Exemplo n.º 1
0
    def svm(self, h, name=""):

        # Function that trains an SVM on the representation
        # h given in argument.

        print '--- Loading data'
        self.jobman.save()

        f = theano.function([self.x], [h])

        def fix_theano(X, l):
            return f(X)[0]

        self.svm_data = root(self.jobman.state['dataset'],
                             prepro_fct_x=[(fix_theano, [])])

        res = eval_fold(3, self.svm_data)
        cPickle.dump(res, open('results.pkl', 'w'))
        self.jobman.state['train_' + name] = res['train']
        if self.jobman.state['valid_' + name] <= res['valid']:
            self.jobman.state['valid_' + name] = res['valid']
            self.jobman.state['test_' + name] = res['test']
        self.jobman.save()
        print name, res
        return True
Exemplo n.º 2
0
    def __init__(self,jobman):
        self.jobman = jobman
        self.x = T.matrix()
        self.y = T.imatrix()

        self.data = root(self.jobman.state['dataset'],prepro_fct_x=[],prepro_fct_y=[])

        self.shared_x,self.shared_y = self.data.get_train_labeled()

        self.n_i,self.n_h = (self.data.get_sample_size(),self.jobman.state['n_h'])

        self.featsplit = int(self.n_h * self.jobman.state['featsplit'])

        self.cae = cae(self.n_i,self.n_h)
        self.logreg = logistic(self.featsplit,self.jobman.state['nclass'])
Exemplo n.º 3
0
Arquivo: cda.py Projeto: srifai/cda
    def evalreg(self, name=""):
        # This function is used only for monitoring purposes

        print "--- Loading data"
        self.jobman.save()
        o = self.logrege.get_hidden(self.cae_emotions.get_hidden(self.x))

        f = theano.function([self.x, self.y], hardmax(o, self.y))

        def fix_label(Y, l):
            return numpy.array(Y - 1, dtype="int32").flatten()

        data = root(self.jobman.state["dataset"], prepro_fct_x=[], prepro_fct_y=[(fix_label, [])])

        X, Y = data.get_train_labeled(shared_array=False)
        print "--- Logreg Valid Accuracy:", f(X, Y)

        return True
Exemplo n.º 4
0
    def evalreg(self,name=""):
        # Function to evaluate the classification error
        # when using the output of the logistic regression.
        # This function is used only for monitoring purposes

        print '--- Loading data'
        self.jobman.save()

        o = self.logrege.get_hidden(self.cae_emotions.get_hidden(self.x))

        f = theano.function([self.x,self.y],hardmax(o,self.y))

        data = root(self.jobman.state['dataset'],prepro_fct_x=[],prepro_fct_y=[])

        X,Y = data.get_train_labeled(shared_array=False)
        print '--- Logreg Valid Accuracy:',f(X,Y)

        return True
Exemplo n.º 5
0
    def __init__(self, jobman):
        self.jobman = jobman
        self.x = T.matrix()
        self.y = T.imatrix()

        self.data = root(self.jobman.state['dataset'],
                         prepro_fct_x=[],
                         prepro_fct_y=[])

        self.shared_x, self.shared_y = self.data.get_train_labeled()

        self.n_i, self.n_h = (self.data.get_sample_size(),
                              self.jobman.state['n_h'])

        self.featsplit = int(self.n_h * self.jobman.state['featsplit'])

        self.cae = cae(self.n_i, self.n_h)
        self.logreg = logistic(self.featsplit, self.jobman.state['nclass'])
Exemplo n.º 6
0
Arquivo: cda.py Projeto: srifai/cda
    def __init__(self, jobman):
        self.jobman = jobman
        self.x = T.matrix()
        self.y = T.ivector()

        def fix_label(Y, l):
            return numpy.array(Y - 1, dtype="int32").flatten()

        self.data = root(self.jobman.state["dataset"], prepro_fct_x=[], prepro_fct_y=[(fix_label, [])])

