Exemplo n.º 1
0
 def classifier(self):
     testFeature = np.zeros(20)
     testFeature[0] = int(self.ui.comboBox_10.currentIndex())
     testFeature[1] = int(self.ui.spinBox.text())
     testFeature[2] = int(self.ui.comboBox_12.currentIndex())
     testFeature[3] = int(self.ui.comboBox_9.currentIndex())
     testFeature[4] = int(self.ui.spinBox_2.text())
     testFeature[5] = int(self.ui.comboBox_11.currentIndex())
     testFeature[6] = int(self.ui.comboBox_5.currentIndex())
     testFeature[7] = float(self.ui.doubleSpinBox.text())
     testFeature[8] = int(self.ui.comboBox_2.currentIndex())
     testFeature[9] = int(self.ui.comboBox_13.currentIndex())
     testFeature[10] = int(self.ui.spinBox_3.text())
     testFeature[11] = int(self.ui.comboBox_8.currentIndex())
     testFeature[12] = int(self.ui.spinBox_4.text())
     testFeature[13] = int(self.ui.comboBox_14.currentIndex())
     testFeature[14] = int(self.ui.comboBox_7.currentIndex())
     testFeature[15] = int(self.ui.spinBox_5.text())
     testFeature[16] = int(self.ui.comboBox_4.currentIndex())
     testFeature[17] = int(self.ui.spinBox_6.text())
     testFeature[18] = int(self.ui.comboBox_3.currentIndex())
     testFeature[19] = int(self.ui.comboBox_6.currentIndex())
     filePath = self.ui.fileButton.text()
     trainFeature, trainLabel = read_GermanData20(filePath)
     predictedLabel = decision_Tree(trainFeature, trainLabel, testFeature)
     self.ui.textBrowser.setText(str(predictedLabel))
Exemplo n.º 2
0
 def classifier(self):
     testFeature = np.zeros(20)
     testFeature[0] = int(self.ui.comboBox_10.currentIndex())
     testFeature[1] = int(self.ui.spinBox.text())
     testFeature[2] = int(self.ui.comboBox_12.currentIndex())
     testFeature[3] = int(self.ui.comboBox_9.currentIndex())
     testFeature[4] = int(self.ui.spinBox_2.text())
     testFeature[5] = int(self.ui.comboBox_11.currentIndex())
     testFeature[6] = int(self.ui.comboBox_5.currentIndex())
     testFeature[7] = float(self.ui.doubleSpinBox.text())
     testFeature[8] = int(self.ui.comboBox_2.currentIndex())
     testFeature[9] = int(self.ui.comboBox_13.currentIndex())
     testFeature[10] = int(self.ui.spinBox_3.text())
     testFeature[11] = int(self.ui.comboBox_8.currentIndex())
     testFeature[12] = int(self.ui.spinBox_4.text())
     testFeature[13] = int(self.ui.comboBox_14.currentIndex())
     testFeature[14] = int(self.ui.comboBox_7.currentIndex())
     testFeature[15] = int(self.ui.spinBox_5.text())
     testFeature[16] = int(self.ui.comboBox_4.currentIndex())
     testFeature[17] = int(self.ui.spinBox_6.text())
     testFeature[18] = int(self.ui.comboBox_3.currentIndex())
     testFeature[19] = int(self.ui.comboBox_6.currentIndex())
     filePath = self.ui.fileButton.text()
     trainFeature, trainLabel = read_GermanData20(filePath)
     predictedLabel = decision_Tree(trainFeature, trainLabel, testFeature)
     self.ui.textBrowser.setText(str(predictedLabel))
Exemplo n.º 3
0
    #print(np.array(negFeatureFolders).shape)
    for i in range(folderNum):
        subTrainFeature = negFeatureFolders[i]
        subTrainFeature.extend(posFeature)
        subTrainFeature = np.array(subTrainFeature)
        subTrainLabel = list(np.zeros(posNum))
        subTrainLabel.extend(list(np.ones(posNum)))
        subTrainLabel = np.array(subTrainLabel)
        print("=====%dst Bagging=====") % (i + 1)
        print("Positive: %d, Negative: %d") % (list(subTrainLabel).count(1),
                                               list(subTrainLabel).count(0))
        #print(subTrainFeature.shape)
        #print(subTrainLabel)
        predictedLabel_temp1 = knn(subTrainFeature, subTrainLabel, testFeature,
                                   5)
        predictedLabel_temp2 = decision_Tree(subTrainFeature, subTrainLabel,
                                             testFeature)
        predictedLabel_temp3 = adboostDT(subTrainFeature, subTrainLabel,
                                         testFeature)
        predictedLabel_temp4 = RandomForest_Classifer(subTrainFeature,
                                                      subTrainLabel,
                                                      testFeature)
        predictedLabel_temp5 = svmclassifier(subTrainFeature, subTrainLabel,
                                             testFeature, 1.0, 0.015625)
        predictedLabel_temp6 = logistic_regression(subTrainFeature,
                                                   subTrainLabel, testFeature)

        predictedLabel_voting1.append(predictedLabel_temp1)
        predictedLabel_voting2.append(predictedLabel_temp2)
        predictedLabel_voting3.append(predictedLabel_temp3)
        predictedLabel_voting4.append(predictedLabel_temp4)
        predictedLabel_voting5.append(predictedLabel_temp5)
            random.shuffle(sequence)
            negFeatureFolders.append([negFeature[j] for j in sequence[:posNum]])
    #print(np.array(negFeatureFolders).shape)
    for i in range(folderNum):
        subTrainFeature = negFeatureFolders[i]
        subTrainFeature.extend(posFeature)
        subTrainFeature = np.array(subTrainFeature)
        subTrainLabel = list(np.zeros(posNum))
        subTrainLabel.extend(list(np.ones(posNum)))
        subTrainLabel = np.array(subTrainLabel)
        print("=====%dst Bagging=====") % (i+1)
        print("Positive: %d, Negative: %d") % (list(subTrainLabel).count(1), list(subTrainLabel).count(0))
        #print(subTrainFeature.shape)
        #print(subTrainLabel)
        predictedLabel_temp1 = knn(subTrainFeature, subTrainLabel, testFeature, 5)
        predictedLabel_temp2 = decision_Tree(subTrainFeature, subTrainLabel, testFeature)
        predictedLabel_temp3 = adboostDT(subTrainFeature, subTrainLabel, testFeature)
        predictedLabel_temp4 = RandomForest_Classifer(subTrainFeature, subTrainLabel, testFeature)
        predictedLabel_temp5 = svmclassifier(subTrainFeature, subTrainLabel, testFeature, 1.0, 0.015625)
        predictedLabel_temp6 = logistic_regression(subTrainFeature, subTrainLabel, testFeature)

        predictedLabel_voting1.append(predictedLabel_temp1)
        predictedLabel_voting2.append(predictedLabel_temp2)
        predictedLabel_voting3.append(predictedLabel_temp3)
        predictedLabel_voting4.append(predictedLabel_temp4)
        predictedLabel_voting5.append(predictedLabel_temp5)
        predictedLabel_voting6.append(predictedLabel_temp6)
        print("KNN=====%dst predicted labels:") % (i+1)
        print(predictedLabel_temp1)
        print("DT=====%dst predicted labels:") % (i+1)
        print(predictedLabel_temp2)