Exemplo n.º 1
0
    def test_mutable_tx_creation_with_immutable_parts_specified(self):
        tx = CMutableTransaction(
            vin=[CTxIn(prevout=COutPoint(hash=b'a' * 32, n=0))],
            vout=[CTxOut(nValue=1)],
            witness=CTxWitness([CTxInWitness()]))

        def check_mutable_parts(tx):
            self.assertTrue(tx.vin[0].is_mutable())
            self.assertTrue(tx.vin[0].prevout.is_mutable())
            self.assertTrue(tx.vout[0].is_mutable())
            self.assertTrue(tx.wit.is_mutable())
            self.assertTrue(tx.wit.vtxinwit[0].is_mutable())

        check_mutable_parts(tx)

        # Test that if we deserialize with CMutableTransaction,
        # all the parts are mutable
        tx = CMutableTransaction.deserialize(tx.serialize())
        check_mutable_parts(tx)

        # Test some parts separately, because when created via
        # CMutableTransaction instantiation, they are created with from_*
        # methods, and not directly

        txin = CMutableTxIn(prevout=COutPoint(hash=b'a' * 32, n=0))
        self.assertTrue(txin.prevout.is_mutable())

        wit = CMutableTxWitness((CTxInWitness(), ))
        self.assertTrue(wit.vtxinwit[0].is_mutable())
Exemplo n.º 2
0
 def create_test_txs(self, scriptSig, scriptPubKey, witness, nValue):
     txCredit = CTransaction([CTxIn(COutPoint(), CScript([OP_0, OP_0]), nSequence=0xFFFFFFFF)],
                             [CTxOut(nValue, scriptPubKey)],
                             witness=CTxWitness(),
                             nLockTime=0, nVersion=1)
     txSpend = CTransaction([CTxIn(COutPoint(txCredit.GetTxid(), 0), scriptSig, nSequence=0xFFFFFFFF)],
                            [CTxOut(nValue, CScript())],
                            nLockTime=0, nVersion=1,
                            witness=CTxWitness([CTxInWitness(witness)]))
     return (txCredit, txSpend)
Exemplo n.º 3
0
    def test_repr(self):
        def T(outpoint, expected):
            actual = repr(outpoint)
            self.assertEqual(actual, expected)

        T(COutPoint(), 'CBitcoinOutPoint()')
        T(
            COutPoint(
                lx('4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b'
                   ), 0),
            "CBitcoinOutPoint(lx('4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b'), 0)"
        )
Exemplo n.º 4
0
    def listunspent(self, minconf=0, maxconf=9999999, addrs=None):
        """Return unspent transaction outputs in wallet

        Outputs will have between minconf and maxconf (inclusive)
        confirmations, optionally filtered to only include txouts paid to
        addresses in addrs.
        """
        r = None
        if addrs is None:
            r = self._call('listunspent', minconf, maxconf)
        else:
            addrs = [str(addr) for addr in addrs]
            r = self._call('listunspent', minconf, maxconf, addrs)

        r2 = []
        for unspent in r:
            unspent['outpoint'] = COutPoint(lx(unspent['txid']),
                                            unspent['vout'])
            del unspent['txid']
            del unspent['vout']

            # address isn't always available as Bitcoin Core allows scripts w/o
            # an address type to be imported into the wallet, e.g. non-p2sh
            # segwit
            try:
                unspent['address'] = CBitcoinAddress(unspent['address'])
            except KeyError:
                pass
            unspent['scriptPubKey'] = CScript(
                unhexlify(unspent['scriptPubKey']))
            unspent['amount'] = int(unspent['amount'] * COIN)
            r2.append(unspent)
        return r2
Exemplo n.º 5
0
def generate_transaction(amount, txin_txid, txin_vout, txout_addr,
                         redeem_list):
    txin = CMutableTxIn(COutPoint(txin_txid, txin_vout))
    txout = CMutableTxOut(amount * COIN, txout_addr.addr.to_scriptPubKey())
    witness_script = CScriptWitness(tuple(redeem_list))
    witness = CTxWitness(tuple([CTxInWitness(witness_script)]))
    tx = CMutableTransaction(vin=[txin], vout=[txout], witness=witness)
    return tx
Exemplo n.º 6
0
 def test_clone(self):
     outpoint = COutPoint(
         lx('4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b'
            ), 0)
     txin = CMutableTxIn(prevout=outpoint,
                         scriptSig=CScript(b'\x03abc'),
                         nSequence=0xffffffff)
     self.assertEqual(txin.serialize(), txin.clone().serialize())
Exemplo n.º 7
0
    def test_str(self):
        def T(outpoint, expected):
            actual = str(outpoint)
            self.assertEqual(actual, expected)

        T(
            COutPoint(),
            '0000000000000000000000000000000000000000000000000000000000000000:4294967295'
        )
        T(
            COutPoint(
                lx('4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b'
                   ), 0),
            '4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b:0'
        )
        T(
            COutPoint(
                lx('4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b'
                   ), 10),
            '4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b:10'
        )
Exemplo n.º 8
0
def create_btc_spend_tx(dst_addr,
                        txid,
                        vout_n,
                        btc_contract,
                        spend_key=None,
                        branch_condition=True):

    # In real application, the fees should not be static, of course
    out_amount = (coins_to_satoshi(pre_agreed_amount) -
                  coins_to_satoshi(fixed_fee_amount))

    tx = CMutableTransaction(
        vin=[CTxIn(prevout=COutPoint(hash=lx(txid), n=vout_n))],
        vout=[
            CTxOut(nValue=out_amount, scriptPubKey=dst_addr.to_scriptPubKey())
        ])

    if branch_condition is True:
        cond = b'\x01'
    else:
        tx.vin[0].nSequence = bitcoin_contract_timeout
        cond = b''

    in_amount = coins_to_satoshi(pre_agreed_amount)
    # We used P2WSHCoinAddress to create the address that we sent bitcoin to,
    # so we know that we need to use SIGVERSION_WITNESS_V0
    sighash = btc_contract.sighash(tx,
                                   0,
                                   SIGHASH_ALL,
                                   amount=in_amount,
                                   sigversion=SIGVERSION_WITNESS_V0)

    spend_sig = spend_key.sign(sighash) + bytes([SIGHASH_ALL])