        dataset_list = [
            "/scratch/rifaisal/data/tfdconv/convfeat_patch14_1024_33_fold0_files_dict.pkl",
            "/scratch/rifaisal/data/tfdconv/convfeat_patch14_1024_33_fold1_files_dict.pkl",
            "/scratch/rifaisal/data/tfdconv/convfeat_patch14_1024_33_fold2_files_dict.pkl",
            "/scratch/rifaisal/data/tfdconv/convfeat_patch14_1024_33_fold3_files_dict.pkl",
            "/scratch/rifaisal/data/tfdconv/convfeat_patch14_1024_33_fold4_files_dict.pkl",
        ]

        csplit = self.jobman.state["split"]

        assert csplit < 5

        self.data.fusion(dataset_list[csplit : csplit + 1])

        x, y = shuffle_array(
            self.data.get_train_unlabeled(shared_array=False), self.data.get_train_labeled(shared_array=False)
        )

        self.shared_x, self.shared_y = (theano.shared(value=x), theano.shared(value=y))

        self.n_i, self.n_hi, self.n_he = (
            self.data.get_sample_size(),
            self.jobman.state["n_hi"],
            self.jobman.state["n_he"],
        )

        self.cae_emotions = cae(self.n_i, self.n_he)
        self.cae_identity = cae(self.n_i, self.n_hi)

        self.logrege = logistic(self.n_he, 7)

        if self.jobman.state["identity"]:
            self.logregi = logistic(self.n_hi, 900)
Exemplo n.º 7
0
    def __init__(self, jobman):
        self.jobman = jobman
        self.x = T.matrix()
        self.y = T.ivector()

        def fix_label(Y, l):
            return numpy.array(Y - 1, dtype='int32').flatten()

        self.data = root(self.jobman.state['dataset'],
                         prepro_fct_x=[],
                         prepro_fct_y=[(fix_label, [])])

        dataset_list = [
            '/scratch/rifaisal/data/tfdconv/convfeat_patch14_1024_33_fold0_files_dict.pkl',
            '/scratch/rifaisal/data/tfdconv/convfeat_patch14_1024_33_fold1_files_dict.pkl',
            '/scratch/rifaisal/data/tfdconv/convfeat_patch14_1024_33_fold2_files_dict.pkl',
            '/scratch/rifaisal/data/tfdconv/convfeat_patch14_1024_33_fold3_files_dict.pkl',
            '/scratch/rifaisal/data/tfdconv/convfeat_patch14_1024_33_fold4_files_dict.pkl'
        ]

        csplit = self.jobman.state['split']

        assert csplit < 5

        self.data.fusion(dataset_list[csplit:csplit + 1])

        x, y = shuffle_array(self.data.get_train_unlabeled(shared_array=False),
                             self.data.get_train_labeled(shared_array=False))

        self.shared_x, self.shared_y = (theano.shared(value=x),
                                        theano.shared(value=y))

        self.n_i, self.n_hi, self.n_he = (self.data.get_sample_size(),
                                          self.jobman.state['n_hi'],
                                          self.jobman.state['n_he'])

        self.cae_emotions = cae(self.n_i, self.n_he)
        self.cae_identity = cae(self.n_i, self.n_hi)

        self.logrege = logistic(self.n_he, 7)

        if self.jobman.state['identity']:
            self.logregi = logistic(self.n_hi, 900)
Exemplo n.º 8
0
    def evalreg(self, name=""):
        # This function is used only for monitoring purposes

        print '--- Loading data'
        self.jobman.save()
        o = self.logrege.get_hidden(self.cae_emotions.get_hidden(self.x))

        f = theano.function([self.x, self.y], hardmax(o, self.y))

        def fix_label(Y, l):
            return numpy.array(Y - 1, dtype='int32').flatten()

        data = root(self.jobman.state['dataset'],
                    prepro_fct_x=[],
                    prepro_fct_y=[(fix_label, [])])

        X, Y = data.get_train_labeled(shared_array=False)
        print '--- Logreg Valid Accuracy:', f(X, Y)

        return True
Exemplo n.º 9
0
    def evalreg(self, name=""):
        # Function to evaluate the classification error
        # when using the output of the logistic regression.
        # This function is used only for monitoring purposes

        print '--- Loading data'
        self.jobman.save()

        o = self.logrege.get_hidden(self.cae_emotions.get_hidden(self.x))

        f = theano.function([self.x, self.y], hardmax(o, self.y))

        data = root(self.jobman.state['dataset'],
                    prepro_fct_x=[],
                    prepro_fct_y=[])

