Exemplo n.º 1
0
 def get_config(self):
     return {
         "name": self.__class__.__name__,
         "lr": float(K.get_value(self.lr)),
         "rho": float(K.get_value(self.rho)),
         "epsilon": self.epsilon
     }
Exemplo n.º 2
0
    def get_updates(self, params, constraints, loss):
        grads = self.get_gradients(loss, params)
        accumulators = [
            K.variable(np.zeros(K.get_value(p).shape)) for p in params
        ]
        delta_accumulators = [
            K.variable(np.zeros(K.get_value(p).shape)) for p in params
        ]
        self.updates = []

        for p, g, a, d_a, c in zip(params, grads, accumulators,
                                   delta_accumulators, constraints):
            # update accumulator
            new_a = self.rho * a + (1 - self.rho) * K.square(g)
            self.updates.append((a, new_a))

            # use the new accumulator and the *old* delta_accumulator
            update = g * K.sqrt(d_a + self.epsilon) / K.sqrt(new_a +
                                                             self.epsilon)

            new_p = p - self.lr * update
            self.updates.append((p, c(new_p)))  # apply constraints

            # update delta_accumulator
            new_d_a = self.rho * d_a + (1 - self.rho) * K.square(update)
            self.updates.append((d_a, new_d_a))
        return self.updates
Exemplo n.º 3
0
 def get_config(self):
     return {
         "name": self.__class__.__name__,
         "lr": float(K.get_value(self.lr)),
         "momentum": float(K.get_value(self.momentum)),
         "decay": float(K.get_value(self.decay)),
         "nesterov": self.nesterov
     }
Exemplo n.º 4
0
 def get_config(self):
     return {
         "name": self.__class__.__name__,
         "lr": float(K.get_value(self.lr)),
         "beta_1": float(K.get_value(self.beta_1)),
         "beta_2": float(K.get_value(self.beta_2)),
         "epsilon": self.epsilon
     }
Exemplo n.º 5
0
    def set_weights(self, weights):
        '''Set the weights of the unit.

        weights: a list of numpy arrays. The number of arrays and their shape must match
            number of the dimensions of the weights of the unit (i.e. it should match the
            output of `get_weights`).
        '''
        assert len(self.params) == len(weights), (
            'Provided weight array does not match unit weights (' +
            str(len(self.params)) + ' unit params vs. ' + str(len(weights)) +
            ' provided weights)')
        for p, w in zip(self.params, weights):
            if K.get_value(p).shape != w.shape:
                raise Exception(
                    'Weight shape %s not compatible with weight shape %s.' %
                    (K.get_value(p).shape, w.shape))
            K.set_value(p, w)
Exemplo n.º 6
0
    def get_updates(self, params, constraints, loss):
        grads = self.get_gradients(loss, params)
        accumulators = [K.variable(np.zeros(K.get_value(p).shape)) for p in params]
        self.updates = []

        for p, g, a, c in zip(params, grads, accumulators, constraints):
            new_a = a + K.square(g)  # update accumulator
            self.updates.append((a, new_a))
            new_p = p - self.lr * g / K.sqrt(new_a + self.epsilon)
            self.updates.append((p, c(new_p)))  # apply constraints
        return self.updates
Exemplo n.º 7
0
    def get_updates(self, params, constraints, loss):
        grads = self.get_gradients(loss, params)
        self.updates = [(self.iterations, self.iterations + 1.)]

        t = self.iterations + 1
        lr_t = self.lr / (1 - K.pow(self.beta_1, t))

        for p, g, c in zip(params, grads, constraints):
            # zero init of 1st moment
            m = K.variable(np.zeros(K.get_value(p).shape))
            # zero init of exponentially weighted infinity norm
            u = K.variable(np.zeros(K.get_value(p).shape))

            m_t = (self.beta_1 * m) + (1 - self.beta_1) * g
            u_t = K.maximum(self.beta_2 * u, K.abs(g))
            p_t = p - lr_t * m_t / (u_t + self.epsilon)

            self.updates.append((m, m_t))
            self.updates.append((u, u_t))
            self.updates.append((p, c(p_t)))  # apply constraints
        return self.updates
Exemplo n.º 8
0
    def get_updates(self, params, constraints, loss):
        grads = self.get_gradients(loss, params)
        self.updates = [(self.iterations, self.iterations+1.)]

