Exemplo n.º 1
0
def listfamilies(element, with_description):
    """
    Print on screen the list of installed PSF-pseudo families.
    """
    from aiida import is_dbenv_loaded, load_dbenv
    if not is_dbenv_loaded():
        load_dbenv()

    from aiida.orm import DataFactory
    from aiida_siesta.data.psf import PSFGROUP_TYPE

    PsfData = DataFactory('siesta.psf')
    from aiida.orm.querybuilder import QueryBuilder
    from aiida.orm.group import Group
    qb = QueryBuilder()
    qb.append(PsfData, tag='psfdata')

    if element:
        qb.add_filter(PsfData, {'attributes.element': {'in': element}})

    qb.append(
        Group,
        group_of='psfdata',
        tag='group',
        project=["name", "description"],
        filters={
            "type": {
                '==': PSFGROUP_TYPE
            }
        })

    qb.distinct()
    if qb.count() > 0:
        for res in qb.dict():
            group_name = res.get("group").get("name")
            group_desc = res.get("group").get("description")
            qb = QueryBuilder()
            qb.append(
                Group, tag='thisgroup', filters={
                    "name": {
                        'like': group_name
                    }
                })
            qb.append(PsfData, project=["id"], member_of='thisgroup')

            if with_description:
                description_string = ": {}".format(group_desc)
            else:
                description_string = ""

            click.echo("* {} [{} pseudos]{}".format(group_name,
                                                    qb.count(),
                                                    description_string))

    else:
        click.echo("No valid PSF pseudopotential family found.", err=True)
Exemplo n.º 2
0
    def get_types(self):
        """
        return available distinct types of nodes from database
        """
        from aiida.orm.querybuilder import QueryBuilder

        qb = QueryBuilder()
        qb.append(self._aiida_class, project=["type"])
        qb_response = qb.distinct().all()

        results = {}
        if len(qb_response) > 0:
            for ntype in qb_response:
                ntype = ntype[0]
                ntype_parts = ntype.split(".")
                if len(ntype_parts) > 0:
                    dict_key = ntype_parts[0]
                    if dict_key not in results.keys():
                        results[dict_key] = []
                    results[dict_key].append(ntype)

        for key, values in results.items():
            results[key] = sorted(values)

        return results
Exemplo n.º 3
0
def listfamilies(elements, with_description):
    """
    Print on screen the list of upf families installed
    """
    from aiida.orm import DataFactory
    from aiida.orm.data.upf import UPFGROUP_TYPE

    # pylint: disable=invalid-name
    UpfData = DataFactory('upf')
    from aiida.orm.querybuilder import QueryBuilder
    from aiida.orm.group import Group
    qb = QueryBuilder()
    qb.append(UpfData, tag='upfdata')
    if elements is not None:
        qb.add_filter(UpfData, {'attributes.element': {'in': elements}})
    qb.append(Group,
              group_of='upfdata',
              tag='group',
              project=["name", "description"],
              filters={"type": {
                  '==': UPFGROUP_TYPE
              }})

    qb.distinct()
    if qb.count() > 0:
        for res in qb.dict():
            group_name = res.get("group").get("name")
            group_desc = res.get("group").get("description")
            qb = QueryBuilder()
            qb.append(Group,
                      tag='thisgroup',
                      filters={"name": {
                          'like': group_name
                      }})
            qb.append(UpfData, project=["id"], member_of='thisgroup')

            if with_description:
                description_string = ": {}".format(group_desc)
            else:
                description_string = ""

            echo.echo_success("* {} [{} pseudos]{}".format(
                group_name, qb.count(), description_string))

    else:
        echo.echo_warning("No valid UPF pseudopotential family found.")
Exemplo n.º 4
0
    def get_subtree(pk, level=0):
        qb = QueryBuilder()
        qb.append(cls=WorkCalculation,
                  filters={'id': pk},
                  tag='workcalculation')
        qb.append(
            cls=WorkCalculation,
            project=['id'],
            # In the future, we should specify here the type of link
            # for now, CALL links are the only ones allowing calc-calc
            # (we here really want instead to follow CALL links)
            output_of='workcalculation',
            tag='subworkchains')
        result = list(itertools.chain(*qb.distinct().all()))

