Exemplo n.º 1
0
    def __init__(self, name, optimizer, param_defs, experiment=None, optimizer_arguments=None,
                 minimization=True, write_directory_base="/tmp/APSIS_WRITING",
                 experiment_directory_base=None, csv_write_frequency=1):
        """
        Initializes the BasicExperimentAssistant.

        Parameters
        ----------
        name : string
            The name of the experiment. This does not have to be unique, but is
            for human orientation.
        optimizer : Optimizer instance or string
            This is an optimizer implementing the corresponding functions: It
            gets an experiment instance, and returns one or multiple candidates
            which should be evaluated next.
            Alternatively, it can be a string corresponding to the optimizer,
            as defined by apsis.utilities.optimizer_utils.
        param_defs : dict of ParamDef.
            This is the parameter space defining the experiment.
        experiment : Experiment
            Preinitialize this assistant with an existing experiment.
        optimizer_arguments=None : dict
            These are arguments for the optimizer. Refer to their documentation
            as to which are available.
        minimization=True : bool
            Whether the problem is one of minimization or maximization.
        write_directory_base : string, optional
            The global base directory for all writing. Will only be used
            for creation of experiment_directory_base if this is not given.
        experiment_directory_base : string or None, optional
            The directory to write all the results to. If not
            given a directory with timestamp will automatically be created
            in write_directory_base
        csv_write_frequency : int, optional
            States how often the csv file should be written to.
            If set to 0 no results will be written.
        """
        self.logger = get_logger(self)
        self.logger.info("Initializing experiment assistant.")
        self.optimizer = optimizer
        self.optimizer_arguments = optimizer_arguments

        if experiment is None:
            self.experiment = Experiment(name, param_defs, minimization)
        else:
            self.experiment = experiment

        self.csv_write_frequency = csv_write_frequency

        if self.csv_write_frequency != 0:
            self.write_directory_base = write_directory_base
            if experiment_directory_base is not None:
                self.experiment_directory_base = experiment_directory_base
                ensure_directory_exists(self.experiment_directory_base)
            else:
                self._create_experiment_directory()
        self.logger.info("Experiment assistant successfully initialized.")
Exemplo n.º 2
0
 def test_get_next_candidate(self):
     opt = RandomSearch({"initial_random_runs": 3})
     exp = Experiment("test", {"x": MinMaxNumericParamDef(0, 1)}, NominalParamDef(["A", "B", "C"]))
     for i in range(5):
         cand = opt.get_next_candidates(exp)[0]
         assert_true(isinstance(cand, Candidate))
         cand.result = 2
         exp.add_finished(cand)
     cands = opt.get_next_candidates(exp, num_candidates=3)
     assert_equal(len(cands), 3)
Exemplo n.º 3
0
 def test_EI(self):
     opt = SimpleBayesianOptimizer({"initial_random_runs": 3})
     exp = Experiment("test", {"x": MinMaxNumericParamDef(0, 1)})
     for i in range(10):
         cand = opt.get_next_candidates(exp)[0]
         assert_true(isinstance(cand, Candidate))
         cand.result = 2
         exp.add_finished(cand)
     cands = opt.get_next_candidates(exp, num_candidates=3)
     assert_equal(len(cands), 3)
Exemplo n.º 4
0
 def test_warp(self):
     name = "test_experiment"
     param_def = {
         "x": MinMaxNumericParamDef(0, 1),
         "name": NominalParamDef(["A", "B", "C"])
     }
     minimization = True
     exp = Experiment(name, param_def, minimization)
     cand = Candidate({"x": 1})
     cand_out = exp.warp_pt_out(exp.warp_pt_in(cand.params))
     assert_dict_equal(cand.params, cand_out)
Exemplo n.º 5
0
 def test_PoI(self):
     opt = SimpleBayesianOptimizer({"initial_random_runs": 3, "acquisition": ProbabilityOfImprovement})
     assert_true(isinstance(opt.acquisition_function, ProbabilityOfImprovement))
     exp = Experiment("test", {"x": MinMaxNumericParamDef(0, 1)})
     for i in range(10):
         cand = opt.get_next_candidates(exp)[0]
         assert_true(isinstance(cand, Candidate))
         cand.result = 2
         exp.add_finished(cand)
     cands = opt.get_next_candidates(exp, num_candidates=3)
     assert_equal(len(cands), 3)
Exemplo n.º 6
0
 def test_warp(self):
     name = "test_experiment"
     param_def = {
         "x": MinMaxNumericParamDef(0, 1),
         "name": NominalParamDef(["A", "B", "C"])
     }
     minimization = True
     exp = Experiment(name, param_def, minimization)
     cand = Candidate({"x": 1})
     cand_out = exp.warp_pt_out(exp.warp_pt_in(cand.params))
     assert_dict_equal(cand.params, cand_out)
Exemplo n.º 7
0
 def test_get_next_candidate(self):
     exp = Experiment("test", {"x": MinMaxNumericParamDef(0, 1),
                               "y": NominalParamDef(["A", "B", "C"])})
     opt = BayesianOptimizer(exp, {"initial_random_runs": 3})
     for i in range(5):
         cand = opt.get_next_candidates()[0]
         assert_true(isinstance(cand, Candidate))
         cand.result = 2
         exp.add_finished(cand)
         opt.update(exp)
     cands = opt.get_next_candidates(num_candidates=3)
     assert_less_equal(len(cands), 3)
Exemplo n.º 8
0
 def test_csv(self):
     name = "test_experiment"
     param_def = {
         "x": MinMaxNumericParamDef(0, 1),
         "name": NominalParamDef(["A", "B", "C"])
     }
     minimization = True
     exp = Experiment(name, param_def, minimization)
     cand = Candidate({"x": 1, "name": "A"})
     exp.add_finished(cand)
     string, steps_incl = exp.to_csv_results()
     assert_equal(steps_incl, 1)
     assert_equal(string, "step,name,x,cost,result,best_result\n1,A,1,None,None,None\n")
Exemplo n.º 9
0
 def test_get_next_candidate(self):
     exp = Experiment(
         "test", {
             "x": MinMaxNumericParamDef(0, 1),
             "y": NominalParamDef(["A", "B", "C"])
         })
     opt = BayesianOptimizer(exp, {"initial_random_runs": 3})
     for i in range(5):
         cand = opt.get_next_candidates()[0]
         assert_true(isinstance(cand, Candidate))
         cand.result = 2
         exp.add_finished(cand)
         opt.update(exp)
     cands = opt.get_next_candidates(num_candidates=3)
     assert_less_equal(len(cands), 3)
Exemplo n.º 10
0
 def test_csv(self):
     name = "test_experiment"
     param_def = {
         "x": MinMaxNumericParamDef(0, 1),
         "name": NominalParamDef(["A", "B", "C"])
     }
     minimization = True
     exp = Experiment(name, param_def, minimization)
     cand = Candidate({"x": 1, "name": "A"})
     exp.add_finished(cand)
     string, steps_incl = exp.to_csv_results()
     assert_equal(steps_incl, 1)
     assert_equal(
         string,
         "step,name,x,cost,result,best_result\n1,A,1,None,None,None\n")
Exemplo n.º 11
0
    def test_init(self):
        #test default parameters
        exp = Experiment("test", {"x": MinMaxNumericParamDef(0, 1)})

        opt = BayesianOptimizer(exp)
        assert_equal(opt.initial_random_runs, 10)
        assert_is_none(opt.acquisition_hyperparams)
        assert_equal(opt.num_gp_restarts, 10)
        assert_true(isinstance(opt.acquisition_function, ExpectedImprovement))
        assert_dict_equal(opt.kernel_params, {})
        assert_equal(opt.kernel, "matern52")

        #test correct initialization
        opt_arguments = {
            "initial_random_runs": 5,
            "acquisition_hyperparams": {},
            "num_gp_restarts": 5,
            "acquisition": ProbabilityOfImprovement,
            "kernel_params": {},
            "kernel": "matern52",
            "mcmc": True,
        }
        opt = BayesianOptimizer(exp, opt_arguments)

        assert_equal(opt.initial_random_runs, 5)
        assert_dict_equal(opt.acquisition_hyperparams, {})
        assert_equal(opt.num_gp_restarts, 5)
        assert_true(
            isinstance(opt.acquisition_function, ProbabilityOfImprovement))
        assert_dict_equal(opt.kernel_params, {})
        assert_equal(opt.kernel, "matern52")
Exemplo n.º 12
0
 def setup(self):
     param_def = {
         "x": MinMaxNumericParamDef(0, 1)
     }
     experiment = Experiment(name="test_optimizer_experiment",
                             parameter_definitions=param_def)
     self.optimizer = self.OptimizerStub(experiment, optimizer_params=None)
Exemplo n.º 13
0
    def test_check_optimizer(self):
        param_def = {
            "x": MinMaxNumericParamDef(0, 1)
        }
        experiment = Experiment(name="test_optimizer_experiment",
                                parameter_definitions=param_def)
        assert_is_instance(check_optimizer(RandomSearch, experiment, {"multiprocessing": "none"}), RandomSearch)
        assert_is_instance(check_optimizer("RandomSearch", experiment, {"multiprocessing": "none"}), RandomSearch)

        with assert_raises(ValueError):
            check_optimizer("fails", experiment, {"multiprocessing": "none"})
        with assert_raises(ValueError):
            check_optimizer(MinMaxNumericParamDef, experiment)

        queue_based = check_optimizer(RandomSearch, experiment,
                                           {"multiprocessing": "queue"})
        assert_is_instance(queue_based, QueueBasedOptimizer)
        assert_equal(check_optimizer(queue_based, experiment,
                       {"multiprocessing": "queue"}), queue_based)
        queue_based.exit()
        assert_is_instance(check_optimizer(RandomSearch, experiment,
                                           {"multiprocessing": "none"}),
                           RandomSearch)
        with assert_raises(ValueError):
            check_optimizer(RandomSearch, experiment,
                                               {"multiprocessing": "fails"}),

        time.sleep(0.1)
Exemplo n.º 14
0
 def test_update(self):
     param_def = {
         "x": MinMaxNumericParamDef(0, 1)
     }
     experiment = Experiment(name="test_optimizer_experiment",
                             parameter_definitions=param_def)
     self.optimizer.update(experiment)
Exemplo n.º 15
0
 def setup(self):
     param_def = {
         "x": MinMaxNumericParamDef(0, 1)
     }
     experiment = Experiment(name="test_optimizer_experiment",
                             parameter_definitions=param_def)
     self.optimizer = QueueBasedOptimizer(RandomSearch,
                                          experiment)
Exemplo n.º 16
0
 def test_update_param_support(self):
     param_def = {
         "x": MinMaxNumericParamDef(0, 1),
         "not_supported": OrdinalParamDef(["A", "B"])
     }
     experiment = Experiment(name="test_optimizer_experiment_crash",
                             parameter_definitions=param_def)
     assert_raises(ValueError, self.optimizer.update, experiment)
Exemplo n.º 17
0
    def test_PoI(self):
        exp = Experiment("test", {"x": MinMaxNumericParamDef(0, 1)})
        opt = BayesianOptimizer(exp, {"initial_random_runs": 3, "acquisition": ProbabilityOfImprovement})
        assert_true(isinstance(opt.acquisition_function, ProbabilityOfImprovement))

        for i in range(3):
            cands = opt.get_next_candidates(2)
            cand_one = cands[0]
            cand_two = cands[1]
            assert_true(isinstance(cand_one, Candidate))
            cand_one.result = 2
            exp.add_finished(cand_one)
            opt.update(exp)
            assert_true(isinstance(cand_two, Candidate))
            cand_two.result = 2
            exp.add_finished(cand_two)
            opt.update(exp)
        cands = opt.get_next_candidates(num_candidates=3)
        assert_equal(len(cands), 3)
Exemplo n.º 18
0
 def setup(self):
     param_def = {
         "x": MinMaxNumericParamDef(0, 1)
     }
     self.experiment = Experiment(name="test_optimizer_experiment",
                             parameter_definitions=param_def)
     out_queue = Queue()
     in_queue = Queue()
     self.backend = QueueBackend(RandomSearch, self.experiment, out_queue,
                                 in_queue)
Exemplo n.º 19
0
    def test_EI(self):
        exp = Experiment("test", {"x": MinMaxNumericParamDef(0, 1)})
        opt = BayesianOptimizer(exp, {"initial_random_runs": 3, "max_searcher": "LBFGSB"})

        for i in range(3):
            cands = opt.get_next_candidates(2)
            cand_one = cands[0]
            cand_two = cands[1]
            assert_true(isinstance(cand_one, Candidate))
            cand_one.result = 2
            exp.add_finished(cand_one)
            opt.update(exp)
            assert_true(isinstance(cand_two, Candidate))
            cand_two.result = 2
            exp.add_finished(cand_two)
            opt.update(exp)
        cands = opt.get_next_candidates(num_candidates=5)
        assert_equal(len(cands), 5)

        opt.acquisition_function.params["multi_searcher"] = "random_best"
        cands = opt.get_next_candidates(2)
Exemplo n.º 20
0
    def setup(self):
        name = "test_experiment"
        param_def = {
            "x": MinMaxNumericParamDef(0, 1),
            "name": NominalParamDef(["A", "B", "C"])
        }
        param_def_wrong = {
            "x": MinMaxNumericParamDef(0, 1),
            "name": ["A", "B", "C"]
        }
        minimization = True
        self.exp = Experiment(name, param_def, minimization)

        assert_equal(self.exp.name, name)
        assert_equal(self.exp.parameter_definitions, param_def)
        assert_equal(self.exp.minimization_problem, minimization)
        with assert_raises(ValueError):
            Experiment("fails", False)

        with assert_raises(ValueError):
            Experiment("fails too", param_def_wrong)
Exemplo n.º 21
0
 def test_better_cand(self):
     name = "test_experiment"
     param_def = {
         "x": MinMaxNumericParamDef(0, 1),
         "name": NominalParamDef(["A", "B", "C"])
     }
     minimization = True
     exp = Experiment(name, param_def, minimization)
     cand = Candidate({"x": 1, "name": "B"})
     cand2 = Candidate({"x": 0, "name": "A"})
     cand_none = Candidate({"x": 0.5, "name": "C"})
     cand.result = 1
     cand2.result = 0
     assert_true(exp.better_cand(cand2, cand))
     assert_true(exp.better_cand(cand2, cand_none))
     exp.minimization_problem = False
     assert_true(exp.better_cand(cand, cand2))
     assert_false(exp.better_cand(cand2, cand))
Exemplo n.º 22
0
    def setup(self):
        name = "test_experiment"
        param_def = {
            "x": MinMaxNumericParamDef(0, 1),
            "name": NominalParamDef(["A", "B", "C"])
        }
        param_def_wrong = {
            "x": MinMaxNumericParamDef(0, 1),
            "name": ["A", "B", "C"]
        }
        minimization = True
        self.exp = Experiment(name, param_def, minimization)

        assert_equal(self.exp.name, name)
        assert_equal(self.exp.parameter_definitions, param_def)
        assert_equal(self.exp.minimization_problem, minimization)
        with assert_raises(ValueError):
            Experiment("fails", False)

        with assert_raises(ValueError):
            Experiment("fails too", param_def_wrong)
Exemplo n.º 23
0
 def test_better_cand(self):
     name = "test_experiment"
     param_def = {
         "x": MinMaxNumericParamDef(0, 1),
         "name": NominalParamDef(["A", "B", "C"])
     }
     minimization = True
     exp = Experiment(name, param_def, minimization)
     cand = Candidate({"x": 1, "name": "B"})
     cand2 = Candidate({"x": 0, "name": "A"})
     cand_none = Candidate({"x": 0.5, "name": "C"})
     cand.result = 1
     cand2.result = 0
     assert_true(exp.better_cand(cand2, cand))
     assert_true(exp.better_cand(cand2, cand_none))
     exp.minimization_problem = False
     assert_true(exp.better_cand(cand, cand2))
     assert_false(exp.better_cand(cand2, cand))
Exemplo n.º 24
0
    def test_PoI(self):
        exp = Experiment("test", {"x": MinMaxNumericParamDef(0, 1)})
        opt = BayesianOptimizer(exp, {
            "initial_random_runs": 3,
            "acquisition": ProbabilityOfImprovement
        })
        assert_true(
            isinstance(opt.acquisition_function, ProbabilityOfImprovement))

        for i in range(3):
            cands = opt.get_next_candidates(2)
            cand_one = cands[0]
            cand_two = cands[1]
            assert_true(isinstance(cand_one, Candidate))
            cand_one.result = 2
            exp.add_finished(cand_one)
            opt.update(exp)
            assert_true(isinstance(cand_two, Candidate))
            cand_two.result = 2
            exp.add_finished(cand_two)
            opt.update(exp)
        cands = opt.get_next_candidates(num_candidates=3)
        assert_equal(len(cands), 3)
Exemplo n.º 25
0
    def test_EI(self):
        exp = Experiment("test", {"x": MinMaxNumericParamDef(0, 1)})
        opt = BayesianOptimizer(exp, {
            "initial_random_runs": 3,
            "max_searcher": "LBFGSB"
        })

        for i in range(3):
            cands = opt.get_next_candidates(2)
            cand_one = cands[0]
            cand_two = cands[1]
            assert_true(isinstance(cand_one, Candidate))
            cand_one.result = 2
            exp.add_finished(cand_one)
            opt.update(exp)
            assert_true(isinstance(cand_two, Candidate))
            cand_two.result = 2
            exp.add_finished(cand_two)
            opt.update(exp)
        cands = opt.get_next_candidates(num_candidates=5)
        assert_equal(len(cands), 5)

        opt.acquisition_function.params["multi_searcher"] = "random_best"
        cands = opt.get_next_candidates(2)
Exemplo n.º 26
0
class TestExperiment(object):
    exp = None

    def setup(self):
        name = "test_experiment"
        param_def = {
            "x": MinMaxNumericParamDef(0, 1),
            "name": NominalParamDef(["A", "B", "C"])
        }
        param_def_wrong = {
            "x": MinMaxNumericParamDef(0, 1),
            "name": ["A", "B", "C"]
        }
        minimization = True
        self.exp = Experiment(name, param_def, minimization)

        assert_equal(self.exp.name, name)
        assert_equal(self.exp.parameter_definitions, param_def)
        assert_equal(self.exp.minimization_problem, minimization)
        with assert_raises(ValueError):
            Experiment("fails", False)

        with assert_raises(ValueError):
            Experiment("fails too", param_def_wrong)


    def test_add(self):
        cand = Candidate({"x": 1, "name": "A"})

        cand_invalid = Candidate({"x": 1})
        cand_invalid2 = Candidate({"x": 2, "name": "A"})

        with assert_raises(ValueError):
            self.exp.add_pending(cand_invalid)
        with assert_raises(ValueError):
            self.exp.add_pending(cand_invalid2)


        self.exp.add_pending(cand)
        assert cand in self.exp.candidates_pending
        with assert_raises(ValueError):
            self.exp.add_pending(False)

        self.exp.add_finished(cand)
        assert cand in self.exp.candidates_finished
        with assert_raises(ValueError):
            self.exp.add_finished(False)

        cand2 = Candidate({"x": 0, "name": "B"})
        self.exp.add_working(cand2)
        assert cand2 in self.exp.candidates_working
        with assert_raises(ValueError):
            self.exp.add_working(False)

        self.exp.add_pausing(cand2)
        assert cand2 in self.exp.candidates_pending
        with assert_raises(ValueError):
            self.exp.add_pausing(False)

        self.exp.add_working(cand2)
        assert cand2 in self.exp.candidates_working
        with assert_raises(ValueError):
            self.exp.add_working(False)

        self.exp.add_finished(cand2)
        assert cand2 in self.exp.candidates_finished
        with assert_raises(ValueError):
            self.exp.add_finished(False)

    def test_better_cand(self):
        cand = Candidate({"x": 1, "name": "B"})
        cand2 = Candidate({"x": 0, "name": "A"})
        cand_none = Candidate({"x": 0.5, "name": "C"})
        cand_invalid = Candidate({"x": 0.5, "name": "D"})
        cand.result = 1
        cand2.result = 0
        assert_true(self.exp.better_cand(cand2, cand))
        assert_true(self.exp.better_cand(cand2, cand_none))
        self.exp.minimization_problem = False
        assert_true(self.exp.better_cand(cand, cand2))
        assert_false(self.exp.better_cand(cand2, cand))
        assert_true(self.exp.better_cand(cand, None))
        assert_false(self.exp.better_cand(None, cand))
        assert_false(self.exp.better_cand(None, None))
        with assert_raises(ValueError):
            self.exp.better_cand(cand, cand_invalid)
        with assert_raises(ValueError):
            self.exp.better_cand(cand_invalid, cand)
        with assert_raises(ValueError):
            self.exp.better_cand("fails", cand)
        with assert_raises(ValueError):
            self.exp.better_cand(cand, "fails")

    def test_warp(self):
        cand = Candidate({"x": 1})
        cand_out = self.exp.warp_pt_out(self.exp.warp_pt_in(cand.params))
        assert_dict_equal(cand.params, cand_out)

    def test_csv(self):
        cand = Candidate({"x": 1, "name": "A"})
        self.exp.add_finished(cand)
        string, steps_incl = self.exp.to_csv_results()
        assert_equal(steps_incl, 1)
        assert_equal(string, "step,id,name,x,cost,result,best_result\n1,%s,A,1,None,None,None\n"%cand.id)

    def test_to_dict(self):
        cand = Candidate({"x": 1, "name": "A"})
        self.exp.add_finished(cand)
        self.exp.to_dict()

    def test_check_param_dict(self):
        param_dict = {"x": 1}
        assert_false(self.exp._check_param_dict(param_dict))

        param_dict = {"x": 1,
                      "name": "D"}
        assert_false(self.exp._check_param_dict(param_dict))

        param_dict = {"x": 1,
                      "name": "A"}
        assert_true(self.exp._check_param_dict(param_dict))
Exemplo n.º 27
0
    def test_add(self):
        name = "test_experiment"
        param_def = {
            "x": MinMaxNumericParamDef(0, 1),
            "name": NominalParamDef(["A", "B", "C"])
        }
        minimization = True
        exp = Experiment(name, param_def, minimization)
        cand = Candidate({"x": 1, "name": "A"})

        cand_invalid = Candidate({"x": 1})
        cand_invalid2 = Candidate({"x": 2, "name": "A"})

        with assert_raises(ValueError):
            exp.add_pending(cand_invalid)
        with assert_raises(ValueError):
            exp.add_pending(cand_invalid2)

        exp.add_pending(cand)
        assert cand in exp.candidates_pending
        with assert_raises(ValueError):
            exp.add_pending(False)

        exp.add_finished(cand)
        assert cand in exp.candidates_finished
        with assert_raises(ValueError):
            exp.add_finished(False)

        cand2 = Candidate({"x": 0, "name": "B"})
        exp.add_working(cand2)
        assert cand2 in exp.candidates_working
        with assert_raises(ValueError):
            exp.add_working(False)

        exp.add_pausing(cand2)
        assert cand2 in exp.candidates_pending
        with assert_raises(ValueError):
            exp.add_pausing(False)

        exp.add_working(cand2)
        assert cand2 in exp.candidates_working
        with assert_raises(ValueError):
            exp.add_working(False)

        exp.add_finished(cand2)
        assert cand2 in exp.candidates_finished
        with assert_raises(ValueError):
            exp.add_finished(False)
Exemplo n.º 28
0
    def test_add(self):
        name = "test_experiment"
        param_def = {
            "x": MinMaxNumericParamDef(0, 1),
            "name": NominalParamDef(["A", "B", "C"])
        }
        minimization = True
        exp = Experiment(name, param_def, minimization)
        cand = Candidate({"x": 1, "name": "A"})

        cand_invalid = Candidate({"x": 1})
        cand_invalid2 = Candidate({"x": 2, "name": "A"})

        with assert_raises(ValueError):
            exp.add_pending(cand_invalid)
        with assert_raises(ValueError):
            exp.add_pending(cand_invalid2)


        exp.add_pending(cand)
        assert cand in exp.candidates_pending
        with assert_raises(ValueError):
            exp.add_pending(False)

        exp.add_finished(cand)
        assert cand in exp.candidates_finished
        with assert_raises(ValueError):
            exp.add_finished(False)

        cand2 = Candidate({"x": 0, "name": "B"})
        exp.add_working(cand2)
        assert cand2 in exp.candidates_working
        with assert_raises(ValueError):
            exp.add_working(False)

        exp.add_pausing(cand2)
        assert cand2 in exp.candidates_pending
        with assert_raises(ValueError):
            exp.add_pausing(False)

        exp.add_working(cand2)
        assert cand2 in exp.candidates_working
        with assert_raises(ValueError):
            exp.add_working(False)

        exp.add_finished(cand2)
        assert cand2 in exp.candidates_finished
        with assert_raises(ValueError):
            exp.add_finished(False)
Exemplo n.º 29
0
class BasicExperimentAssistant(object):
    """
    This ExperimentAssistant assists with executing experiments.

    It provides methods for getting candidates to evaluate, returning the
    evaluated Candidate and administrates the optimizer.

    Attributes
    ----------
    optimizer : Optimizer
        This is an optimizer implementing the corresponding functions: It
        gets an experiment instance, and returns one or multiple candidates
        which should be evaluated next.
    optimizer_arguments : dict
        These are arguments for the optimizer. Refer to their documentation
        as to which are available.
    experiment : Experiment
        The experiment this assistant assists with.
    write_directory_base : string or None
        The directory to write all results to. If not
        given, a directory with timestamp will automatically be created
        in write_directory_base
    csv_write_frequency : int
        States how often the csv file should be written to.
        If set to 0 no results will be written.
    logger : logging.logger
        The logger for this class.
    """

    AVAILABLE_STATUS = ["finished", "pausing", "working"]

    optimizer = None
    optimizer_arguments = None
    experiment = None

    write_directory_base = None
    experiment_directory_base = None
    csv_write_frequency = None
    csv_steps_written = 0

    logger = None

    def __init__(
        self,
        name,
        optimizer,
        param_defs,
        experiment=None,
        optimizer_arguments=None,
        minimization=True,
        write_directory_base="/tmp/APSIS_WRITING",
        experiment_directory_base=None,
        csv_write_frequency=1,
    ):
        """
        Initializes the BasicExperimentAssistant.

        Parameters
        ----------
        name : string
            The name of the experiment. This does not have to be unique, but is
            for human orientation.
        optimizer : Optimizer instance or string
            This is an optimizer implementing the corresponding functions: It
            gets an experiment instance, and returns one or multiple candidates
            which should be evaluated next.
            Alternatively, it can be a string corresponding to the optimizer,
            as defined by apsis.utilities.optimizer_utils.
        param_defs : dict of ParamDef.
            This is the parameter space defining the experiment.
        experiment : Experiment
            Preinitialize this assistant with an existing experiment.
        optimizer_arguments=None : dict
            These are arguments for the optimizer. Refer to their documentation
            as to which are available.
        minimization=True : bool
            Whether the problem is one of minimization or maximization.
        write_directory_base : string, optional
            The global base directory for all writing. Will only be used
            for creation of experiment_directory_base if this is not given.
        experiment_directory_base : string or None, optional
            The directory to write all the results to. If not
            given a directory with timestamp will automatically be created
            in write_directory_base
        csv_write_frequency : int, optional
            States how often the csv file should be written to.
            If set to 0 no results will be written.
        """
        self.logger = get_logger(self)
        self.logger.info("Initializing experiment assistant.")
        self.optimizer = optimizer
        self.optimizer_arguments = optimizer_arguments

        if experiment is None:
            self.experiment = Experiment(name, param_defs, minimization)
        else:
            self.experiment = experiment

        self.csv_write_frequency = csv_write_frequency

        if self.csv_write_frequency != 0:
            self.write_directory_base = write_directory_base
            if experiment_directory_base is not None:
                self.experiment_directory_base = experiment_directory_base
                ensure_directory_exists(self.experiment_directory_base)
            else:
                self._create_experiment_directory()
        self.logger.info("Experiment assistant successfully initialized.")

    def get_next_candidate(self):
        """
        Returns the Candidate next to evaluate.

        Returns
        -------
        next_candidate : Candidate or None
            The Candidate object that should be evaluated next. May be None.
        """
        self.logger.info("Returning next candidate.")
        self.optimizer = check_optimizer(self.optimizer, optimizer_arguments=self.optimizer_arguments)
        if not self.experiment.candidates_pending:
            self.experiment.candidates_pending.extend(self.optimizer.get_next_candidates(self.experiment))
        next_candidate = self.experiment.candidates_pending.pop()
        self.logger.info("next candidate found: %s" % next_candidate)
        return next_candidate

    def update(self, candidate, status="finished"):
        """
        Updates the experiment_assistant with the status of an experiment
        evaluation.

        Parameters
        ----------
        candidate : Candidate
            The Candidate object whose status is updated.
        status : {"finished", "pausing", "working"}
            A string defining the status change. Can be one of the following:
            - finished: The Candidate is now finished.
            - pausing: The evaluation of Candidate has been paused and can be
                resumed by another worker.
            - working: The Candidate is now being worked on by a worker.

        """
        if status not in self.AVAILABLE_STATUS:
            message = "status not in %s but %s." % (str(self.AVAILABLE_STATUS), str(status))
            self.logger.error(message)
            raise ValueError(message)

        if not isinstance(candidate, Candidate):
            message = "candidate %s not a Candidate instance." % str(candidate)
            self.logger.error(message)
            raise ValueError(message)

        self.logger.info(
            "Got new %s of candidate %s with parameters %s"
            " and result %s" % (status, candidate, candidate.params, candidate.result)
        )

        if status == "finished":
            self.experiment.add_finished(candidate)
            # Also delete all pending candidates from the experiment - we have
            # new data available.
            self.experiment.candidates_pending = []

            # invoke the writing to files
            step = len(self.experiment.candidates_finished)
            if self.csv_write_frequency != 0 and step != 0 and step % self.csv_write_frequency == 0:
                self._append_to_detailed_csv()

        elif status == "pausing":
            self.experiment.add_pausing(candidate)
        elif status == "working":
            self.experiment.add_working(candidate)

    def get_best_candidate(self):
        """
        Returns the best candidate to date.

        Returns
        -------
        best_candidate : candidate or None
            Returns a candidate if there is a best one (which corresponds to
            at least one candidate evaluated) or None if none exists.
        """
        return self.experiment.best_candidate

    def _append_to_detailed_csv(self):
        if len(self.experiment.candidates_finished) <= self.csv_steps_written:
            return

        # create file and header if
        wHeader = False
        if self.csv_steps_written == 0:
            # set use header
            wHeader = True

        csv_string, steps_included = self.experiment.to_csv_results(wHeader=wHeader, fromIndex=self.csv_steps_written)

        # write
        filename = os.path.join(self.experiment_directory_base, self.experiment.name + "_results.csv")

        with open(filename, "a+") as detailed_file:
            detailed_file.write(csv_string)

        self.csv_steps_written += steps_included

    def _create_experiment_directory(self):
        global_start_date = time.time()

        date_name = datetime.datetime.utcfromtimestamp(global_start_date).strftime("%Y-%m-%d_%H:%M:%S")

        self.experiment_directory_base = os.path.join(self.write_directory_base, self.experiment.name + "_" + date_name)

        ensure_directory_exists(self.experiment_directory_base)
Exemplo n.º 30
0
    def __init__(
        self,
        name,
        optimizer,
        param_defs,
        experiment=None,
        optimizer_arguments=None,
        minimization=True,
        write_directory_base="/tmp/APSIS_WRITING",
        experiment_directory_base=None,
        csv_write_frequency=1,
    ):
        """
        Initializes the BasicExperimentAssistant.

        Parameters
        ----------
        name : string
            The name of the experiment. This does not have to be unique, but is
            for human orientation.
        optimizer : Optimizer instance or string
            This is an optimizer implementing the corresponding functions: It
            gets an experiment instance, and returns one or multiple candidates
            which should be evaluated next.
            Alternatively, it can be a string corresponding to the optimizer,
            as defined by apsis.utilities.optimizer_utils.
        param_defs : dict of ParamDef.
            This is the parameter space defining the experiment.
        experiment : Experiment
            Preinitialize this assistant with an existing experiment.
        optimizer_arguments=None : dict
            These are arguments for the optimizer. Refer to their documentation
            as to which are available.
        minimization=True : bool
            Whether the problem is one of minimization or maximization.
        write_directory_base : string, optional
            The global base directory for all writing. Will only be used
            for creation of experiment_directory_base if this is not given.
        experiment_directory_base : string or None, optional
            The directory to write all the results to. If not
            given a directory with timestamp will automatically be created
            in write_directory_base
        csv_write_frequency : int, optional
            States how often the csv file should be written to.
            If set to 0 no results will be written.
        """
        self.logger = get_logger(self)
        self.logger.info("Initializing experiment assistant.")
        self.optimizer = optimizer
        self.optimizer_arguments = optimizer_arguments

        if experiment is None:
            self.experiment = Experiment(name, param_defs, minimization)
        else:
            self.experiment = experiment

        self.csv_write_frequency = csv_write_frequency

        if self.csv_write_frequency != 0:
            self.write_directory_base = write_directory_base
            if experiment_directory_base is not None:
                self.experiment_directory_base = experiment_directory_base
                ensure_directory_exists(self.experiment_directory_base)
            else:
                self._create_experiment_directory()
        self.logger.info("Experiment assistant successfully initialized.")
Exemplo n.º 31
0
class BasicExperimentAssistant(object):
    """
    This ExperimentAssistant assists with executing experiments.

    It provides methods for getting candidates to evaluate, returning the
    evaluated Candidate and administrates the optimizer.

    Attributes
    ----------
    optimizer : Optimizer
        This is an optimizer implementing the corresponding functions: It
        gets an experiment instance, and returns one or multiple candidates
        which should be evaluated next.
    optimizer_arguments : dict
        These are arguments for the optimizer. Refer to their documentation
        as to which are available.
    experiment : Experiment
        The experiment this assistant assists with.
    write_directory_base : string or None
        The directory to write all results to. If not
        given, a directory with timestamp will automatically be created
        in write_directory_base
    csv_write_frequency : int
        States how often the csv file should be written to.
        If set to 0 no results will be written.
    logger : logging.logger
        The logger for this class.
    """

    AVAILABLE_STATUS = ["finished", "pausing", "working"]

    optimizer = None
    optimizer_arguments = None
    experiment = None

    write_directory_base = None
    experiment_directory_base = None
    csv_write_frequency = None
    csv_steps_written = 0

    logger = None

    def __init__(self, name, optimizer, param_defs, experiment=None, optimizer_arguments=None,
                 minimization=True, write_directory_base="/tmp/APSIS_WRITING",
                 experiment_directory_base=None, csv_write_frequency=1):
        """
        Initializes the BasicExperimentAssistant.

        Parameters
        ----------
        name : string
            The name of the experiment. This does not have to be unique, but is
            for human orientation.
        optimizer : Optimizer instance or string
            This is an optimizer implementing the corresponding functions: It
            gets an experiment instance, and returns one or multiple candidates
            which should be evaluated next.
            Alternatively, it can be a string corresponding to the optimizer,
            as defined by apsis.utilities.optimizer_utils.
        param_defs : dict of ParamDef.
            This is the parameter space defining the experiment.
        experiment : Experiment
            Preinitialize this assistant with an existing experiment.
        optimizer_arguments=None : dict
            These are arguments for the optimizer. Refer to their documentation
            as to which are available.
        minimization=True : bool
            Whether the problem is one of minimization or maximization.
        write_directory_base : string, optional
            The global base directory for all writing. Will only be used
            for creation of experiment_directory_base if this is not given.
        experiment_directory_base : string or None, optional
            The directory to write all the results to. If not
            given a directory with timestamp will automatically be created
            in write_directory_base
        csv_write_frequency : int, optional
            States how often the csv file should be written to.
            If set to 0 no results will be written.
        """
        self.logger = get_logger(self)
        self.logger.info("Initializing experiment assistant.")
        self.optimizer = optimizer
        self.optimizer_arguments = optimizer_arguments

        if experiment is None:
            self.experiment = Experiment(name, param_defs, minimization)
        else:
            self.experiment = experiment

        self.csv_write_frequency = csv_write_frequency

        if self.csv_write_frequency != 0:
            self.write_directory_base = write_directory_base
            if experiment_directory_base is not None:
                self.experiment_directory_base = experiment_directory_base
                ensure_directory_exists(self.experiment_directory_base)
            else:
                self._create_experiment_directory()
        self.logger.info("Experiment assistant successfully initialized.")

    def get_next_candidate(self):
        """
        Returns the Candidate next to evaluate.

        Returns
        -------
        next_candidate : Candidate or None
            The Candidate object that should be evaluated next. May be None.
        """
        self.logger.info("Returning next candidate.")
        self.optimizer = check_optimizer(self.optimizer,
                                optimizer_arguments=self.optimizer_arguments)
        if not self.experiment.candidates_pending:
            self.experiment.candidates_pending.extend(
                self.optimizer.get_next_candidates(self.experiment))
        next_candidate = self.experiment.candidates_pending.pop()
        self.logger.info("next candidate found: %s" %next_candidate)
        return next_candidate



    def update(self, candidate, status="finished"):
        """
        Updates the experiment_assistant with the status of an experiment
        evaluation.

        Parameters
        ----------
        candidate : Candidate
            The Candidate object whose status is updated.
        status : {"finished", "pausing", "working"}
            A string defining the status change. Can be one of the following:
            - finished: The Candidate is now finished.
            - pausing: The evaluation of Candidate has been paused and can be
                resumed by another worker.
            - working: The Candidate is now being worked on by a worker.

        """
        if status not in self.AVAILABLE_STATUS:
            message = ("status not in %s but %s."
                             %(str(self.AVAILABLE_STATUS), str(status)))
            self.logger.error(message)
            raise ValueError(message)

        if not isinstance(candidate, Candidate):
            message = ("candidate %s not a Candidate instance."
                             %str(candidate))
            self.logger.error(message)
            raise ValueError(message)

        self.logger.info("Got new %s of candidate %s with parameters %s"
                         " and result %s" %(status, candidate, candidate.params,
                                            candidate.result))

        if status == "finished":
            self.experiment.add_finished(candidate)
            #Also delete all pending candidates from the experiment - we have
            #new data available.
            self.experiment.candidates_pending = []

            #invoke the writing to files
            step = len(self.experiment.candidates_finished)
            if self.csv_write_frequency != 0 and step != 0 \
                    and step % self.csv_write_frequency == 0:
                self._append_to_detailed_csv()

        elif status == "pausing":
            self.experiment.add_pausing(candidate)
        elif status == "working":
            self.experiment.add_working(candidate)

    def get_best_candidate(self):
        """
        Returns the best candidate to date.

        Returns
        -------
        best_candidate : candidate or None
            Returns a candidate if there is a best one (which corresponds to
            at least one candidate evaluated) or None if none exists.
        """
        return self.experiment.best_candidate

    def _append_to_detailed_csv(self):
        if len(self.experiment.candidates_finished) <= self.csv_steps_written:
            return

        #create file and header if
        wHeader = False
        if self.csv_steps_written == 0:
            #set use header
            wHeader = True

        csv_string, steps_included = self.experiment.to_csv_results(wHeader=wHeader,
                                            fromIndex=self.csv_steps_written)

        #write
        filename = os.path.join(self.experiment_directory_base,
                                self.experiment.name + "_results.csv")

        with open(filename, 'a+') as detailed_file:
            detailed_file.write(csv_string)

        self.csv_steps_written += steps_included

    def _create_experiment_directory(self):
        global_start_date = time.time()

        date_name = datetime.datetime.utcfromtimestamp(
                global_start_date).strftime("%Y-%m-%d_%H:%M:%S")

        self.experiment_directory_base = os.path.join(self.write_directory_base,
                                    self.experiment.name + "_" + date_name)

        ensure_directory_exists(self.experiment_directory_base)
Exemplo n.º 32
0
class TestExperiment(object):
    exp = None

    def setup(self):
        name = "test_experiment"
        param_def = {
            "x": MinMaxNumericParamDef(0, 1),
            "name": NominalParamDef(["A", "B", "C"])
        }
        param_def_wrong = {
            "x": MinMaxNumericParamDef(0, 1),
            "name": ["A", "B", "C"]
        }
        minimization = True
        self.exp = Experiment(name, param_def, minimization)

        assert_equal(self.exp.name, name)
        assert_equal(self.exp.parameter_definitions, param_def)
        assert_equal(self.exp.minimization_problem, minimization)
        with assert_raises(ValueError):
            Experiment("fails", False)

        with assert_raises(ValueError):
            Experiment("fails too", param_def_wrong)


    def test_add(self):
        cand = Candidate({"x": 1, "name": "A"})

        cand_invalid = Candidate({"x": 1})
        cand_invalid2 = Candidate({"x": 2, "name": "A"})

        with assert_raises(ValueError):
            self.exp.add_pending(cand_invalid)
        with assert_raises(ValueError):
            self.exp.add_pending(cand_invalid2)


        self.exp.add_pending(cand)
        assert cand in self.exp.candidates_pending
        with assert_raises(ValueError):
            self.exp.add_pending(False)

        self.exp.add_finished(cand)
        assert cand in self.exp.candidates_finished
        with assert_raises(ValueError):
            self.exp.add_finished(False)

        cand2 = Candidate({"x": 0, "name": "B"})
        self.exp.add_working(cand2)
        assert cand2 in self.exp.candidates_working
        with assert_raises(ValueError):
            self.exp.add_working(False)

        self.exp.add_pausing(cand2)
        assert cand2 in self.exp.candidates_pending
        with assert_raises(ValueError):
            self.exp.add_pausing(False)

        self.exp.add_working(cand2)
        assert cand2 in self.exp.candidates_working
        with assert_raises(ValueError):
            self.exp.add_working(False)

        self.exp.add_finished(cand2)
        assert cand2 in self.exp.candidates_finished
        with assert_raises(ValueError):
            self.exp.add_finished(False)

    def test_better_cand(self):
        cand = Candidate({"x": 1, "name": "B"})
        cand2 = Candidate({"x": 0, "name": "A"})
        cand_none = Candidate({"x": 0.5, "name": "C"})
        cand_invalid = Candidate({"x": 0.5, "name": "D"})
        cand.result = 1
        cand2.result = 0
        assert_true(self.exp.better_cand(cand2, cand))
        assert_true(self.exp.better_cand(cand2, cand_none))
        self.exp.minimization_problem = False
        assert_true(self.exp.better_cand(cand, cand2))
        assert_false(self.exp.better_cand(cand2, cand))
        assert_true(self.exp.better_cand(cand, None))
        assert_false(self.exp.better_cand(None, cand))
        assert_false(self.exp.better_cand(None, None))
        with assert_raises(ValueError):
            self.exp.better_cand(cand, cand_invalid)
        with assert_raises(ValueError):
            self.exp.better_cand(cand_invalid, cand)
        with assert_raises(ValueError):
            self.exp.better_cand("fails", cand)
        with assert_raises(ValueError):
            self.exp.better_cand(cand, "fails")

    def test_warp(self):
        cand = Candidate({"x": 1})
        cand_out = self.exp.warp_pt_out(self.exp.warp_pt_in(cand.params))
        assert_dict_equal(cand.params, cand_out)

    def test_to_dict(self):
        cand = Candidate({"x": 1, "name": "A"})
        self.exp.add_finished(cand)
        self.exp.to_dict()

    def test_check_param_dict(self):
        param_dict = {"x": 1}
        assert_false(self.exp._check_param_dict(param_dict))

        param_dict = {"x": 1,
                      "name": "D"}
        assert_false(self.exp._check_param_dict(param_dict))

        param_dict = {"x": 1,
                      "name": "A"}
        assert_true(self.exp._check_param_dict(param_dict))
Exemplo n.º 33
0
 def test_init(self):
     #test initialization
     exp = Experiment("test", {"x": MinMaxNumericParamDef(0, 1)}, NominalParamDef(["A", "B", "C"]))
     opt = RandomSearch(exp)