def evaluate_images(self): par_obj.feat_arr = {} par_obj.pred_arr = {} par_obj.sum_pred = {} count = -1 for b in par_obj.left_2_calc: frames = par_obj.frames_2_load[b] for i in frames: v2.im_pred_inline_fn(par_obj, self, inline=True, outer_loop=b, inner_loop=i, count=count) v2.evaluate_forest(par_obj, self, False, 0, inline=True, outer_loop=b, inner_loop=i, count=count) count = count + 1 v2.apply_correction(par_obj) self.save_output_data_btn.setEnabled(True) self.image_status_text.showMessage('Status: evaluation finished.') par_obj.eval_load_im_win_eval = True v2.eval_pred_show_fn(par_obj.curr_img, par_obj, self)
def feat_scale_change_btn_fn(self): self.feat_scale_change_btn.setEnabled(False) print('Training Features') processImgs() v2.update_density_fn() self.feat_scale_change_btn.setEnabled(True) self.image_status_text.showMessage('Model Trained. Continue adding samples, or click \'Save Training Model\'. ') self.save_model_btn.setEnabled(True) v2.eval_pred_show_fn(par_obj.curr_img,par_obj,self)
def evaluate_images(self): par_obj.feat_arr = {} par_obj.pred_arr = {} par_obj.sum_pred = {} count = -1 for b in par_obj.left_2_calc: frames =par_obj.frames_2_load[b] for i in frames: v2.im_pred_inline_fn(par_obj, self,inline=True,outer_loop=b,inner_loop=i,count=count) v2.evaluate_forest(par_obj,self, False, 0,inline=True,outer_loop=b,inner_loop=i,count=count) count = count+1 v2.apply_correction(par_obj) self.save_output_data_btn.setEnabled(True) self.image_status_text.showMessage('Status: evaluation finished.') par_obj.eval_load_im_win_eval = True v2.eval_pred_show_fn(par_obj.curr_img, par_obj,self)
def predShowFn(self): #Captures the button event. v2.eval_pred_show_fn(par_obj.curr_img,par_obj,self)