        X, Y = data.get_train_labeled(shared_array=False)
        print '--- Logreg Valid Accuracy:', f(X, Y)

        return True
Exemplo n.º 10
0
Arquivo: cda.py Projeto: srifai/cda
    def svm(self, h, name=""):

        # Function that trains an SVM on the representation
        # h given in argument.

        print "--- Loading data"
        self.jobman.save()

        f = theano.function([self.x], [h])

        def fix_theano(X, l):
            return f(X)[0]

        self.svm_data = root(self.jobman.state["dataset"], prepro_fct_x=[(fix_theano, [])])

        res = eval_fold(3, self.svm_data)
        cPickle.dump(res, open("results.pkl", "w"))
        self.jobman.state["train_" + name] = res["train"]
        if self.jobman.state["valid_" + name] <= res["valid"]:
            self.jobman.state["valid_" + name] = res["valid"]
            self.jobman.state["test_" + name] = res["test"]
        self.jobman.save()
        print name, res
        return True
Exemplo n.º 11
0
    def svm(self,h,name=""):

        # Function that trains an SVM on the representation
        # h given in argument.

        print '--- Loading data'
        self.jobman.save()

        f = theano.function([self.x],[h])
        def fix_theano(X,l):
            return f(X)[0]


        self.svm_data = root(self.jobman.state['dataset'],prepro_fct_x=[(fix_theano,[])])

        res = eval_fold(3,self.svm_data)
        cPickle.dump(res,open('results.pkl','w'))
        self.jobman.state['train_'+name] = res['train']
        if self.jobman.state['valid_'+name] <= res['valid']:
            self.jobman.state['valid_'+name] = res['valid']
            self.jobman.state['test_'+name] = res['test']
        self.jobman.save()
        print name,res
        return True
Exemplo n.º 12
0
    valid_set_x, valid_set_y = dataset.get_all_valid(shared_array=False)
    test_set_x, test_set_y = dataset.get_all_test(shared_array=False)

    train_set_y = train_set_y.flatten()
    valid_set_y = valid_set_y.flatten()
    test_set_y = test_set_y.flatten()

    bestC, res = OptimizeLinearSVM(([train_set_x, train_set_y],\
                        [valid_set_x, valid_set_y],\
                        [test_set_x, test_set_y]),\
                        MAXSTEPS=nsteps)

    best = {
        'C': bestC,
        'train': res[bestC]['train_acc'],
        'valid': res[bestC]['valid_acc'],
        'test': res[bestC]['test_acc'],
        'Optimize': res
    }

    return best


if __name__ == '__main__':
    data = root(
        '/scratch/rifaisal/data/paradata/msrparaphrasefullconvl2_files_dict.pkl',
        prepro_fct_x=[(scale, [])])
    print 'Starting evaluation...'
    eval_fold(nsteps=30, dataset=data)
    print dic
Exemplo n.º 13
0
    '''

    print "Loading data..."

    train_set_x,train_set_y = dataset.get_all_train_labeled(shared_array=False)
    valid_set_x,valid_set_y = dataset.get_all_valid(shared_array=False)
    test_set_x,test_set_y = dataset.get_all_test(shared_array=False)
   
    train_set_y = train_set_y.flatten()
    valid_set_y = valid_set_y.flatten()
    test_set_y = test_set_y.flatten()

    bestC, res = OptimizeLinearSVM(([train_set_x, train_set_y],\
                        [valid_set_x, valid_set_y],\
                        [test_set_x, test_set_y]),\
                        MAXSTEPS=nsteps)    
    
    best = {'C':bestC,'train':res[bestC]['train_acc'],
            'valid':res[bestC]['valid_acc'],
            'test':res[bestC]['test_acc'],
            'Optimize':res}

    return best


if __name__ == '__main__':
    data = root('/scratch/rifaisal/data/paradata/msrparaphrasefullconvl2_files_dict.pkl',prepro_fct_x=[(scale,[])])
    print 'Starting evaluation...'
    eval_fold(nsteps=30, dataset = data)
    print dic