    # This is script witness, not script. The condition for OP_IF
    # in our script is directly encoded as data in the witness.
    # We cannot use OP_TRUE/OP_FALSE here. We use DATA guard is to ensure that.
    witness = CScriptWitness([spend_sig, DATA(cond), btc_contract])

    # empty scriptSig, because segwit
    tx.vin[0].scriptSig = CBitcoinScript([])
    # all data to check the spend conditions is in the witness
    tx.wit.vtxinwit[0] = CTxInWitness(witness)

    # Cannot use VerifyScript for now,
    # because it does not support CHECKSEQUENCEVERIFY yet
    #
    # from_addr = P2WSHBitcoinAddress.from_redeemScript(btc_contract)
    # VerifyScript(tx.vin[0].scriptSig, from_addr.to_scriptPubKey(),
    #              tx, 0, amount=in_amount)

    return tx
Exemplo n.º 9
0
    def raw_multisig(self):
        source = self.next_address()
        self.fund_address(source, 0.1)

        # construct transaction manually
        tx_ins = [CMutableTxIn(COutPoint(source.txid, source.vout))]

        keys = [self.next_address().key for _ in range(3)]
        redeem_script = CScript([OP_2, keys[0].pub, keys[1].pub, keys[2].pub, OP_3, OP_CHECKMULTISIG])
        tx_outs = [
            CMutableTxOut(Coin(0.1 - self.fee).satoshi(), redeem_script)]

        tx = CMutableTransaction(tx_ins, tx_outs)

        # sign and submit
        key = source.key
        script = source.address.to_scriptPubKey()

        sig = self._sign(script, tx, 0, Coin(source.value).satoshi(), key)
        tx_ins[0].scriptSig = CScript([sig, key.pub])

        txid = self._send_transaction(tx, [])
        self.log_value("raw-multisig-tx", txid)

        # Redeem Transaction
        tx_ins = [CMutableTxIn(COutPoint(lx(txid), 0))]
        destination = self.next_address()
        tx_outs = [CMutableTxOut(Coin(0.1 - 2 * self.fee).satoshi(), destination.address.to_scriptPubKey())]
        tx = CMutableTransaction(tx_ins, tx_outs)

        # Sign with 2 out of three keys
        sig1 = self._sign(redeem_script, tx, 0, Coin(0.1 - self.fee).satoshi(), keys[0])
        sig3 = self._sign(redeem_script, tx, 0, Coin(0.1 - self.fee).satoshi(), keys[2])

        tx_ins[0].scriptSig = CScript([OP_0, sig1, sig3])

        txid = self._send_transaction(tx, [])
        self.log_value("raw-multisig-redeem-tx", txid)
        self.generate_block()
Exemplo n.º 10
0
    def test_sighash(self) -> None:
        spent_amount = 1100
        pub = CKey.from_secret_bytes(os.urandom(32)).pub
        spk_legacy = P2PKHCoinAddress.from_pubkey(pub).to_scriptPubKey()
        spk_segwit = P2WPKHCoinAddress.from_pubkey(pub).to_scriptPubKey()

        tx = CTransaction([
            CTxIn(
                COutPoint(b'\x00' * 32, 0), CScript([]), nSequence=0xFFFFFFFF)
        ], [CTxOut(1000, spk_legacy)],
                          nLockTime=0,
                          nVersion=1)

        # no exceptions should be raised with these two calls
        spk_legacy.sighash(tx,
                           0,
                           SIGHASH_ALL,
                           amount=spent_amount,
                           sigversion=SIGVERSION_WITNESS_V0)
        spk_segwit.sighash(tx,
                           0,
                           SIGHASH_ALL,
                           amount=spent_amount,
                           sigversion=SIGVERSION_WITNESS_V0)

        with self.assertRaises(ValueError):
            # unknown sigversion
            spk_segwit.sighash(tx,
                               0,
                               SIGHASH_ALL,
                               amount=spent_amount,
                               sigversion=SIGVERSION_WITNESS_V0 +
                               1)  # type: ignore

        assert spk_segwit.is_witness_scriptpubkey()
        with self.assertRaises(ValueError):
            # incorect sigversion for segwit
            spk_segwit.sighash(tx,
                               0,
                               SIGHASH_ALL,
                               amount=spent_amount,
                               sigversion=SIGVERSION_BASE)

        with self.assertRaises(ValueError):
            # inIdx > len(tx.vin) - non-raw sighash function should raise
            # ValueError (raw_sighash can return HASH_ONE)
            spk_legacy.sighash(tx,
                               10,
                               SIGHASH_ALL,
                               amount=spent_amount,
                               sigversion=SIGVERSION_BASE)
Exemplo n.º 11
0
    def op_return(self):
        source = self.next_address("p2pkh")
        self.fund_address(source, 2 * self.fee)

        tx_ins = [CMutableTxIn(COutPoint(source.txid, source.vout))]
        tx_outs = [CMutableTxOut(Coin(self.fee).satoshi(), CScript([OP_RETURN, x("4c6f726420566f6c64656d6f7274")]))]
        tx = CMutableTransaction(tx_ins, tx_outs)

        key = source.key
        script = source.address.to_scriptPubKey()

        sig = self._sign(script, tx, 0, Coin(source.value).satoshi(), key)
        tx_ins[0].scriptSig = CScript([sig, key.pub])

        txid = self._send_transaction(tx, [])
        self.log_value("op-return-tx", txid)
Exemplo n.º 12
0
    def create_custom_block(self, reward):
        txid, _ = self.fund_address(self.next_address(), 10)
        tx2 = self.proxy.getrawtransaction(lx(txid))

        coinbase = CMutableTransaction()
        coinbase.vin.append(CMutableTxIn(COutPoint(), CScript([self.proxy.getblockcount() + 1])))
        coinbase.vout.append(CMutableTxOut(reward * COIN, self.next_address().address.to_scriptPubKey()))

        prev_block_hash = self.proxy.getblockhash(self.proxy.getblockcount())

        ts = self._next_timestamp()
        self.proxy.call("setmocktime", ts)

