train_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps)

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")
    '''
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train:
        raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
    '''
    os.makedirs(args.output_dir, exist_ok=True)

    tokenizer = RobertaTokenizer.from_pretrained(args.pretrain_model)

    train_examples = None
    num_train_steps = None
    aspect_list = None
    sentiment_list = None
    processor = processors()
    num_labels = num_labels
    #train_examples, aspect_list, sentiment_list = processor.get_train_examples(args.data_dir)

    filenames = os.listdir(args.output_dir)
    filenames = [x for x in filenames if "pytorch_model.bin_" in x]
    print(filenames)

    file_mark = []
    model_performace = dict()
    for x in filenames:
        #file_mark.append([x, True])
        file_mark.append([x, False])

    ####
    ####
    test_examples, aspect_list, sentiment_list = processor.get_test_examples(
        args.data_dir)
    if args.task == 1:
        num_labels = len(aspect_list)
    elif args.task == 2:
        num_labels = len(sentiment_list)
    else:
        print("What's task?")
        exit()
    test = convert_examples_to_features(test_examples, aspect_list,
                                        sentiment_list, args.max_seq_length,
                                        tokenizer, args.task)
    eval_examples = test_examples
    ###

    for x, mark in file_mark:
        print(x, mark)
        output_model_file = os.path.join(args.output_dir, x)

        #model = RobertaForSequenceClassification.from_pretrained(args.pretrain_model, num_labels=num_labels, output_hidden_states=False, output_attentions=False, return_dict=True)
        model = RobertaForMaskedLMDomainTask.from_pretrained(
            args.pretrain_model,
            output_hidden_states=False,
            output_attentions=False,
            return_dict=True,
            num_labels=args.num_labels_task)
        model.load_state_dict(torch.load(output_model_file), strict=False)
        #strict False: ignore non-matching keys

        #param_optimizer = [para[0] for para in model.named_parameters()]
        #param_optimizer = [para for para in model.named_parameters()][-2]
        #print(param_optimizer)

        model.to(device)
        if mark:
            eval_features = dev
        else:
            eval_features = test

        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)

        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_attention_mask = torch.tensor(
            [f.attention_mask for f in eval_features], dtype=torch.long)
        if args.task == 1:
            print("Excuting the task 1")
        elif args.task == 2:
            all_segment_ids = torch.tensor(
                [f.segment_ids for f in eval_features], dtype=torch.long)
        else:
            print("Wrong here2")

        all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                     dtype=torch.long)

        if args.task == 1:
            eval_data = TensorDataset(all_input_ids, all_attention_mask,
                                      all_label_ids)
        elif args.task == 2:
            eval_data = TensorDataset(all_input_ids, all_attention_mask,
                                      all_segment_ids, all_label_ids)
        else:
            print("Wrong here1")

        if args.local_rank == -1:
            eval_sampler = RandomSampler(eval_data)
        else:
            eval_sampler = DistributedSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)

        if mark:
            output_eval_file = os.path.join(
                args.output_dir,
                "eval_results_{}.txt".format(x.split("_")[-1]))
            output_file_pred = os.path.join(
                args.output_dir, "eval_pred_{}.txt".format(x.split("_")[-1]))
            output_file_glod = os.path.join(
                args.output_dir, "eval_gold_{}.txt".format(x.split("_")[-1]))
        else:
            output_eval_file = os.path.join(
                args.output_dir,
                "test_results_{}.txt".format(x.split("_")[-1]))
            output_file_pred = os.path.join(
                args.output_dir, "test_pred_{}.txt".format(x.split("_")[-1]))
            output_file_glod = os.path.join(
                args.output_dir, "test_gold_{}.txt".format(x.split("_")[-1]))

        fpred = open(output_file_pred, "w")
        fgold = open(output_file_glod, "w")

        model.eval()
        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0

        for step, batch in enumerate(tqdm(eval_dataloader, desc="Iteration")):
            #batch = tuple(t.to(device) if i != 3 else t for i, t in enumerate(batch))
            batch = tuple(t.to(device) for i, t in enumerate(batch))

            if args.task == 1:
                input_ids, attention_mask, label_ids = batch
            elif args.task == 2:
                input_ids, attention_mask, segment_ids, label_ids = batch
            else:
                print("Wrong here3")

            if args.task == 1:
                #loss, logits, hidden_states, attentions
                '''
                output = model(input_ids=input_ids, token_type_ids=None, attention_mask=attention_mask, labels=label_ids)
                logits = output.logits
                tmp_eval_loss = output.loss
                '''
                #
                tmp_eval_loss, logits = model(input_ids_org=input_ids,
                                              sentence_label=label_ids,
                                              attention_mask=attention_mask,
                                              func="task_class")
                #logits = output.logits
                #tmp_eval_loss = output.loss
            elif args.task == 2:
                #loss, logits, hidden_states, attentions
                '''
                output = model(input_ids=input_ids, token_type_ids=None, attention_mask=attention_mask, labels=label_ids)
                logits = output.logits
                tmp_eval_loss = output.loss
                '''
                #
                tmp_eval_loss, logits = model(input_ids_org=input_ids,
                                              sentence_label=label_ids,
                                              attention_mask=attention_mask,
                                              func="task_class")
                #exit()
                #logits = output.logits
                #tmp_eval_loss = output.loss
            else:
                print("Wrong!!")

            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
            tmp_eval_accuracy, pred = accuracy(logits, label_ids)
            for a, b in zip(pred, label_ids):
                fgold.write("{}\n".format(b))
                fpred.write("{}\n".format(a))

            eval_loss += tmp_eval_loss.mean().item()
            eval_accuracy += tmp_eval_accuracy

            nb_eval_examples += input_ids.size(0)
            nb_eval_steps += 1

        eval_loss = eval_loss / nb_eval_steps
        eval_accuracy = eval_accuracy / nb_eval_examples

        result = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy}

        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

        model_performace[x] = eval_accuracy

    #################
    #################
    '''
예제 #4
0
head_hidd_list = list()
tail_hidd_list = list()
#device = "cpu"
device = "cuda"

#pretrained_weights = model
tokenizer = RobertaTokenizer.from_pretrained(model)

#fine_tuned_weight = model
#model = RobertaForMaskedLM.from_pretrained(pretrained_weights, output_hidden_states=True,num_labels=3,return_dict=True)
#model = RobertaForSequenceClassification.from_pretrained(pretrained_weights, output_hidden_states=True,num_labels=3,return_dict=True)
#model = RobertaForMaskedLMDomainTask.from_pretrained('roberta-base', output_hidden_states=True,return_dict=True,num_labels=num_samples)
#model.load_state_dict(torch.load(fine_tuned_weight), strict=False)
model = RobertaForMaskedLMDomainTask.from_pretrained(
    model,
    output_hidden_states=False,
    return_dict=True,
    num_labels=num_labels,
    output_attentions=False)

#model.to(device).half()
model.to(device)
model.eval()

#num_samples = 1000000

old = torch.FloatTensor(768)
with open(file_in) as f:
    #data = json.load(f)
    for index, d in tqdm(enumerate(f)):
        #print(type(index),index)
        #if index == 1000000: