Exemplo n.º 1
0
def test_fit_1gauss_noisy(ellip=0.2, s2n=10000):
    import images
    import fimage
    numpy.random.seed(35)

    sigma = 1.4
    T=2*sigma**2
    nsig=5
    dim = int(nsig*T)
    if (dim % 2) == 0:
        dim += 1
    dims=array([dim,dim])
    cen=(dims-1.)/2.

    theta=23.7*numpy.pi/180.
    #eta=-0.7
    #ellip=(1+tanh(eta))/2
    eta = ellip2eta(ellip+1.e-8)
    print >>stderr,'ellip:',ellip
    pars=array([cen[0],cen[1],eta,theta,1.,T])
    print >>stderr,'pars'
    gmix = gmix_fit.pars2gmix_coellip_pick(pars,ptype='eta')

    nsub=1
    im0=gmix2image_em(gmix,dims,nsub=nsub)

    im,skysig = fimage.add_noise(im0, s2n,check=True)

    images.multiview(im,title='nsub: %d' % nsub)
    
    p0=pars.copy()
    p0[0] += 1*(randu()-0.5)  # cen0
    p0[1] += 1*(randu()-0.5)  # cen1
    p0[2] += 0.2*(randu()-0.5)  # eta
    p0[3] += 0.5*(randu()-0.5)   # theta radians
    p0[4] += 0.1*(randu()-0.5)  # p
    p0[5] += 1*(randu()-0.5)   # T
    print_pars(pars,front='pars:  ')
    print_pars(p0,  front='guess: ')

    gf=gmix_fit.GMixFitCoellip(im, p0, ptype='eta',verbose=True)

    print 'numiter:',gf.numiter
    print_pars(gf.popt, front='popt: ')
    print_pars(gf.perr, front='perr: ')
    images.imprint(gf.pcov)
Exemplo n.º 2
0
def test_fit_1gauss_galsim(ellip=0.2, s2n=10000):
    import images
    import galsim
    import admom
    numpy.random.seed(35)

    #sigma = 1.4
    sigma = 1
    T=2*sigma**2
    e = 0.2
    theta=23.7
    e1,e2 = etheta2e1e2(e,theta)

    fimage_cov = ellip2mom(T, e=e, theta=theta)

    print 'e: ',e
    print 'e1:',e1
    print 'e2:',e2
    pixel_scale = 1.

    nsig=5
    dim = int(nsig*T)
    if (dim % 2) == 0:
        dim += 1
    dims=array([dim,dim])
    cen=(dims-1)/2

    pix = galsim.Pixel(xw=pixel_scale, yw=pixel_scale)

    gobj = galsim.Gaussian(sigma=sigma) 
    gobj.applyDistortion(galsim.Ellipse(e1=e1,e2=e2))
    gcobj = galsim.Convolve([gobj,pix])

    im0 = galsim.ImageD(int(dims[1]),int(dims[0]))

    gcobj.draw(image=im0, dx=pixel_scale)

    images.multiview(im0.array)
    galsim_nsub=16
    ares = admom.admom(im0.array,cen[0],cen[1],guess=T/2,nsub=galsim_nsub)
    print 'galsim sigma:',sqrt( (ares['Irr']+ares['Icc'])/2 )
    print 'galsim admom e1:',ares['e1']
    print 'galsim admom e2:',ares['e2']
    print 'galsim center:',ares['row'],ares['col']

    fnsub=16
    fim0 = model_image('gauss',dims,cen,fimage_cov,nsub=fnsub)
    fares = admom.admom(fim0,cen[0],cen[1],guess=T/2,nsub=fnsub)
    print 'fimage sigma:',sqrt( (fares['Irr']+fares['Icc'])/2 )
    print 'fimage admom e1:',fares['e1']
    print 'fimage admom e2:',fares['e2']
    print 'fimage center:',fares['row'],fares['col']


    return 


    theta=23.7*numpy.pi/180.
    print >>stderr,'ellip:',ellip
    pars=array([cen[0],cen[1],eta,theta,1.,T])
    print >>stderr,'pars'
    gmix = gmix_fit.pars2gmix_coellip_pick(pars,ptype='eta')

    nsub=1
    im0=gmix2image_em(gmix,dims,nsub=nsub)

    im,skysig = fimage.add_noise(im0, s2n,check=True)

    images.multiview(im,title='nsub: %d' % nsub)
    
    p0=pars.copy()
    p0[0] += 1*(randu()-0.5)  # cen0
    p0[1] += 1*(randu()-0.5)  # cen1
    p0[2] += 0.2*(randu()-0.5)  # eta
    p0[3] += 0.5*(randu()-0.5)   # theta radians
    p0[4] += 0.1*(randu()-0.5)  # p
    p0[5] += 1*(randu()-0.5)   # T
    print_pars(pars,front='pars:  ')
    print_pars(p0,  front='guess: ')