        for nonce in range(1000):
            block = CBlock(nBits=0x207fffff, vtx=[coinbase, tx2], hashPrevBlock=prev_block_hash, nTime=ts, nNonce=nonce)
            result = self.proxy.submitblock(block)
            if not result:
                self.log.debug("Chosen nonce: {}".format(nonce))
                break
Exemplo n.º 13
0
def load_test_vectors(name):
    with open(os.path.dirname(__file__) + '/data/' + name, 'r') as fd:
        for test_case in json.load(fd):
            # Comments designated by single length strings
            if len(test_case) == 1:
                continue
            assert len(test_case) == 3

            prevouts = {}
            for json_prevout in test_case[0]:
                assert len(json_prevout) == 3
                n = json_prevout[1]
                if n == -1:
                    n = 0xffffffff
                prevout = COutPoint(lx(json_prevout[0]), n)
                prevouts[prevout] = parse_script(json_prevout[2])

            tx_data = x(test_case[1])
            tx = CTransaction.deserialize(tx_data)
            enforceP2SH = test_case[2]

            yield (prevouts, tx, tx_data, enforceP2SH)
    def test_immutable_tx_creation_with_mutable_parts_specified(self) -> None:
        tx = CElementsTransaction(
            vin=[CMutableTxIn(prevout=COutPoint(hash=b'a' * 32, n=0))],
            vout=[CMutableTxOut()],
            witness=CMutableTxWitness(
                [CMutableTxInWitness(CScriptWitness([CScript([0])]))],
                [CMutableTxOutWitness()]))

        self.assertIsInstance(tx, CElementsTransaction)

        def check_immutable_parts(tx: CElementsTransaction) -> None:
            self.assertTrue(not tx.vin[0].is_mutable())
            self.assertTrue(not tx.vin[0].prevout.is_mutable())
            self.assertTrue(not tx.vout[0].is_mutable())
            self.assertTrue(not tx.wit.is_mutable())
            self.assertTrue(not tx.wit.vtxinwit[0].is_mutable())
            self.assertTrue(not tx.wit.vtxoutwit[0].is_mutable())

        check_immutable_parts(tx)

        # Test that if we deserialize with CTransaction,
        # all the parts are immutable
        tx = CElementsTransaction.deserialize(tx.serialize())
        check_immutable_parts(tx)

        # Test some parts separately, because when created via
        # CMutableTransaction instantiation, they are created with from_*
        # methods, and not directly

        txin = CTxIn(prevout=CMutableOutPoint(hash=b'a' * 32, n=0))
        self.assertTrue(not txin.prevout.is_mutable())

        wit = CElementsTxWitness((CElementsMutableTxInWitness(), ),
                                 (CElementsMutableTxOutWitness(), ))
        self.assertTrue(not wit.vtxinwit[0].is_mutable())
        self.assertTrue(not wit.vtxoutwit[0].is_mutable())
Exemplo n.º 15
0
# Create the (in)famous correct brainwallet secret key.
h = hashlib.sha256(b'correct horse battery staple').digest()
seckey = CBitcoinKey.from_secret_bytes(h)

# Same as the txid:vout the createrawtransaction RPC call requires
#
# lx() takes *little-endian* hex and converts it to bytes; in Bitcoin
# transaction hashes are shown little-endian rather than the usual big-endian.
# There's also a corresponding x() convenience function that takes big-endian
# hex and converts it to bytes.
txid = lx('7e195aa3de827814f172c362fcf838d92ba10e3f9fdd9c3ecaf79522b311b22d')
vout = 0

# Create the txin structure, which includes the outpoint. The scriptSig
# defaults to being empty.
txin = CMutableTxIn(COutPoint(txid, vout))

# We also need the scriptPubKey of the output we're spending because
# SignatureHash() replaces the transaction scriptSig's with it.
#
# Here we'll create that scriptPubKey from scratch using the pubkey that
# corresponds to the secret key we generated above.
txin_scriptPubKey = \
    P2PKHBitcoinAddress.from_pubkey(seckey.pub).to_scriptPubKey()

# Create the txout. This time we create the scriptPubKey from a Bitcoin
# address.
txout = CMutableTxOut(
    0.001 * COIN,
    CBitcoinAddress('1C7zdTfnkzmr13HfA2vNm5SJYRK6nEKyq8').to_scriptPubKey())
Exemplo n.º 16
0
 def test_immutable(self):
     """COutPoint shall not be mutable"""
     outpoint = COutPoint()
     with self.assertRaises(AttributeError):
         outpoint.n = 1
Exemplo n.º 17
0
def create_elt_spend_tx(dst_addr,
                        txid,
                        vout_n,
                        elt_contract,
                        die,
                        spend_key=None,
                        contract_key=None,
                        blinding_key=None,
                        blinding_factor=None,
                        asset_blinding_factor=None,
                        branch_condition=True):

    fee_satoshi = coins_to_satoshi(fixed_fee_amount)
    out_amount = coins_to_satoshi(pre_agreed_amount) - fee_satoshi

    # Single blinded output is not allowed, so we add
    # dummy OP_RETURN output, and we need dummy pubkey for it
    dummy_key = CKey.from_secret_bytes(os.urandom(32))

    tx = CMutableTransaction(
        vin=[CTxIn(prevout=COutPoint(hash=lx(txid), n=vout_n))],
        vout=[
            CTxOut(nValue=CConfidentialValue(out_amount),
                   nAsset=CConfidentialAsset(bitcoin_asset),
                   scriptPubKey=dst_addr.to_scriptPubKey(),
                   nNonce=CConfidentialNonce(dst_addr.blinding_pubkey)),
            CTxOut(nValue=CConfidentialValue(0),
                   nAsset=CConfidentialAsset(bitcoin_asset),
                   nNonce=CConfidentialNonce(dummy_key.pub),
                   scriptPubKey=CElementsScript([OP_RETURN])),
            CTxOut(nValue=CConfidentialValue(fee_satoshi),
                   nAsset=CConfidentialAsset(bitcoin_asset))
        ])

    output_pubkeys = [dst_addr.blinding_pubkey, dummy_key.pub]

    in_amount = coins_to_satoshi(pre_agreed_amount)

    input_descriptors = [
        BlindingInputDescriptor(asset=bitcoin_asset,
                                amount=in_amount,
                                blinding_factor=blinding_factor,
                                asset_blinding_factor=asset_blinding_factor)
    ]

    blind_result = tx.blind(input_descriptors=input_descriptors,
                            output_pubkeys=output_pubkeys)

