Exemplo n.º 1
0
class TransformerDecoder(FairseqIncrementalDecoder):
    """
    Transformer decoder consisting of *args.decoder_layers* layers. Each layer
    is a :class:`TransformerDecoderLayer`.
    Args:
        args (argparse.Namespace): parsed command-line arguments
        dictionary (~fairseq.data.Dictionary): decoding dictionary
        embed_tokens (torch.nn.Embedding): output embedding
        no_encoder_attn (bool, optional): whether to attend to encoder outputs
            (default: False).
    """

    def __init__(self, args, dictionary, embed_tokens, no_encoder_attn=False):
        self.args = args
        super().__init__(dictionary)
        self.register_buffer("version", torch.Tensor([3]))
        self._future_mask = torch.empty(0)

        self.dropout_module = FairseqDropout(
            args.dropout, module_name=self.__class__.__name__
        )
        self.decoder_layerdrop = args.decoder_layerdrop
        self.share_input_output_embed = args.share_decoder_input_output_embed

        input_embed_dim = embed_tokens.embedding_dim
        embed_dim = args.decoder_embed_dim
        self.embed_dim = embed_dim
        self.output_embed_dim = args.decoder_output_dim

        self.padding_idx = embed_tokens.padding_idx
        self.max_target_positions = args.max_target_positions

        self.embed_tokens = embed_tokens

        self.embed_scale = 1.0 if args.no_scale_embedding else math.sqrt(embed_dim)

        if not args.adaptive_input and args.quant_noise_pq > 0:
            self.quant_noise = apply_quant_noise_(
                nn.Linear(embed_dim, embed_dim, bias=False),
                args.quant_noise_pq,
                args.quant_noise_pq_block_size,
            )
        else:
            self.quant_noise = None

        self.project_in_dim = (
            Linear(input_embed_dim, embed_dim, bias=False)
            if embed_dim != input_embed_dim
            else None
        )
        self.embed_positions = (
            PositionalEmbedding(
                self.max_target_positions,
                embed_dim,
                self.padding_idx,
                learned=args.decoder_learned_pos,
            )
            if not args.no_token_positional_embeddings
            else None
        )

        if getattr(args, "layernorm_embedding", False):
            self.layernorm_embedding = LayerNorm(embed_dim)
        else:
            self.layernorm_embedding = None

        self.cross_self_attention = getattr(args, "cross_self_attention", False)

        if self.decoder_layerdrop > 0.0:
            self.layers = LayerDropModuleList(p=self.decoder_layerdrop)
        else:
            self.layers = nn.ModuleList([])
        self.layers.extend(
            [
                self.build_decoder_layer(args, no_encoder_attn)
                for _ in range(args.decoder_layers)
            ]
        )
        self.num_layers = len(self.layers)

        if args.decoder_normalize_before and not getattr(
            args, "no_decoder_final_norm", False
        ):
            self.layer_norm = LayerNorm(embed_dim)
        else:
            self.layer_norm = None

        self.project_out_dim = (
            Linear(embed_dim, self.output_embed_dim, bias=False)
            if embed_dim != self.output_embed_dim and not args.tie_adaptive_weights
            else None
        )

        self.adaptive_softmax = None
        self.output_projection = None
        if args.adaptive_softmax_cutoff is not None:
            self.adaptive_softmax = AdaptiveSoftmax(
                len(dictionary),
                self.output_embed_dim,
                utils.eval_str_list(args.adaptive_softmax_cutoff, type=int),
                dropout=args.adaptive_softmax_dropout,
                adaptive_inputs=embed_tokens if args.tie_adaptive_weights else None,
                factor=args.adaptive_softmax_factor,
                tie_proj=args.tie_adaptive_proj,
            )
        elif self.share_input_output_embed:
            self.output_projection = nn.Linear(
                self.embed_tokens.weight.shape[1],
                self.embed_tokens.weight.shape[0],
                bias=False,
            )
            self.output_projection.weight = self.embed_tokens.weight
        else:
            self.output_projection = nn.Linear(
                self.output_embed_dim, len(dictionary), bias=False
            )
            nn.init.normal_(
                self.output_projection.weight, mean=0, std=self.output_embed_dim ** -0.5
            )

    def change_p(self,p):
        self.dropout_module.change_p(p)

    def build_decoder_layer(self, args, no_encoder_attn=False):
        layer = TransformerDecoderLayer(args, no_encoder_attn)
        if getattr(args, "checkpoint_activations", False):
            layer = checkpoint_wrapper(layer)
        return layer

    def forward(
        self,
        prev_output_tokens,
        encoder_out: Optional[Dict[str, List[Tensor]]] = None,
        incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
        features_only: bool = False,
        full_context_alignment: bool = False,
        alignment_layer: Optional[int] = None,
        alignment_heads: Optional[int] = None,
        src_lengths: Optional[Any] = None,
        return_all_hiddens: bool = False,
        noised_inputs = None,
    ):
        """
        Args:
            prev_output_tokens (LongTensor): previous decoder outputs of shape
                `(batch, tgt_len)`, for teacher forcing
            encoder_out (optional): output from the encoder, used for
                encoder-side attention
            incremental_state (dict): dictionary used for storing state during
                :ref:`Incremental decoding`
            features_only (bool, optional): only return features without
                applying output layer (default: False).
            full_context_alignment (bool, optional): don't apply
                auto-regressive mask to self-attention (default: False).
        Returns:
            tuple:
                - the decoder's output of shape `(batch, tgt_len, vocab)`
                - a dictionary with any model-specific outputs
        """
        x, extra = self.extract_features(
            prev_output_tokens,
            encoder_out=encoder_out,
            incremental_state=incremental_state,
            full_context_alignment=full_context_alignment,
            alignment_layer=alignment_layer,
            alignment_heads=alignment_heads,
            noised_inputs = noised_inputs,
        )
        if not features_only:
            x = self.output_layer(x)
        return x, extra

    def extract_features(
        self,
        prev_output_tokens,
        encoder_out: Optional[Dict[str, List[Tensor]]],
        incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
        full_context_alignment: bool = False,
        alignment_layer: Optional[int] = None,
        alignment_heads: Optional[int] = None,
        noised_inputs = None,
    ):
        return self.extract_features_scriptable(
            prev_output_tokens,
            encoder_out,
            incremental_state,
            full_context_alignment,
            alignment_layer,
            alignment_heads,
            noised_inputs,
        )

    """
    A scriptable subclass of this class has an extract_features method and calls
    super().extract_features, but super() is not supported in torchscript. A copy of
    this function is made to be used in the subclass instead.
    """

    def extract_features_scriptable(
        self,
        prev_output_tokens,
        encoder_out: Optional[Dict[str, List[Tensor]]],
        incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
        full_context_alignment: bool = False,
        alignment_layer: Optional[int] = None,
        alignment_heads: Optional[int] = None,
        noised_inputs = None,
    ):
        """
        Similar to *forward* but only return features.
        Includes several features from "Jointly Learning to Align and
        Translate with Transformer Models" (Garg et al., EMNLP 2019).
        Args:
            full_context_alignment (bool, optional): don't apply
                auto-regressive mask to self-attention (default: False).
            alignment_layer (int, optional): return mean alignment over
                heads at this layer (default: last layer).
            alignment_heads (int, optional): only average alignment over
                this many heads (default: all heads).
        Returns:
            tuple:
                - the decoder's features of shape `(batch, tgt_len, embed_dim)`
                - a dictionary with any model-specific outputs
        """
        if alignment_layer is None:
            alignment_layer = self.num_layers - 1

        # embed positions
        positions = (
            self.embed_positions(
                prev_output_tokens, incremental_state=incremental_state
            )
            if self.embed_positions is not None
            else None
        )

        if incremental_state is not None:
            prev_output_tokens = prev_output_tokens[:, -1:]
            if positions is not None:
                positions = positions[:, -1:]

        # embed tokens and positions
        x = self.embed_scale * self.embed_tokens(prev_output_tokens)

        # print(x.shape,2)
        # assert False
        if noised_inputs is not None:
            x += noised_inputs

        if self.quant_noise is not None:
            x = self.quant_noise(x)

        if self.project_in_dim is not None:
            x = self.project_in_dim(x)

        if positions is not None:
            x += positions

        if self.layernorm_embedding is not None:
            x = self.layernorm_embedding(x)

        x = self.dropout_module(x)