    gf=gmix_fit.GMixFitCoellip(im, p0, ptype='eta',verbose=True)

    print 'numiter:',gf.numiter
    print_pars(gf.popt, front='popt: ')
    print_pars(gf.perr, front='perr: ')
    images.imprint(gf.pcov)
Exemplo n.º 3
0
def test_fit_1gauss_e1e2(ellip=0.2, 
                         seed=35, 
                         s2n=-9999, 
                         dopsf=False):
    import images
    from fimage import etheta2e1e2, add_noise, ellip2mom

    ptype='e1e2'
    numpy.random.seed(seed)

    if dopsf:
        print >>stderr,"DOING PSF"
        Tpsf = 2.0
        epsf = 0.2
        theta_psf = 80.0
        cov_psf = ellip2mom(Tpsf, e=epsf, theta=theta_psf)
        psf=[{'p':1.0, 
              'irr':cov_psf[0], 
              'irc':cov_psf[1], 
              'icc':cov_psf[2]}]
    else:
        psf=None


    theta=23.7
    e1,e2 = etheta2e1e2(ellip, theta)

    sigma = 1.4
    T=2*sigma**2
    nsig=5
    dim = int(nsig*T)
    if (dim % 2) == 0:
        dim += 1
    dims=array([dim,dim])
    cen=(dims-1.)/2.

    pars=array([cen[0],cen[1],e1,e2,1.,T])

    print >>stderr,'pars'
    gmix = gmix_fit.pars2gmix_coellip_pick(pars,ptype=ptype)

    nsub=1
    im0=gmix2image_em(gmix,dims,nsub=nsub,psf=psf)
    if s2n > 0:
        im,skysig = add_noise(im0, s2n,check=True)
    else:
        im=im0

    #images.multiview(im,title='nsub: %d' % nsub)
    
    p0=pars.copy()
    """
    p0[0] += 1*(randu()-0.5)  # cen0
    p0[1] += 1*(randu()-0.5)  # cen1
    p0[2] += 0.2*(randu()-0.5)  # e1
    p0[3] += 0.2*(randu()-0.5)  # e2
    p0[4] += 0.1*(randu()-0.5)  # p
    p0[5] += 1*(randu()-0.5)   # T
    """
    '''
    p0[0] += 0.2*(randu()-0.5)  # cen0
    p0[1] += 0.2*(randu()-0.5)  # cen1
    p0[2] += 0.1*(randu()-0.5)  # e1
    p0[3] += 0.1*(randu()-0.5)  # e2
    p0[4] += 0.1*(randu()-0.5)  # p
    p0[5] += 1*(randu()-0.5)   # T
    '''

    print_pars(pars,front='pars:  ')
    print_pars(p0,  front='guess: ')

    gf=gmix_fit.GMixFitCoellip(im, p0, 
                               psf=psf,
                               ptype=ptype,
                               verbose=True)

    print >>stderr,'numiter:',gf.numiter
    print_pars(gf.popt,front='popt:  ')
    print_pars(gf.perr,front='perr:  ')
Exemplo n.º 4
0
def test_fit_dev_e1e2(ngauss=4, s2n=1.e5):
    import biggles
    import admom
    import fimage
    numpy.random.seed(35)

    ptype='e1e2'

    e = 0.2
    theta = 23.7
    e1,e2 = etheta2e1e2(e,theta)

    print >>stderr,"e:",e,"e1:",e1,"e2:",e2

    nsig=15
    #nsig=7
    npars=2*ngauss+4
    nsigma_vals=20

    f='test-opt-dev-bysigma'
    f += '-s2n%d' % s2n
    f += '.rec'
    pngf=f.replace('.rec','.png')
    if not os.path.exists(f):
        data=numpy.zeros(nsigma_vals,dtype=[('sigma','f8'),('pars','f8',npars)])
        #sigvals = numpy.linspace(1.5,5.0,nsigma_vals)
        sigvals = numpy.linspace(3.,5.0,nsigma_vals)
        #sigvals=array([3.0])
        for isigma,sigma in enumerate(sigvals):
            print '-'*70
            print 'sigma:',sigma
            T = 2*sigma**2

            cov = ellip2mom(T, e=e, theta=theta)
            dim = int(2*nsig*sigma)
            if (dim % 2) == 0:
                dim += 1
            dims=array([dim,dim])
            cen=(dims-1)/2.

            im0 = model_image('dev',dims,cen,cov,nsub=16)
            im,skysig = fimage.add_noise(im0, s2n, check=True)

            dim = int(2*nsig*sigma)
            if (dim % 2) == 0:
                dim += 1
            dims=array([dim,dim])
            cen=(dims-1)/2.