    # The blinding must succeed!
    if blind_result.error:
        die('blind failed: {}'.format(blind_result.error))

    if branch_condition is False:
        # Must set nSequence before we calculate signature hash,
        # because it is included in it
        tx.vin[0].nSequence = elements_contract_timeout

    # We used P2SHCoinAddress to create the address that
    # we sent Elements-BTC to, so we know that we need
    # to use SIGVERSION_BASE

    sighash = elt_contract.sighash(tx,
                                   0,
                                   SIGHASH_ALL,
                                   amount=CConfidentialValue(in_amount),
                                   sigversion=SIGVERSION_BASE)

    spend_sig = spend_key.sign(sighash) + bytes([SIGHASH_ALL])

    if branch_condition is True:
        prepare_elt_spend_reveal_branch(tx, elt_contract, spend_sig,
                                        contract_key, blinding_key)
    else:
        tx.vin[0].scriptSig = CElementsScript(
            [spend_sig, OP_FALSE, elt_contract])

    return tx
Exemplo n.º 18
0
    def _create_transaction(self, sources: List[Address],
                            recipients: List[Address], values, n_locktime,
                            n_sequence):
        # save cospends
        self.cospends.union_all([str(x.address) for x in sources])

        if not values:
            values = [recipient.value for recipient in recipients]
        tx_ins = [
            CMutableTxIn(COutPoint(source.txid, source.vout),
                         nSequence=n_sequence) for source in sources
        ]
        tx_outs = []

        cnt = 0
        for recipient, value in zip(recipients, values):
            if value == 0:
                self.log.warning("Creating output with 0 BTC")
            recipient.vout = cnt

            tx_outs.append(
                CMutableTxOut(
                    Coin(value).satoshi(),
                    recipient.address.to_scriptPubKey()))
            cnt += 1

        tx = CMutableTransaction(tx_ins, tx_outs, nLockTime=n_locktime)

        in_idx = 0
        witnesses = []
        for txin, source in zip(tx_ins, sources):
            key = source.key

            if source.type == 'p2pkh':
                script = source.address.to_redeemScript()
            elif source.type == 'p2sh':
                script = CScript([key.pub, OP_CHECKSIG])
            elif source.type == 'p2wpkh':
                script = source.address.to_redeemScript()
            elif source.type == 'p2wsh':
                script = source.witness_program
            else:
                raise UnsupportedAddressTypeError()

            # Create signature
            amount = Coin(source.value).satoshi()
            sig = self._sign(script, tx, in_idx, amount, key, source.type)

            # Add signature to input or witness
            if source.type == 'p2pkh':
                txin.scriptSig = CScript([sig, key.pub])
                witnesses.append(CTxInWitness())
            elif source.type == 'p2sh':
                txin.scriptSig = CScript([sig, script])
                witnesses.append(CTxInWitness())
            elif source.type == 'p2wpkh':
                txin.scriptSig = CScript()
                witnesses.append(CTxInWitness(CScriptWitness([sig, key.pub])))
            elif source.type == 'p2wsh':
                txin.scriptSig = CScript()
                witnesses.append(CTxInWitness(CScriptWitness([sig, script])))
            in_idx += 1

        tx.wit = CTxWitness(witnesses)
        return tx
Exemplo n.º 19
0
 def test_is_null(self):
     self.assertTrue(COutPoint().is_null())
     self.assertTrue(COutPoint(hash=b'\x00' * 32, n=0xffffffff).is_null())
     self.assertFalse(COutPoint(hash=b'\x00' * 31 + b'\x01').is_null())
     self.assertFalse(COutPoint(n=1).is_null())
Exemplo n.º 20
0
def claim_funds_back(say, utxos, die, rpc):
    """Try to claim our funds by sending our UTXO to our own addresses"""

    # The transaction-building code here does not introduce anything new
    # compared to the code in participant functions, so it will not be
    # commented too much.

    input_descriptors = []
    # It is better to prepare the claw-back transaction beforehand, to avoid
    # the possibility of unexpected problems arising at the critical time when
    # we need to send claw-back tx ASAP, but that would clutter the earlier
    # part of the example with details that are not very relevant there.
    tx = CMutableTransaction()
    for utxo in utxos:
        tx.vin.append(
            CTxIn(prevout=COutPoint(hash=lx(utxo['txid']), n=utxo['vout'])))
        input_descriptors.append(
            BlindingInputDescriptor(
                asset=CAsset(lx(utxo['asset'])),
                amount=coins_to_satoshi(utxo['amount']),
                blinding_factor=Uint256(lx(utxo['amountblinder'])),
                asset_blinding_factor=Uint256(lx(utxo['assetblinder']))))

    asset_amounts = {}
    # If some assets are the same, we want them to be sent to one address
    for idesc in input_descriptors:
        if idesc.asset == fee_asset:
            amount = idesc.amount - FIXED_FEE_SATOSHI
            assert amount >= FIXED_FEE_SATOSHI  # enforced at find_utxo_for_fee
        else:
            amount = idesc.amount

        asset_amounts[idesc.asset] = amount

    output_pubkeys = []
    for asset, amount in asset_amounts.items():
        dst_addr, _ = get_dst_addr(None, rpc)
        tx.vout.append(
            CTxOut(nValue=CConfidentialValue(amount),
                   nAsset=CConfidentialAsset(asset),
                   scriptPubKey=dst_addr.to_scriptPubKey()))
        output_pubkeys.append(dst_addr.blinding_pubkey)

    # Add the explicit fee output
    tx.vout.append(
        CTxOut(nValue=CConfidentialValue(FIXED_FEE_SATOSHI),
               nAsset=CConfidentialAsset(fee_asset)))
    # Add dummy pubkey for non-blinded fee output
    output_pubkeys.append(CPubKey())

    # We used immutable objects for transaction components like CTxIn,
    # just for our convenience. Convert them all to mutable.
    tx = tx.to_immutable().to_mutable()

    # And blind the combined transaction
    blind_result = tx.blind(input_descriptors=input_descriptors,
                            output_pubkeys=output_pubkeys)

    assert (not blind_result.error
            and blind_result.num_successfully_blinded == len(utxos))

    for n, utxo in enumerate(utxos):
        sign_input(tx, n, utxo)