        # This will return a single flat list of tuples, where the first element
        # corresponds to the WorkChain pk and the second element is an integer
        # that represents its level of nesting within the chain
        return [(pk, level)] + list(
            itertools.chain(
                *[get_subtree(subpk, level=level + 1) for subpk in result]))
Exemplo n.º 5
0
def query(datatype, project, past_days, group_pks, all_users):
    """
    Perform the query
    """
    import datetime

    from aiida.orm.implementation import Group
    from aiida.orm.user import User
    from aiida.orm.backend import construct_backend
    from aiida.orm.querybuilder import QueryBuilder
    from aiida.utils import timezone

    backend = construct_backend()

    qbl = QueryBuilder()
    if all_users is False:
        user = backend.users.get_automatic_user()
        qbl.append(User, tag="creator", filters={"email": user.email})
    else:
        qbl.append(User, tag="creator")

    # If there is a time restriction
    data_filters = {}
    if past_days is not None:
        now = timezone.now()
        n_days_ago = now - datetime.timedelta(days=past_days)
        data_filters.update({"ctime": {'>=': n_days_ago}})

    qbl.append(datatype, tag="data", created_by="creator", filters=data_filters, project=project)

    # If there is a group restriction
    if group_pks is not None:
        group_filters = dict()
        group_filters.update({"id": {"in": group_pks}})
        qbl.append(Group, tag="group", filters=group_filters, group_of="data")

    qbl.order_by({datatype: {'ctime': 'asc'}})

    object_list = qbl.distinct()
    return object_list.all()
Exemplo n.º 6
0
    def query_jobcalculations_by_computer_user_state(
            self,
            state,
            computer=None,
            user=None,
            only_computer_user_pairs=False,
            only_enabled=True,
            limit=None):
        """
        Filter all calculations with a given state.

        Issue a warning if the state is not in the list of valid states.

        :param string state: The state to be used to filter (should be a string among
                those defined in aiida.common.datastructures.calc_states)
        :param computer: a Django DbComputer entry, or a Computer object, of a
                computer in the DbComputer table.
                A string for the hostname is also valid.
        :param user: a Django entry (or its pk) of a user in the DbUser table;
                if present, the results are restricted to calculations of that
                specific user
        :param bool only_computer_user_pairs: if False (default) return a queryset
                where each element is a suitable instance of Node (it should
                be an instance of Calculation, if everything goes right!)
                If True, return only a list of tuples, where each tuple is
                in the format
                ('dbcomputer__id', 'user__id')
                [where the IDs are the IDs of the respective tables]
        :param int limit: Limit the number of rows returned

        :return: a list of calculation objects matching the filters.
        """
        # I assume that calc_states are strings. If this changes in the future,
        # update the filter below from dbattributes__tval to the correct field.
        from aiida.orm.computer import Computer
        from aiida.orm.calculation.job import JobCalculation
        from aiida.orm.user import User
        from aiida.orm.querybuilder import QueryBuilder
        from aiida.common.exceptions import InputValidationError
        from aiida.common.datastructures import calc_states

        if state not in calc_states:
            raise InputValidationError(
                "querying for calculation state='{}', but it "
                "is not a valid calculation state".format(state))

        calcfilter = {'state': {'==': state}}
        computerfilter = {"enabled": {'==': True}}
        userfilter = {}

        if computer is None:
            pass
        elif isinstance(computer, int):
            computerfilter.update({'id': {'==': computer}})
        elif isinstance(computer, Computer):
            computerfilter.update({'id': {'==': computer.pk}})
        else:
            try:
                computerfilter.update({'id': {'==': computer.id}})
            except AttributeError as e:
                raise Exception("{} is not a valid computer\n{}".format(
                    computer, e))
        if user is None:
            pass
        elif isinstance(user, int):
            userfilter.update({'id': {'==': user}})
        else:
            try:
                userfilter.update({'id': {'==': int(user.id)}})
                # Is that safe?
            except:
                raise Exception("{} is not a valid user".format(user))

