# Plot # """pca = PCA(n_components=2) pca.fit(X) X = pca.transform(X) S = [(np.array([1]+X[i].tolist()),Y[i]) for i in xrange(len(X))] print S""" ######## ######## # Aprender vector theta # rho = 0.5 nu = 0.5 l = 1 theta1 = MLPLearning.back_propagation_batch(S,rho,units_by_layer,factivation,850,50) theta2 = MLPLearning.back_propagation_online(S,rho,units_by_layer,factivation,850,50) theta3 = MLPLearning.back_propagation_batch_momentum(S,rho,nu,units_by_layer,factivation,850,50) theta4 = MLPLearning.back_propagation_batch_buffer(S,rho,l,units_by_layer,factivation,850,50) theta5 = MLPLearning.back_propagation_online_buffer(S,rho,l,units_by_layer,factivation,850,50) theta6 = MLPLearning.back_propagation_online_momentum(S,rho,nu,units_by_layer,factivation,850,50) theta7,fitness = MLPLearning.evolutional(S,units_by_layer,factivation,200,500,-2,2,1.1,0.9) ############################## # Clasificacion # logging.info("Clase con theta1: (Backprop batch): "+str(Decision.classify(units_by_layer,[1.0,-6.3,1.0],theta1,factivation))) logging.info("Clase con theta2: (Backprop online): "+str(Decision.classify(units_by_layer,[1.0,-6.3,1.0],theta2,factivation))) logging.info("Clase con theta3: (Backprop batch con momentum): "+str(Decision.classify(units_by_layer,[1.0,-6.3,1.0],theta3,factivation))) logging.info("Clase con theta4: (Backprop batch con amortiguamiento): "+str(Decision.classify(units_by_layer,[1.0,-6.3,1.0],theta4,factivation))) logging.info("Clase con theta5: (Backprop online con amortiguamiento): "+str(Decision.classify(units_by_layer,[1.0,-6.3,1.0],theta5,factivation))) logging.info("Clase con theta6: (Backprop online con momentum): "+str(Decision.classify(units_by_layer,[1.0,-6.3,1.0],theta6,factivation)))
def classify(units_by_layer, xk, theta, factivation): phi, s = MLPLearning.forward_propagation(units_by_layer, xk, theta, factivation) return s[-1].index(max(s[-1]))
# Plot # """pca = PCA(n_components=2) pca.fit(X) X = pca.transform(X) S = [(np.array([1]+X[i].tolist()),Y[i]) for i in xrange(len(X))] print S""" ######## ######## # Aprender vector theta # rho = 0.5 nu = 0.5 l = 1 theta1 = MLPLearning.back_propagation_batch(S, rho, units_by_layer, factivation, 850, 50) theta2 = MLPLearning.back_propagation_online(S, rho, units_by_layer, factivation, 850, 50) theta3 = MLPLearning.back_propagation_batch_momentum( S, rho, nu, units_by_layer, factivation, 850, 50) theta4 = MLPLearning.back_propagation_batch_buffer(S, rho, l, units_by_layer, factivation, 850, 50) theta5 = MLPLearning.back_propagation_online_buffer( S, rho, l, units_by_layer, factivation, 850, 50) theta6 = MLPLearning.back_propagation_online_momentum( S, rho, nu, units_by_layer, factivation, 850, 50) theta7, fitness = MLPLearning.evolutional(S, units_by_layer, factivation, 200, 500, -2, 2, 1.1, 0.9) ##############################
def regression(units_by_layer, xk, theta, factivation): phi, s = MLPLearning.forward_propagation(units_by_layer, xk, theta, factivation) return s[-1]
def get_output_vector(units_by_layer, xk, theta, factivation): phi, s = MLPLearning.forward_propagation(units_by_layer, xk, theta, factivation) return s[len(units_by_layer) - 1]
def get_output_vector(units_by_layer,xk,theta,factivation): phi,s = MLPLearning.forward_propagation(units_by_layer,xk,theta,factivation) return s[len(units_by_layer)-1]
def classify(units_by_layer,xk,theta,factivation): phi,s = MLPLearning.forward_propagation(units_by_layer,xk,theta,factivation) return s[-1].index(max(s[-1]))
def regression(units_by_layer,xk,theta,factivation): phi,s = MLPLearning.forward_propagation(units_by_layer,xk,theta,factivation) return s[-1]