    # It is possible that Bob has actually sent the swap transaction.
    # We will get an error if our node has received this transaction.
    # In real application, we might handle this case, too, but
    # here we will just ignore it.
    txid = rpc.sendrawtransaction(b2x(tx.serialize()))

    rpc.generatetoaddress(1, rpc.getnewaddress())
    wait_confirm(say, txid, die, rpc)
Exemplo n.º 21
0
def alice(say, recv, send, die, rpc):
    """A function that implements the logic
    of the first participant of an asset atomic swap"""

    # Issue two asset that we are going to swap to Bob's 1 asset
    asset1_str, asset1_utxo = issue_asset(say, 1.0, rpc)
    asset2_str, asset2_utxo = issue_asset(say, 1.0, rpc)

    # We will need to pay a fee in an asset suitable for this
    fee_utxo = find_utxo_for_fee(say, die, rpc)

    say('Getting change address for fee asset')
    # We don't care for blinding key of change - the node will
    # have it, anyway, and we don't need to unblind the change.
    fee_change_addr, _ = get_dst_addr(say, rpc)

    say('Will use utxo {}:{} (amount: {}) for fee, change will go to {}'.
        format(fee_utxo['txid'], fee_utxo['vout'], fee_utxo['amount'],
               fee_change_addr))

    say('Setting up communication with Bob')

    # Tell Bob that we are ready to communicate
    send('ready')

    # To avoid mempool synchronization problems,
    # in our example Alice is the one in charge of generating test blocks.
    # Bob gives alice txid of his transaction that he wants to be confirmed.
    bob_txid = recv('wait-txid-confirm')

    # Make sure asset issuance transactions are confirmed
    rpc.generatetoaddress(1, rpc.getnewaddress())
    wait_confirm(say, asset1_utxo['txid'], die, rpc)
    wait_confirm(say, asset2_utxo['txid'], die, rpc)
    wait_confirm(say, bob_txid, die, rpc)

    # Make sure Bob is alive and ready to communicate, and send
    # him an offer for two assets
    say('Sending offer to Bob')
    my_offers = [
        AtomicSwapOffer(asset=asset1_str,
                        amount=coins_to_satoshi(asset1_utxo['amount'])),
        AtomicSwapOffer(asset=asset2_str,
                        amount=coins_to_satoshi(asset2_utxo['amount']))
    ]
    send('offer', my_offers)

    bob_offer = recv('offer')

    print_asset_balances(say, my_offers + [bob_offer], rpc)

    say('Bob responded with his offer: {}'.format(bob_offer))

    # We unconditionally accept Bob's offer - his asset is
    # equally worthless as ours :-)

    # Generate an address for Bob to send his asset to.
    dst_addr, blinding_key = get_dst_addr(say, rpc)

    say('Sending my address and assetcommitments for my UTXOs to Bob')
    # Send Bob our address, and the assetcommitments of our UTXOs
    # (but not any other information about our UTXO),
    # so he can construct and blind a partial transaction that
    # will spend his own UTXO, to send his asset to our address.
    assetcommitments = [
        asset1_utxo['assetcommitment'], asset2_utxo['assetcommitment'],
        fee_utxo['assetcommitment']
    ]

    send('addr_and_assetcommitments', (str(dst_addr), assetcommitments))

    partial_tx_bytes = recv('partial_blinded_tx')

    say('Got partial blinded tx of size {} bytes from Bob'.format(
        len(partial_tx_bytes)))

    partial_tx = CTransaction.deserialize(partial_tx_bytes)

    if len(partial_tx.vout) != 1:
        die('unexpected number of outputs in tx from Bob: expected 1, got {}'.
            format(len(partial_tx.vout)))

    result = partial_tx.vout[0].unblind_confidential_pair(
        blinding_key, partial_tx.wit.vtxoutwit[0].rangeproof)

    if result.error:
        die('cannot unblind output that should have been directed to us: {}'.
            format(result.error))

    if result.asset.to_hex() != bob_offer.asset:
        die("asset in partial transaction from Bob {} is not the same "
            "as asset in Bob's initial offer ({})".format(
                result.asset.to_hex(), bob_offer.asset))

    if result.amount != bob_offer.amount:
        die("amount in partial transaction from Bob {} is not the same "
            "as amount in Bob's initial offer ({})".format(
                result.amount, bob_offer.amount))

    say("Asset and amount in partial transaction matches Bob's offer")

    bob_addr_list, bob_assetcommitment = recv('addr_list_and_assetcommitment')

    if len(bob_addr_list) != len(my_offers):
        die('unexpected address list lenth from Bob. expected {}, got {}'.
            format(len(my_offers), len(bob_addr_list)))

    say("Bob's addresses to receive my assets: {}".format(bob_addr_list))

    # Convert Bob's addresses to address objects.
    # If Bob passes invalid address, we die with with exception.
    bob_addr_list = [CCoinAddress(a) for a in bob_addr_list]

    # Add our own inputs and outputs to Bob's partial tx

    # Create new mutable transaction from partial_tx
    tx = partial_tx.to_mutable()

    # We have assetcommitment for the first input,
    # other data is not needed for it.
    # initialize first elements of the arrays with empty/negative data.
    input_descriptors = [
        BlindingInputDescriptor(asset=CAsset(),
                                amount=-1,
                                blinding_factor=Uint256(),
                                asset_blinding_factor=Uint256())
    ]

    # First output is already blinded, fill the slot with empty data
    output_pubkeys = [CPubKey()]

    # But assetcommitments array should start with Bob's asset commitment
    assetcommitments = [x(bob_assetcommitment)]

    # We will add our inputs for asset1 and asset2, and also an input
    # that will be used to pay the fee.

    # Note that the order is important: Bob blinded his transaction
    # with assetcommitments in the order we send them to him,
    # and we should add our inputs in the same order.
    utxos_to_add = (asset1_utxo, asset2_utxo, fee_utxo)

    # Add inputs for asset1 and asset2 and fee_asset and prepare input data
    # for blinding
    for utxo in utxos_to_add:
        # When we create CMutableTransaction and pass CTxIn,
        # it will be converted to CMutableTxIn. But if we append
        # to tx.vin or tx.vout, we need to use mutable versions
        # of the txin/txout classes, or else blinding or signing
        # will fail with error, unable to modify the instances.
        # COutPoint is not modified, though, so we can leave it
        # immutable.
        tx.vin.append(
            CMutableTxIn(
                prevout=COutPoint(hash=lx(utxo['txid']), n=utxo['vout'])))
        input_descriptors.append(
            BlindingInputDescriptor(
                asset=CAsset(lx(utxo['asset'])),
                amount=coins_to_satoshi(utxo['amount']),
                blinding_factor=Uint256(lx(utxo['amountblinder'])),
                asset_blinding_factor=Uint256(lx(utxo['assetblinder']))))

        # If we are supplying asset blinders and assetblinders for
        # particular input, assetcommitment data for that input do
        # not need to be correct. But if we are supplying assetcommitments
        # at all (auxiliary_generators argument to tx.blind()),
        # then all the elements of that array must have correct
        # type (bytes) and length (33). This is a requirement of the original
        # Elements Core API, and python-elementstx requires this, too.
        assetcommitments.append(b'\x00' * 33)

    # Add outputs to give Bob all our assets, and fill output pubkeys
    # for blinding the outputs to Bob's addresses
    for n, offer in enumerate(my_offers):
        tx.vout.append(
            CMutableTxOut(nValue=CConfidentialValue(offer.amount),
                          nAsset=CConfidentialAsset(CAsset(lx(offer.asset))),
                          scriptPubKey=bob_addr_list[n].to_scriptPubKey()))
        output_pubkeys.append(bob_addr_list[n].blinding_pubkey)

    # Add change output for fee asset
    fee_change_amount = (coins_to_satoshi(fee_utxo['amount']) -
                         FIXED_FEE_SATOSHI)
    tx.vout.append(
        CMutableTxOut(nValue=CConfidentialValue(fee_change_amount),
                      nAsset=CConfidentialAsset(fee_asset),
                      scriptPubKey=fee_change_addr.to_scriptPubKey()))
    output_pubkeys.append(fee_change_addr.blinding_pubkey)

    # Add fee output.
    # Note that while we use CConfidentialAsset and CConfidentialValue
    # to specify value and asset, they are not in fact confidential here
    # - they are explicit, because we pass explicit values at creation.
    # You can check if they are explicit or confidential
    # with nValue.is_explicit(). If they are explicit, you can access
    # the unblinded values with nValue.to_amount() and nAsset.to_asset()
    tx.vout.append(
        CMutableTxOut(nValue=CConfidentialValue(FIXED_FEE_SATOSHI),
                      nAsset=CConfidentialAsset(fee_asset)))
    # Add dummy pubkey for non-blinded fee output
    output_pubkeys.append(CPubKey())

    # Our transaction lacks txin witness instances for the added inputs,
    # and txout witness instances for added outputs.
    # If transaction already have witness data attached, transaction
    # serialization code will require in/out witness array length
    # to be equal to vin/vout array length
    # Therefore we need to add dummy txin and txout witnesses for each
    # input and output that we added to transaction
    # we added one input and one output per asset, and an additional
    # input/change-output for fee asset.
    for _ in utxos_to_add:
        tx.wit.vtxinwit.append(CMutableTxInWitness())
        tx.wit.vtxoutwit.append(CMutableTxOutWitness())

    # And one extra dummy txout witness for fee output
    tx.wit.vtxoutwit.append(CMutableTxOutWitness())

    # And blind the combined transaction
    blind_result = tx.blind(input_descriptors=input_descriptors,
                            output_pubkeys=output_pubkeys,
                            auxiliary_generators=assetcommitments)

    # The blinding must succeed!
    if blind_result.error:
        die('blind failed: {}'.format(blind_result.error))

    # And must blind exactly three outputs (two to Bob, one fee asset change)
    if blind_result.num_successfully_blinded != 3:
        die('blinded {} outputs, expected to be 3'.format(
            blind_result.num_successfully_blinded))

    say('Successfully blinded the combined transaction, will now sign')

    # Sign two new asset inputs, and fee asset input
    for n, utxo in enumerate(utxos_to_add):
        # We specify input_index as 1+n because we skip first (Bob's) input
        sign_input(tx, 1 + n, utxo)

    say('Signed my inputs, sending partially-signed transaction to Bob')

    send('partially_signed_tx', tx.serialize())

    # Note that at this point both participants can still opt out of the swap:
    # Alice by double-spending her inputs to the transaction,
    # and Bob by not signing or not broadcasting the transaction.
    # Bob still have tiny advantage, because
    # he can pretend to have 'difficulties' in broadcasting and try to exploit
    # Alice's patience. If Alice does not reclaim her funds in the case Bob's
    # behaviour deviates from expected, then Bob will have free option to
    # exectute the swap at the time convenient to him.

    # Get the swap transaction from Bob.
    # Bob is expected to broadcast this transaction, and could just send txid
    # here, but then there would be a period of uncertainty: if Alice do not
    # see the txid at her own node, she does not know if this is because Bob
    # did not actually broadcast, and is just taking his time watching asset
    # prices, or the transaction just takes long time to propagate. If the
    # protocol requires Bob to send the transaction, the timeout required for
    # Alice to wait can be defined much more certainly.
    try:
        signed_tx_raw = recv('final-signed-tx', timeout=ALICE_PATIENCE_LIMIT)
        signed_tx = CTransaction.deserialize(x(signed_tx_raw))
        # Check that this transaction spends the same inputs as the transacton
        # previously agreed upon
        for n, vin in enumerate(signed_tx.vin):
            if vin.prevout != tx.vin[n].prevout:
                die('Inputs of transaction received from Bob do not match '
                    'the agreed-upon transaction')
        # Send the transaction from our side
        txid = rpc.sendrawtransaction(b2x(signed_tx.serialize()))
    except Exception as e:
        # If there is any problem, including communication timeout or invalid
        # communication, or invalid transaction encoding, then Alice will try
        # to claim her funds back, so Bob won't have an option to execute the
        # swap at the time convenient to him. He should execute it immediately.
        say('Unexpected problem on receiving final signed transaction '
            'from Bob: {}'.format(e))
        say('This is suspicious. I will try to reclaim my funds now')
        claim_funds_back(say, utxos_to_add, die, rpc)
        say("Claimed my funds back. Screw Bob!")
        sys.exit(0)

    # Make sure the final transaction is confirmed
    rpc.generatetoaddress(1, rpc.getnewaddress())
    wait_confirm(say, txid, die, rpc)

    # Check that everything went smoothly
    balance = coins_to_satoshi(rpc.getbalance("*", 1, False, bob_offer.asset))
    if balance != bob_offer.amount:
        die('something went wrong, balance of Bob\'s asset after swap '
            'should be {} satoshi, but it is {} satoshi'.format(
                balance, bob_offer.amount))

    print_asset_balances(say, my_offers + [bob_offer], rpc)

    # Wait for alice to politely end the conversation
    send('thanks-goodbye')

    say('Asset atomic swap completed successfully')
Exemplo n.º 22
0
def bob(say, recv, send, die, rpc):
    """A function that implements the logic
    of the second participant of an asset atomic swap"""

    # Issue an asset that we are going to swap
    asset_str, asset_utxo = issue_asset(say, 1.0, rpc)
    asset_amount_satoshi = coins_to_satoshi(asset_utxo['amount'])

    say('Setting up communication with Alice')

    # Wait for Alice to start communication
    recv('ready')
    # To avoid mempool synchronization problems in two-node regtest setup,
    # in our example Alice is the one in charge of generating test blocks.
    # Send txid of asset issuance to alice so she can ensure it is confirmed.
    send('wait-txid-confirm', asset_utxo['txid'])

    say('Waiting for Alice to send us an offer array')

    alice_offers = recv('offer')

    # We unconditionally accept Alice's offer - her assets are
    # equally worthless as our asset :-)

    say("Alice's offers are {}, sending my offer".format(alice_offers))

    my_offer = AtomicSwapOffer(amount=asset_amount_satoshi, asset=asset_str)

    send('offer', my_offer)

    say('Waiting for Alice\'s address and assetcommitments')

    alice_addr_str, alice_assetcommitments = recv('addr_and_assetcommitments')

    print_asset_balances(say, alice_offers + [my_offer], rpc)

    # Convert Alice's address to address object.
    # If Alice passes invalid address, we die with we die with exception.
    alice_addr = CCoinAddress(alice_addr_str)

    say('Alice\'s address: {}'.format(alice_addr))
    say('Alice\'s assetcommitments: {}'.format(alice_assetcommitments))

    # Create asset commitments array. First goes our own asset commitment,
    # because our UTXO will be first.
    assetcommitments = [x(asset_utxo['assetcommitment'])]
    for ac in alice_assetcommitments:
        # If Alice sends non-hex data, we will die while converting.
        assetcommitments.append(x(ac))

    # Let's create our part of the transaction. We need to create
    # mutable transaction, because blind() method only works for mutable.
    partial_tx = CMutableTransaction(
        vin=[
            CTxIn(prevout=COutPoint(hash=lx(asset_utxo['txid']),
                                    n=asset_utxo['vout']))
        ],
        vout=[
            CTxOut(nValue=CConfidentialValue(asset_amount_satoshi),
                   nAsset=CConfidentialAsset(CAsset(lx(asset_str))),
                   scriptPubKey=alice_addr.to_scriptPubKey())
        ])

    # Blind our part of transaction, specifying assetcommitments
    # (Incliding those received from Alice) as auxiliary_generators.

    # Note that we could get the blinding factors if we retrieve
    # the transaction that we spend from, deserialize it, and unblind
    # the output that we are going to spend.
    # We could do everything here (besides issuing the asset and sending
    # the transactions) without using Elements RPC, if we get our data
    # from files or database, etc. But to simplify our demonstration,
    # we will use the values we got from RPC.

    # See 'spend-to-confidential-address.py' example for the code
    # that does the unblinding itself, and uses the unblinded values
    # to create a spending transaction.

    blind_result = partial_tx.blind(
        input_descriptors=[
            BlindingInputDescriptor(
                asset=CAsset(lx(asset_utxo['asset'])),
                amount=asset_amount_satoshi,
                blinding_factor=Uint256(lx(asset_utxo['amountblinder'])),
                asset_blinding_factor=Uint256(lx(asset_utxo['assetblinder'])))
        ],
        output_pubkeys=[alice_addr.blinding_pubkey],
        auxiliary_generators=assetcommitments)

    # The blinding must succeed!
    if blind_result.error:
        die('blind failed: {}'.format(blind_result.error))

    # And must blind exactly one output
    if blind_result.num_successfully_blinded != 1:
        die('blinded {} outputs, expected to be 1'.format(
            blind_result.num_successfully_blinded))

    say('Successfully blinded partial transaction, sending it to Alice')

    send('partial_blinded_tx', partial_tx.serialize())

    say("Generating addresses to receive Alice's assets")
    # Generate as many destination addresses as there are assets
    # in Alice's offer. Record blinding keys for the addresses.
    our_addrs = []
    blinding_keys = []
    for _ in alice_offers:
        addr, blinding_key = get_dst_addr(say, rpc)
        our_addrs.append(str(addr))
        blinding_keys.append(blinding_key)

    say("Sending my addresses and assetcommitment to Alice")
    send('addr_list_and_assetcommitment',
         (our_addrs, asset_utxo['assetcommitment']))

    semi_signed_tx_bytes = recv('partially_signed_tx')

    say('Got partially signed tx of size {} bytes from Alice'.format(
        len(semi_signed_tx_bytes)))

    semi_signed_tx = CTransaction.deserialize(semi_signed_tx_bytes)

    # Transaction should have 3 extra outputs - one output to Alice,
    # fee output, and fee asset change output
    if len(semi_signed_tx.vout) != len(alice_offers) + 3:
        die('unexpected number of outputs in tx from Alice: '
            'expected {}, got {}'.format(
                len(alice_offers) + 3, len(semi_signed_tx.vout)))

    if not semi_signed_tx.vout[-1].is_fee():
        die('Last output in tx from Alice '
            'is expected to be fee output, but it is not')