        # B x T x C -> T x B x C
        x = x.transpose(0, 1)

        self_attn_padding_mask: Optional[Tensor] = None
        if self.cross_self_attention or prev_output_tokens.eq(self.padding_idx).any():
            self_attn_padding_mask = prev_output_tokens.eq(self.padding_idx)

        # decoder layers
        attn: Optional[Tensor] = None
        inner_states: List[Optional[Tensor]] = [x]
        for idx, layer in enumerate(self.layers):
            if incremental_state is None and not full_context_alignment:
                self_attn_mask = self.buffered_future_mask(x)
            else:
                self_attn_mask = None

            x, layer_attn, _ = layer(
                x,
                encoder_out["encoder_out"][0]
                if (encoder_out is not None and len(encoder_out["encoder_out"]) > 0)
                else None,
                encoder_out["encoder_padding_mask"][0]
                if (
                    encoder_out is not None
                    and len(encoder_out["encoder_padding_mask"]) > 0
                )
                else None,
                incremental_state,
                self_attn_mask=self_attn_mask,
                self_attn_padding_mask=self_attn_padding_mask,
                need_attn=bool((idx == alignment_layer)),
                need_head_weights=bool((idx == alignment_layer)),
            )
            inner_states.append(x)
            if layer_attn is not None and idx == alignment_layer:
                attn = layer_attn.float().to(x)

        if attn is not None:
            if alignment_heads is not None:
                attn = attn[:alignment_heads]

            # average probabilities over heads
            attn = attn.mean(dim=0)

        if self.layer_norm is not None:
            x = self.layer_norm(x)

        # T x B x C -> B x T x C
        x = x.transpose(0, 1)

        if self.project_out_dim is not None:
            x = self.project_out_dim(x)

        return x, {"attn": [attn], "inner_states": inner_states}

    def output_layer(self, features):
        """Project features to the vocabulary size."""
        if self.adaptive_softmax is None:
            # project back to size of vocabulary
            return self.output_projection(features)
        else:
            return features

    def max_positions(self):
        """Maximum output length supported by the decoder."""
        if self.embed_positions is None:
            return self.max_target_positions
        return min(self.max_target_positions, self.embed_positions.max_positions)

    def buffered_future_mask(self, tensor):
        dim = tensor.size(0)
        # self._future_mask.device != tensor.device is not working in TorchScript. This is a workaround.
        if (
            self._future_mask.size(0) == 0
            or (not self._future_mask.device == tensor.device)
            or self._future_mask.size(0) < dim
        ):
            self._future_mask = torch.triu(
                utils.fill_with_neg_inf(torch.zeros([dim, dim])), 1
            )
        self._future_mask = self._future_mask.to(tensor)
        return self._future_mask[:dim, :dim]

    def upgrade_state_dict_named(self, state_dict, name):
        """Upgrade a (possibly old) state dict for new versions of fairseq."""
        if isinstance(self.embed_positions, SinusoidalPositionalEmbedding):
            weights_key = "{}.embed_positions.weights".format(name)
            if weights_key in state_dict:
                del state_dict[weights_key]
            state_dict[
                "{}.embed_positions._float_tensor".format(name)
            ] = torch.FloatTensor(1)

        if f"{name}.output_projection.weight" not in state_dict:
            if self.share_input_output_embed:
                embed_out_key = f"{name}.embed_tokens.weight"
            else:
                embed_out_key = f"{name}.embed_out"
            if embed_out_key in state_dict:
                state_dict[f"{name}.output_projection.weight"] = state_dict[
                    embed_out_key
                ]
                if not self.share_input_output_embed:
                    del state_dict[embed_out_key]

        for i in range(self.num_layers):
            # update layer norms
            layer_norm_map = {
                "0": "self_attn_layer_norm",
                "1": "encoder_attn_layer_norm",
                "2": "final_layer_norm",
            }
            for old, new in layer_norm_map.items():
                for m in ("weight", "bias"):
                    k = "{}.layers.{}.layer_norms.{}.{}".format(name, i, old, m)
                    if k in state_dict:
                        state_dict[
                            "{}.layers.{}.{}.{}".format(name, i, new, m)
                        ] = state_dict[k]
                        del state_dict[k]

        version_key = "{}.version".format(name)
        if utils.item(state_dict.get(version_key, torch.Tensor([1]))[0]) <= 2:
            # earlier checkpoints did not normalize after the stack of layers
            self.layer_norm = None
            self.normalize = False
            state_dict[version_key] = torch.Tensor([1])