        qb = QueryBuilder()
        qb.append(type="computer", tag='computer', filters=computerfilter)
        qb.append(JobCalculation,
                  filters=calcfilter,
                  tag='calc',
                  has_computer='computer')
        qb.append(type="user",
                  tag='user',
                  filters=userfilter,
                  creator_of="calc")

        if only_computer_user_pairs:
            qb.add_projection("computer", "*")
            qb.add_projection("user", "*")
            returnresult = qb.distinct().all()
        else:
            qb.add_projection("calc", "*")
            if limit is not None:
                qb.limit(limit)
            returnresult = qb.all()
            returnresult = zip(*returnresult)[0]
        return returnresult
Exemplo n.º 7
0
    def get_bands_and_parents_structure(self, args):
        """
        Search for bands and return bands and the closest structure that is a parent of the instance.
        This is the backend independent way, can be overriden for performance reason

        :returns:
            A list of sublists, each latter containing (in order):
                pk as string, formula as string, creation date, bandsdata-label
        """

        import datetime
        from aiida.utils import timezone
        from aiida.orm.querybuilder import QueryBuilder
        from aiida.backends.utils import get_automatic_user
        from aiida.orm.implementation import User
        from aiida.orm.implementation import Group
        from aiida.orm.data.structure import (get_formula, get_symbols_string)
        from aiida.orm.data.array.bands import BandsData
        from aiida.orm.data.structure import StructureData

        qb = QueryBuilder()
        if args.all_users is False:
            au = get_automatic_user()
            user = User(dbuser=au)
            qb.append(User, tag="creator", filters={"email": user.email})
        else:
            qb.append(User, tag="creator")

        bdata_filters = {}
        if args.past_days is not None:
            now = timezone.now()
            n_days_ago = now - datetime.timedelta(days=args.past_days)
            bdata_filters.update({"ctime": {'>=': n_days_ago}})

        qb.append(BandsData,
                  tag="bdata",
                  created_by="creator",
                  filters=bdata_filters,
                  project=["id", "label", "ctime"])

        group_filters = {}

        if args.group_name is not None:
            group_filters.update({"name": {"in": args.group_name}})
        if args.group_pk is not None:
            group_filters.update({"id": {"in": args.group_pk}})
        if group_filters:
            qb.append(Group,
                      tag="group",
                      filters=group_filters,
                      group_of="bdata")

        qb.append(
            StructureData,
            tag="sdata",
            ancestor_of="bdata",
            # We don't care about the creator of StructureData
            project=["id", "attributes.kinds", "attributes.sites"])

        qb.order_by({StructureData: {'ctime': 'desc'}})

        list_data = qb.distinct()

        entry_list = []
        already_visited_bdata = set()

        for [bid, blabel, bdate, sid, akinds, asites] in list_data.all():

            # We process only one StructureData per BandsData.
            # We want to process the closest StructureData to
            # every BandsData.
            # We hope that the StructureData with the latest
            # creation time is the closest one.
            # This will be updated when the QueryBuilder supports
            # order_by by the distance of two nodes.
            if already_visited_bdata.__contains__(bid):
                continue
            already_visited_bdata.add(bid)

            if args.element is not None:
                all_symbols = [_["symbols"][0] for _ in akinds]
                if not any([s in args.element for s in all_symbols]):
                    continue

            if args.element_only is not None:
                all_symbols = [_["symbols"][0] for _ in akinds]
                if not all([s in all_symbols for s in args.element_only]):
                    continue

            # We want only the StructureData that have attributes
            if akinds is None or asites is None:
                continue

            symbol_dict = {}
            for k in akinds:
                symbols = k['symbols']
                weights = k['weights']
                symbol_dict[k['name']] = get_symbols_string(symbols, weights)

            try:
                symbol_list = []
                for s in asites:
                    symbol_list.append(symbol_dict[s['kind_name']])
                formula = get_formula(symbol_list, mode=args.formulamode)
            # If for some reason there is no kind with the name
            # referenced by the site
            except KeyError:
                formula = "<<UNKNOWN>>"
            entry_list.append(
                [str(bid),
                 str(formula),
                 bdate.strftime('%d %b %Y'), blabel])

        return entry_list