training_pipeline.add_evaluator( TFMAEvaluator( slices=[['has_diabetes']], metrics={'has_diabetes': ['binary_crossentropy', 'binary_accuracy']})) # Add cortex deployer api_config = { "name": CORTEX_MODEL_NAME, "kind": "RealtimeAPI", "predictor": { "type": "tensorflow", # Set signature key of the model as we are using Tensorflow Trainer "models": { "signature_key": "serving_default" } } } training_pipeline.add_deployment( CortexDeployer( env=CORTEX_ENV, api_config=api_config, predictor=TensorFlowPredictor, )) # Define the artifact store artifact_store = ArtifactStore( os.path.join(GCP_BUCKET, 'cortex/artifact_store')) # Run the pipeline training_pipeline.run(artifact_store=artifact_store)
'has_diabetes': { 'transform': [{ 'method': 'no_transform', 'parameters': {} }] } })) training_pipeline.add_trainer( FeedForwardTrainer(loss='binary_crossentropy', last_activation='sigmoid', output_units=1, metrics=['accuracy'], epochs=20)) # Add an evaluator training_pipeline.add_evaluator( TFMAEvaluator( slices=[['has_diabetes']], metrics={'has_diabetes': ['binary_crossentropy', 'binary_accuracy']})) # Add the deployer training_pipeline.add_deployment( GCAIPDeployer( project_id=GCP_PROJECT, model_name=MODEL_NAME, )) # Run the pipeline training_pipeline.run()