        return state_dict
Exemplo n.º 2
0
class TransformerEncoder(FairseqEncoder):
    """
    Transformer encoder consisting of *args.encoder_layers* layers. Each layer 
    is a :class:`TransformerEncoderLayer`.
    Args:
        args (argparse.Namespace): parsed command-line arguments
        dictionary (~fairseq.data.Dictionary): encoding dictionary
        embed_tokens (torch.nn.Embedding): input embedding
    """

    def __init__(self, args, dictionary, embed_tokens):
        super().__init__(dictionary)
        self.register_buffer("version", torch.Tensor([3]))

        self.dropout_module = FairseqDropout(
            args.dropout, module_name=self.__class__.__name__
        )
        self.encoder_layerdrop = args.encoder_layerdrop

        embed_dim = embed_tokens.embedding_dim
        self.padding_idx = embed_tokens.padding_idx
        self.max_source_positions = args.max_source_positions

        self.embed_tokens = embed_tokens

        self.embed_scale = 1.0 if args.no_scale_embedding else math.sqrt(embed_dim)

        self.embed_positions = (
            PositionalEmbedding(
                args.max_source_positions,
                embed_dim,
                self.padding_idx,
                learned=args.encoder_learned_pos,
            )
            if not args.no_token_positional_embeddings
            else None 
        )

        if getattr(args, "layernorm_embedding", False):
            self.layernorm_embedding = LayerNorm(embed_dim)
        else:
            self.layernorm_embedding = None

        if not args.adaptive_input and args.quant_noise_pq > 0:
            self.quant_noise = apply_quant_noise_(
                nn.Linear(embed_dim, embed_dim, bias=False),
                args.quant_noise_pq,
                args.quant_noise_pq_block_size,
            )
        else:
            self.quant_noise = None

        if self.encoder_layerdrop > 0.0:
            self.layers = LayerDropModuleList(p=self.encoder_layerdrop)
        else:
            self.layers = nn.ModuleList([])
        self.layers.extend(
            [self.build_encoder_layer(args) for i in range(args.encoder_layers)]
        )
        self.num_layers = len(self.layers)

        if args.encoder_normalize_before:
            self.layer_norm = LayerNorm(embed_dim)
        else:
            self.layer_norm = None

    ##drc
    def change_p(self,p):
        self.dropout_module.change_p(p)

    def build_encoder_layer(self, args):
        layer = TransformerEncoderLayer(args)
        if getattr(args, "checkpoint_activations", False):
            layer = checkpoint_wrapper(layer)
        return layer

    def forward_embedding(
        self, src_tokens, token_embedding: Optional[torch.Tensor] = None
    ):
        # embed tokens and positions
        if token_embedding is None:
            token_embedding = self.embed_tokens(src_tokens)
        x = embed = self.embed_scale * token_embedding
        if self.embed_positions is not None:
            x = embed + self.embed_positions(src_tokens)
        if self.layernorm_embedding is not None:
            x = self.layernorm_embedding(x)
        x = self.dropout_module(x)
        if self.quant_noise is not None:
            x = self.quant_noise(x)
        return x, embed

    def forward(
        self,
        src_tokens,
        src_lengths,
        return_all_hiddens: bool = False,
        token_embeddings: Optional[torch.Tensor] = None,
    ):
        """
        Args:
            src_tokens (LongTensor): tokens in the source language of shape
                `(batch, src_len)`
            src_lengths (torch.LongTensor): lengths of each source sentence of
                shape `(batch)`
            return_all_hiddens (bool, optional): also return all of the
                intermediate hidden states (default: False).
            token_embeddings (torch.Tensor, optional): precomputed embeddings
                default `None` will recompute embeddings
        Returns:
            namedtuple:
                - **encoder_out** (Tensor): the last encoder layer's output of
                  shape `(src_len, batch, embed_dim)`
                - **encoder_padding_mask** (ByteTensor): the positions of
                  padding elements of shape `(batch, src_len)`
                - **encoder_embedding** (Tensor): the (scaled) embedding lookup
                  of shape `(batch, src_len, embed_dim)`
                - **encoder_states** (List[Tensor]): all intermediate
                  hidden states of shape `(src_len, batch, embed_dim)`.
                  Only populated if *return_all_hiddens* is True.
        """
        x, encoder_embedding = self.forward_embedding(src_tokens, token_embeddings)