            ares = admom.admom(im0,cen[0],cen[1],guess=T/2,nsub=16)
            Tadmom=ares['Irr'] + ares['Icc']

            if ngauss == 4:
                Tmax = Tadmom*100
                # 0.02620127  0.09348825  0.23987656  0.63958437
                p0 = array([cen[0],
                            cen[1],
                            e1,
                            e2,
                            0.026,
                            0.093,
                            0.24,
                            0.64,
                            Tmax, 
                            Tmax*0.18,
                            Tmax*0.04,
                            Tmax*0.0027])
            else:
                p0 = array([cen[0],
                            cen[1],
                            e1,
                            e2,
                            1./ngauss,
                            1./ngauss,
                            1./ngauss,
                            Tadmom*4.9, 
                            Tadmom*0.82, 
                            Tadmom*0.18])

            print_pars(p0,  front='guess: ')
            verbose=False
            gf=gmix_fit.GMixFitCoellip(im, p0, 
                                       ptype=ptype,
                                       verbose=verbose)

            chi2per = gf.get_chi2per(gf.popt,skysig)
            print 'numiter:',gf.numiter
            print_pars(gf.popt,  front='popt:  ')
            if gf.perr is not None:
                print_pars(gf.perr,  front='perr:  ')
            print 'chi2/deg:',chi2per

            if gf.flags != 0:
                gmix_image.printflags('fit',gf.flags)
                raise RuntimeError("failed")

            data['sigma'][isigma] = sigma
            data['pars'][isigma,:] = gf.popt

            tvals = gf.popt[4+ngauss:]
            tmax=tvals.max()
            print 't ratios:',tvals/tmax
            print 'p values:',gf.popt[4:4+ngauss]
            print 'T vals/Tadmom:',tvals/Tadmom


        # plot the last one
        gmix = gmix_fit.pars2gmix_coellip_pick(gf.popt,ptype=ptype)
        model = gmix2image_em(gmix,im.shape)
        images.compare_images(im,model)
    else:
        data=eu.io.read(f)

    biggles.configure('fontsize_min', 1.0)
    biggles.configure('linewidth',1.0) # frame only
    nrows=3
    ncols=4
    tab=biggles.Table(nrows,ncols)
    for par in xrange(npars):
        plt=biggles.FramedPlot()
        plt.add(biggles.Curve(data['sigma'],data['pars'][:,par]))
        plt.add(biggles.Points(data['sigma'],data['pars'][:,par],
                               type='filled circle'))
        plt.xlabel = r'$\sigma$'
        plt.ylabel = 'p%d' % par
        tab[par//ncols,par%ncols] = plt

    tab.show()
    tab.write_img(1024,1024,pngf)
Exemplo n.º 5
0
def test_fit_2gauss_e1e2(ellip=0.2, 
                         seed=35, 
                         s2n=-9999, 
                         dopsf=False):
    import images
    from fimage import etheta2e1e2, add_noise, ellip2mom
    numpy.random.seed(seed)
    ptype='e1e2'
    nsub=1

    if dopsf:
        print >>stderr,"DOING PSF"
        Tpsf = 2.0
        epsf = 0.2
        #epsf = 0.2
        theta_psf = 80.0
        cov_psf = ellip2mom(Tpsf, e=epsf, theta=theta_psf)
        psf=[{'p':1.0, 
              'irr':cov_psf[0], 
              'irc':cov_psf[1], 
              'icc':cov_psf[2]}]
    else:
        psf=None

    theta=23.7
    e1,e2 = etheta2e1e2(ellip, theta)

    T1=3.0
    T2=6.0
    nsig=5
    dim = int(nsig*T2)
    if (dim % 2) == 0:
        dim += 1
    dims=array([dim,dim])
    cen=(dims-1)/2.

    p1=0.4
    p2=0.6
    pars=array([cen[0],cen[1],e1,e2,p1,p2,T1,T2])

    gmix = gmix_fit.pars2gmix_coellip_pick(pars,ptype=ptype)
    im0=gmix2image_em(gmix,dims,psf=psf,nsub=nsub)
    if s2n > 0:
        im,skysig = add_noise(im0, s2n,check=True)
    else:
        im=im0

    p0=pars.copy()
    p0[0] += 1*(randu()-0.5)  # cen0
    p0[1] += 1*(randu()-0.5)  # cen1
    p0[2] += 0.2*(randu()-0.5)  # e1
    p0[3] += 0.2*(randu()-0.5)  # e2
    p0[4] += 0.2*(randu()-0.5)  # p1
    p0[5] += 0.2*(randu()-0.5)  # p2
    p0[6] += 1*(randu()-0.5)  # p2
    p0[7] += 1*(randu()-0.5)  # p2
    print_pars(pars,front='pars:  ')
    print_pars(p0,  front='guess: ')
    gf=gmix_fit.GMixFitCoellip(im, p0, 
                               ptype=ptype,
                               psf=psf,
                               verbose=True)

    print >>stderr,'numiter:',gf.numiter
    print_pars(gf.popt,front='popt:  ')
    if gf.perr is not None:
        print_pars(gf.perr,front='perr:  ')

    return pars, gf.popt, gf.perr, gf.pcov