        t = self.iterations + 1
        lr_t = self.lr / (1 - K.pow(self.beta_1, t))

        for p, g, c in zip(params, grads, constraints):
            # zero init of 1st moment
            m = K.variable(np.zeros(K.get_value(p).shape))
            # zero init of exponentially weighted infinity norm
            u = K.variable(np.zeros(K.get_value(p).shape))

            m_t = (self.beta_1 * m) + (1 - self.beta_1) * g
            u_t = K.maximum(self.beta_2 * u, K.abs(g))
            p_t = p - lr_t * m_t / (u_t + self.epsilon)

            self.updates.append((m, m_t))
            self.updates.append((u, u_t))
            self.updates.append((p, c(p_t)))  # apply constraints
        return self.updates
Exemplo n.º 9
0
    def get_updates(self, params, constraints, loss):
        grads = self.get_gradients(loss, params)
        self.updates = [(self.iterations, self.iterations+1.)]

        t = self.iterations + 1
        lr_t = self.lr * K.sqrt(1 - K.pow(self.beta_2, t)) / (1 - K.pow(self.beta_1, t))

        for p, g, c in zip(params, grads, constraints):
            # zero init of moment
            m = K.variable(np.zeros(K.get_value(p).shape))
            # zero init of velocity
            v = K.variable(np.zeros(K.get_value(p).shape))

            m_t = (self.beta_1 * m) + (1 - self.beta_1) * g
            v_t = (self.beta_2 * v) + (1 - self.beta_2) * K.square(g)
            p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon)

            self.updates.append((m, m_t))
            self.updates.append((v, v_t))
            self.updates.append((p, c(p_t)))  # apply constraints
        return self.updates
Exemplo n.º 10
0
    def get_updates(self, params, constraints, loss):
        grads = self.get_gradients(loss, params)
        accumulators = [K.variable(np.zeros(K.get_value(p).shape)) for p in params]
        delta_accumulators = [K.variable(np.zeros(K.get_value(p).shape)) for p in params]
        self.updates = []

        for p, g, a, d_a, c in zip(params, grads, accumulators,
                                   delta_accumulators, constraints):
            # update accumulator
            new_a = self.rho * a + (1 - self.rho) * K.square(g)
            self.updates.append((a, new_a))

            # use the new accumulator and the *old* delta_accumulator
            update = g * K.sqrt(d_a + self.epsilon) / K.sqrt(new_a + self.epsilon)

            new_p = p - self.lr * update
            self.updates.append((p, c(new_p)))  # apply constraints

            # update delta_accumulator
            new_d_a = self.rho * d_a + (1 - self.rho) * K.square(update)
            self.updates.append((d_a, new_d_a))
        return self.updates
Exemplo n.º 11
0
    def get_updates(self, params, constraints, loss):
        grads = self.get_gradients(loss, params)
        accumulators = [
            K.variable(np.zeros(K.get_value(p).shape)) for p in params
        ]
        self.updates = []

        for p, g, a, c in zip(params, grads, accumulators, constraints):
            new_a = a + K.square(g)  # update accumulator
            self.updates.append((a, new_a))
            new_p = p - self.lr * g / K.sqrt(new_a + self.epsilon)
            self.updates.append((p, c(new_p)))  # apply constraints
        return self.updates
Exemplo n.º 12
0
    def get_updates(self, params, constraints, loss):
        grads = self.get_gradients(loss, params)
        self.updates = [(self.iterations, self.iterations + 1.)]

        t = self.iterations + 1
        lr_t = self.lr * K.sqrt(1 - K.pow(self.beta_2, t)) / (
            1 - K.pow(self.beta_1, t))

        for p, g, c in zip(params, grads, constraints):
            # zero init of moment
            m = K.variable(np.zeros(K.get_value(p).shape))
            # zero init of velocity
            v = K.variable(np.zeros(K.get_value(p).shape))

            m_t = (self.beta_1 * m) + (1 - self.beta_1) * g
            v_t = (self.beta_2 * v) + (1 - self.beta_2) * K.square(g)
            p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon)

            self.updates.append((m, m_t))
            self.updates.append((v, v_t))
            self.updates.append((p, c(p_t)))  # apply constraints
        return self.updates
Exemplo n.º 13
0
Arquivo: core.py Projeto: lxastro/dlx
    def set_weights(self, weights):
        '''Set the weights of the unit.

        weights: a list of numpy arrays. The number of arrays and their shape must match
            number of the dimensions of the weights of the unit (i.e. it should match the
            output of `get_weights`).
        '''
        assert len(self.params) == len(weights), ('Provided weight array does not match unit weights (' +
                                                  str(len(self.params)) + ' unit params vs. ' +
                                                  str(len(weights)) + ' provided weights)')
        for p, w in zip(self.params, weights):
            if K.get_value(p).shape != w.shape:
                raise Exception('Weight shape %s not compatible with weight shape %s.' % (K.get_value(p).shape, w.shape))
            K.set_value(p, w)
Exemplo n.º 14
0
    def get_updates(self, params, constraints, loss):
        grads = self.get_gradients(loss, params)
        lr = self.lr * (1.0 / (1.0 + self.decay * self.iterations))
        self.updates = [(self.iterations, self.iterations + 1.)]

        for p, g, c in zip(params, grads, constraints):
            m = K.variable(np.zeros(K.get_value(p).shape))  # momentum
            v = self.momentum * m - lr * g  # velocity
            self.updates.append((m, v))

            if self.nesterov:
                new_p = p + self.momentum * v - lr * g
            else:
                new_p = p + v

            self.updates.append((p, c(new_p)))  # apply constraints
        return self.updates
Exemplo n.º 15
0
    def get_updates(self, params, constraints, loss):
        grads = self.get_gradients(loss, params)
        lr = self.lr * (1.0 / (1.0 + self.decay * self.iterations))
        self.updates = [(self.iterations, self.iterations + 1.)]

        for p, g, c in zip(params, grads, constraints):
            m = K.variable(np.zeros(K.get_value(p).shape))  # momentum
            v = self.momentum * m - lr * g  # velocity
            self.updates.append((m, v))

            if self.nesterov:
                new_p = p + self.momentum * v - lr * g
            else:
                new_p = p + v

            self.updates.append((p, c(new_p)))  # apply constraints
        return self.updates
Exemplo n.º 16
0
 def get_config(self):
     return {"name": self.__class__.__name__,
             "lr": float(K.get_value(self.lr)),
             "rho": self.rho,
             "epsilon": self.epsilon}
Exemplo n.º 17
0
Arquivo: core.py Projeto: lxastro/dlx
 def get_weights(self):
     '''Return the weights of the unit, as a list of numpy arrays.'''
     weights = []
     for p in self.params:
         weights.append(K.get_value(p))
     return weights
Exemplo n.º 18
0
 def get_state(self):
     return [K.get_value(u[0]) for u in self.updates]
Exemplo n.º 19
0
 def get_config(self):
     return {"name": self.__class__.__name__,
             "lr": float(K.get_value(self.lr)),
             "beta_1": float(K.get_value(self.beta_1)),
             "beta_2": float(K.get_value(self.beta_2)),
             "epsilon": self.epsilon}
Exemplo n.º 20
0
 def get_state(self):
     return [K.get_value(u[0]) for u in self.updates]
Exemplo n.º 21
0
 def get_config(self):
     return {"name": self.__class__.__name__,
             "lr": float(K.get_value(self.lr)),
             "momentum": float(K.get_value(self.momentum)),
             "decay": float(K.get_value(self.decay)),
             "nesterov": self.nesterov}
Exemplo n.º 22
0
 def get_weights(self):
     '''Return the weights of the unit, as a list of numpy arrays.'''
     weights = []
     for p in self.params:
         weights.append(K.get_value(p))
     return weights