        # B x T x C -> T x B x C
        x = x.transpose(0, 1)

        # compute padding mask
        encoder_padding_mask = src_tokens.eq(self.padding_idx)

        encoder_states = []

        # encoder layers
        for layer in self.layers:
            x = layer(x, encoder_padding_mask)
            if return_all_hiddens:
                assert encoder_states is not None
                encoder_states.append(x)

        if self.layer_norm is not None:
            x = self.layer_norm(x)

        # The Pytorch Mobile lite interpreter does not supports returning NamedTuple in
        # `foward` so we use a dictionary instead.
        # TorchScript does not support mixed values so the values are all lists.
        # The empty list is equivalent to None.
        return {
            "encoder_out": [x],  # T x B x C
            "encoder_padding_mask": [encoder_padding_mask],  # B x T
            "encoder_embedding": [encoder_embedding],  # B x T x C
            "encoder_states": encoder_states,  # List[T x B x C]
            "src_tokens": [],
            "src_lengths": [],
        }

    @torch.jit.export
    def reorder_encoder_out(self, encoder_out: Dict[str, List[Tensor]], new_order):
        """
        Reorder encoder output according to *new_order*.
        Args:
            encoder_out: output from the ``forward()`` method
            new_order (LongTensor): desired order
        Returns:
            *encoder_out* rearranged according to *new_order*
        """
        if len(encoder_out["encoder_out"]) == 0:
            new_encoder_out = []
        else:
            new_encoder_out = [encoder_out["encoder_out"][0].index_select(1, new_order)]
        if len(encoder_out["encoder_padding_mask"]) == 0:
            new_encoder_padding_mask = []
        else:
            new_encoder_padding_mask = [
                encoder_out["encoder_padding_mask"][0].index_select(0, new_order)
            ]
        if len(encoder_out["encoder_embedding"]) == 0:
            new_encoder_embedding = []
        else:
            new_encoder_embedding = [
                encoder_out["encoder_embedding"][0].index_select(0, new_order)
            ]

        if len(encoder_out["src_tokens"]) == 0:
            src_tokens = []
        else:
            src_tokens = [(encoder_out["src_tokens"][0]).index_select(0, new_order)]

        if len(encoder_out["src_lengths"]) == 0:
            src_lengths = []
        else:
            src_lengths = [(encoder_out["src_lengths"][0]).index_select(0, new_order)]

        encoder_states = encoder_out["encoder_states"]
        if len(encoder_states) > 0:
            for idx, state in enumerate(encoder_states):
                encoder_states[idx] = state.index_select(1, new_order)

        return {
            "encoder_out": new_encoder_out,  # T x B x C
            "encoder_padding_mask": new_encoder_padding_mask,  # B x T
            "encoder_embedding": new_encoder_embedding,  # B x T x C
            "encoder_states": encoder_states,  # List[T x B x C]
            "src_tokens": src_tokens,  # B x T
            "src_lengths": src_lengths,  # B x 1
        }

    def max_positions(self):
        """Maximum input length supported by the encoder."""
        if self.embed_positions is None:
            return self.max_source_positions
        return min(self.max_source_positions, self.embed_positions.max_positions)

    def upgrade_state_dict_named(self, state_dict, name):
        """Upgrade a (possibly old) state dict for new versions of fairseq."""
        if isinstance(self.embed_positions, SinusoidalPositionalEmbedding):
            weights_key = "{}.embed_positions.weights".format(name)
            if weights_key in state_dict:
                print("deleting {0}".format(weights_key))
                del state_dict[weights_key]
            state_dict[
                "{}.embed_positions._float_tensor".format(name)
            ] = torch.FloatTensor(1)
        for i in range(self.num_layers):
            # update layer norms
            self.layers[i].upgrade_state_dict_named(
                state_dict, "{}.layers.{}".format(name, i)
            )

        version_key = "{}.version".format(name)
        if utils.item(state_dict.get(version_key, torch.Tensor([1]))[0]) < 2:
            # earlier checkpoints did not normalize after the stack of layers
            self.layer_norm = None
            self.normalize = False
            state_dict[version_key] = torch.Tensor([1])
        return state_dict