Skip to content

pedrofeijao/RINGO

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RINGO

Ancestral gene order Reconstruction with INtermediate GenOmes.

Synopsis

RINGO is a software for ancestral reconstruction of gene orders based on the concept of Intermediate Genomes (Feijao, 2015; Feijao and Araújo, 2016). It also has scripts that simulate new datasets and evaluate the quality of the reconstruction on the simulated datasets, comparing with different software for ancestral reconstruction.

Installation

RINGO is implemented in Python 2.7 and Cython 0.24. No special installation is needed, other than just cloning or downloading all files in a folder in your computer.

The list of required Python packages is included in the requirements.txt file. You can download RINGO and install the required packages with:

git clone https://github.com/pedrofeijao/RINGO.git
cd RINGO
pip install -r requirements.txt

Optional Requirements

  • DeClone (Chauve et al., 2015), to find ancestral adjacency weights.

Running RINGO

In this section each script in RINGO will be described. As a general rule, all files with the .py extension are executable scripts. Files with .pyx extension are libraries compiled by Cython, and not meant to be run directly.

All python scripts can be called with a -h option, which shows all the basic usage for the script.

Quick Start

The main script is ringo.py, that runs the ancestral reconstruction algorithm proposed by Feijao and Araújo (2016). Given a phylogenetic tree and a set of extant genomes at the leaves, RINGO reconstructs contiguous ancestral regions (CARs) in the internal nodes of the tree. The simplest usage is with:

ringo.py -i <GENOME_FILE> -t <TREE_FILE> -o <OUTPUT_FOLDER>

The genome file should be in the commonly used GRIMM format (more input formats are available), and the tree in Newick format. The output folder will be created if not existent already, and the following files are created as output:

  • ringo_genomes.txt: Ancestral genomes file. Genome names correspond to the internal nodes of the tree.
  • ringo_tree.nwk: Newick tree. Should be the same as the input tree, possibly with new labels for the internal nodes if they were empty on the input tree.

Additional files:

  • ringo_adj_weight_output.txt: File with the adjacency weights used on each internal node.
  • ringo_parameters.json: Parameters used on this RINGO run.

Examples

Ringo has some example datasets where you can test it. Inside of the src/ringo folder, run:

F='../../examples/sim5000'
./ringo.py -i $F/extant_genomes.txt -t $F/sim_tree.nwk -o $F

or

F='../../examples/sim500'
./ringo.py -i $F/extant_genomes.txt -t $F/sim_tree.nwk -o $F

to run simulated datasets with 5000 or 500 genes, respectively.

Test pipeline

You can run all scripts on RINGO using the test_all.sh script, that simulates a new dataset, generates adjacency weights, using also DeClone if available, runs RINGO with custom weights and with DeClone weights and runs SCJ small phylogeny (Biller et al., 2013). It also tries to run two other ancestral reconstruction methods if they are installed: MGRA (Avdeyev et al., 2016) and PhySca (Luhmann et al., 2016). At the end, it outputs a table with the quality reconstruction results. Just run:

./test_all.sh

You can also choose the number of extant genomes and genes in the simulation:

./test_all.sh 6 1000

to simulate a dataset with 6 genomes and 1000 genes, and run the test pipeline.

Configuration File

The ringo.cfg file has some user configuration options, such as file paths and output names. The default configuration should work without change, and some specific changes are described in more detail in the following sections.

RINGO Usage

See the USAGE.md file for detailed documentation.

License

The MIT License (MIT)

Copyright (c) 2016 Pedro Feijão.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

References

  • [1] Feijão, P. (2015). Reconstruction of ancestral gene orders using intermediate genomes. BMC Bioinformatics, 16(Suppl 14), S3. http://doi.org/10.1186/1471-2105-16-S14-S3
  • [2] Feijão, P. and Araújo, E. (2016). Fast ancestral gene order reconstruction of genomes with unequal gene content. BMC Bioinformatics, hopefully to appear.
  • [3] Chauve, C., Ponty, Y., Zanetti, J.P.P.: Evolution of genes neighborhood within reconciled phylogenies: an ensemble approach. BMC Bioinformatics 16(19), 1–9 (2015)
  • [4] Biller, P., Feijão, P., & Meidanis, J. (2013). Rearrangement-based phylogeny using the single-cut-or-join operation. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 10(1), 122–134. http://doi.org/10.1109/TCBB.2012.168
  • [5] Avdeyev, P., Jiang, S., Aganezov, S., Hu, F., & Alekseyev, M. A. (2016). Reconstruction of ancestral genomes in presence of gene gain and loss. Journal of Computational Biology, 23(3), 150–164. http://doi.org/10.1089/cmb.2015.0160
  • [6] Luhmann, N., Thévenin, A., Ouangraoua, A., Wittler, R., & Chauve, C. (2016). The SCJ Small Parsimony Problem for Weighted Gene Adjacencies. In A. Bourgeois, P. Skums, X. Wan, & A. Zelikovsky (Eds.), Bioinformatics Research and Applications: 12th International Symposium, ISBRA 2016, Minsk, Belarus, June 5-8, 2016, Proceedings (pp. 200–210). Cham: Springer International Publishing. http://doi.org/10.1007/978-3-319-38782-6_17

About

Ancestral gene order reconstruction with IG (intermediate genomes).

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published