    # Unblind outputs that should be directed to us and check
    # that they match the offer. We use n+1 as output index
    # because we skip our own output, which is at index 0.
    for n, offer in enumerate(alice_offers):
        result = semi_signed_tx.vout[n + 1].unblind_confidential_pair(
            blinding_keys[n], semi_signed_tx.wit.vtxoutwit[n + 1].rangeproof)

        if result.error:
            die('cannot unblind output {} that should have been '
                'directed to us: {}'.format(n + 1, result.error))

        if result.asset.to_hex() != offer.asset:
            die("asset at position {} (vout {}) in partial transaction "
                "from Alice {} is not the same as asset in Alice's "
                "initial offer ({})".format(n, n + 1, result.asset.to_hex(),
                                            offer.asset))

        if result.amount != offer.amount:
            die("amount at position {} (vout {}) in partial transaction "
                "from Alice {} is not the same as amount in Alice's "
                "initial offer ({})".format(n, n + 1, result.amount,
                                            offer.amount))

    say("Assets and amounts in partially signed transaction "
        "match Alice's offer")

    # Signing will change the tx, so i
    tx = semi_signed_tx.to_mutable()

    # Our input is at index 0
    sign_input(tx, 0, asset_utxo)

    # Note that at this point both participants can still opt out of the swap:
    # Bob by not broadcasting the transaction, and Alice by double-spending
    # her inputs to the transaction. Bob still have tiny advantage, because
    # he can pretend to have 'difficulties' in broadcasting and try to exploit
    # Alice's patience

    say('Signed the transaction from my side, ready to send')

    tx_hex = b2x(tx.serialize())

    if bob_be_sneaky:
        say('Hey! I am now in control of the final transaction. '
            'I have the option to exectue the swap or abort. ')
        say('Why not wait a bit and watch asset prices, and execute '
            'the swap only if it is profitable')
        say('I will reduce my risk a bit by doing that.')
        # Bob takes his time and is not sending the final
        # transaction to Alice for some time...
        time.sleep(ALICE_PATIENCE_LIMIT + 2)
        say('OK, I am willing to execute the swap now')

    # Send the final transaction to Alice, so she can be sure that
    # we is not cheating
    send('final-signed-tx', tx_hex)

    txid = rpc.sendrawtransaction(tx_hex)

    say('Sent with txid {}'.format(txid))

    # Wait for alice to politely end the conversation
    recv('thanks-goodbye')
    print_asset_balances(say, alice_offers + [my_offer], rpc)

    for i, offer in enumerate(alice_offers):
        balance = coins_to_satoshi(rpc.getbalance("*", 1, False, offer.asset))
        if balance != offer.amount:
            die('something went wrong, asset{} balance after swap should be '
                '{} satoshi, but it is {} satoshi'.format(
                    i, balance, offer.amount))

    say('Asset atomic swap completed successfully')
Exemplo n.º 23
0
    # An array of blinding pubkeys that we will supply to tx.blind()
    # It should cover all the outputs of the resulting transaction.
    output_pubkeys = []

    if isinstance(dst_addr, CCoinConfidentialAddress):
        output_pubkeys.append(dst_addr.blinding_pubkey)
    else:
        output_pubkeys.append(CPubKey())

    # Construct a transaction that spends the output we found
    # to the given destination address.
    # Note that the CTransaction is just a frontend for convenience,
    # and the created object will be the instance of the
    # CElementsTransaction class. The same with CTxIn, CTxOut, etc.
    tx = CElementsTransaction(
        vin=[CTxIn(prevout=COutPoint(hash=input_tx.GetTxid(), n=utxo_n))],
        vout=[
            CElementsTxOut(nValue=CConfidentialValue(dst_value),
                           nAsset=CConfidentialAsset(asset_to_spend),
                           scriptPubKey=dst_addr.to_scriptPubKey()),
            # Fee output must be explicit in Elements
            CElementsTxOut(nValue=CConfidentialValue(fee_value),
                           nAsset=fee_asset)
        ])

    # Add empty pubkey for fee output
    output_pubkeys.append(CPubKey())

    # We cannot blind an immutable transaction. Make it mutable.
    tx = tx.to_mutable()
Exemplo n.º 24
0
}

prevouts_by_scriptPubKey = None
if not args.dryrun:
    txid = rpc.sendmany(
        '', {
            adr: float(float(amount) / CoreCoinParams.COIN)
            for adr, amount in payments.items()
        }, 0)

    logging.info('Sent pre-pub tx: %s' % txid)

    tx = CTransaction.deserialize(x(rpc.getrawtransaction(txid)))

    prevouts_by_scriptPubKey = {
        txout.scriptPubKey: COutPoint(lx(txid), i)
        for i, txout in enumerate(tx.vout)
    }

else:
    prevouts_by_scriptPubKey = {
        redeemScript.to_p2sh_scriptPubKey(): COutPoint(b'\x00' * 32, i)
        for i, (scriptSig, redeemScript) in enumerate(scripts)
    }
    logging.debug('Payments: %r' % payments)
    logging.info(
        'Total cost: %s BTC' %
        str_money_value(sum(amount for addr, amount in payments.items())))

# Create unsigned tx for SignatureHash
vout = [CTxOut(0, CScript([OP_RETURN]))]
Exemplo n.º 25
0
        except FileNotFoundError as exp:
            if len(f) / 2 in (20, 32):
                digests.append(x(f))
            else:
                raise exp
        except IOError as exp:
            print(exp, file=sys.stderr)
            continue

    for digest in digests:
        txouts = []

        unspent = sorted(rpc.listunspent(0), key=lambda x: hash(x['amount']))

        txins = [
            CTxIn(COutPoint(lx(unspent[-1]['txid']), int(unspent[-1]['vout'])))
        ]
        value_in = coins_to_satoshi(unspent[-1]['amount'])

        change_addr = rpc.getnewaddress()
        change_pubkey_hex = rpc.getaddressinfo(change_addr)['pubkey']
        change_out = CMutableTxOut(
            CoreCoinParams.MAX_MONEY,
            CScript([x(change_pubkey_hex), OP_CHECKSIG]))

        digest_outs = [CMutableTxOut(0, CScript([OP_RETURN, digest]))]

        txouts = [change_out] + digest_outs

        tx = CTransaction(txins, txouts).to_mutable()
Exemplo n.º 26
0
 def test_clone(self):
     outpoint = COutPoint(
         lx('4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b'
            ), 0)
     self.assertEqual(outpoint.serialize(), outpoint.clone().serialize())