Exemplo n.º 1
0
def hscattergram(data, pwdist, lag, tol):
    '''
    Input:  (data)    NumPy array with three columns, the first two
                      columns should be the x and y coordinates, and
                      third should be the measurements of the variable
                      of interest
            (lag)     the lagged distance of interest
            (tol)     the allowable tolerance about (lag)
            (pwdist)  a square pairwise distance matrix
    Output:           h-scattergram figure showing the distribution of
                      measurements taken at a certain lag and tolerance
    '''
    # calculate the pairwise distances
    indices = variograms.lagindices(pwdist, lag, tol)
    # collect the head and tail measurements
    head = data[indices[:, 0], 2]
    tail = data[indices[:, 1], 2]
    # create a scatterplot with equal axes
    fig, ax = subplots()
    ax.scatter(head, tail, marker="o", facecolor="none", edgecolor="k", alpha=0.5)
    ax.set_aspect("equal")
    # set the labels and the title
    ax.set_ylabel("$z(u+h)$")
    ax.set_xlabel("$z(u)$")
    ax.set_title("Lags Between " + str(lag - tol) + " and " + str(lag + tol))
    # grab the limits of the axes
    xmin, xmax = ax.get_xlim()
    ymin, ymax = ax.get_ylim()
    # calculate the covariance and annotate
    cv = variograms.covariance(data, indices)
    ax.text(xmin * 1.25, ymin * 1.050, 'Covariance = {:3.2f}'.format(cv))
    # calculate the semivariance and annotate
    sv = variograms.semivariance(data, indices)
    ax.text(xmin * 1.25, ymin * 1.025, 'Semivariance = {:3.2f}'.format(sv))
    show()
Exemplo n.º 2
0
def anisotropiclags(data, pwdist, lag, tol, angle, atol):
    '''
    SPatial ANIsotropy PLOT
    '''
    index = variograms.lagindices(pwdist, lag, tol)
    anindex = variograms.anilagindices(data, pwdist, lag, tol, angle, atol)

    fig, ax = subplots()

    # plot the lagged distances
    for pair in index:
        head, tail = data[pair]
        hx, hy, hz = head
        tx, ty, tz = tail
        x = [hx, tx]
        y = [hy, ty]
        ax.plot(x, y, 'k-', lw=2, alpha=0.25)

    # plot the lagged distances within
    # the anisotropy angle and tolerance
    for pair in anindex:
        head, tail = data[pair]
        hx, hy, hz = head
        tx, ty, tz = tail
        x = [hx, tx]
        y = [hy, ty]
        ax.plot(x, y, 'r-', lw=1)

    ax.set_xlabel('X')
    ax.set_ylabel('Y')
Exemplo n.º 3
0
def anisotropiclags(data, pwdist, lag, tol, angle, atol):
    '''
    SPatial ANIsotropy PLOT
    '''
    index = variograms.lagindices(pwdist, lag, tol)
    anindex = variograms.anilagindices(data, pwdist, lag, tol, angle, atol)

    fig, ax = subplots()

    # plot the lagged distances
    for pair in index:
        head, tail = data[pair]
        hx, hy, hz = head
        tx, ty, tz = tail
        x = [hx, tx]
        y = [hy, ty]
        ax.plot(x, y, 'k-', lw=2, alpha=0.25)
        # a sanity check
        # mx, my = np.mean( x ), np.mean( y )
        # br = utilities.bearing( ( hx, hy ), ( tx, ty ) )
        # ax.text( mx, my, '{0:3.2f}'.format( br ) )

    # plot the lagged distances within
    # the anisotropy angle and tolerance
    for pair in anindex:
        head, tail = data[pair]
        hx, hy, hz = head
        tx, ty, tz = tail
        x = [hx, tx]
        y = [hy, ty]
        ax.plot(x, y, 'r-', lw=1)

    ax.set_xlabel('X')
    ax.set_ylabel('Y')
Exemplo n.º 4
0
def anisotropiclags(data, pwdist, lag, tol, angle, atol):
    '''
    SPatial ANIsotropy PLOT
    '''
    index = variograms.lagindices(pwdist, lag, tol)
    anindex = variograms.anilagindices(data, pwdist, lag, tol, angle, atol)

    fig, ax = subplots()

    # plot the lagged distances
    for pair in index:
        head, tail = data[pair]
        hx, hy, hz = head
        tx, ty, tz = tail
        x = [hx, tx]
        y = [hy, ty]
        ax.plot(x, y, 'k-', lw=2, alpha=0.25)

    # plot the lagged distances within
    # the anisotropy angle and tolerance
    for pair in anindex:
        head, tail = data[pair]
        hx, hy, hz = head
        tx, ty, tz = tail
        x = [hx, tx]
        y = [hy, ty]
        ax.plot(x, y, 'r-', lw=1)

    ax.set_xlabel('X')
    ax.set_ylabel('Y')
Exemplo n.º 5
0
def hscattergram(data, pwdist, lag, tol):
    '''
    Input:  (data)    NumPy array with three columns, the first two 
                      columns should be the x and y coordinates, and 
                      third should be the measurements of the variable
                      of interest
            (lag)     the lagged distance of interest
            (tol)     the allowable tolerance about (lag)
            (pwdist)  a square pairwise distance matrix
    Output:           h-scattergram figure showing the distribution of
                      measurements taken at a certain lag and tolerance
    '''
    # calculate the pairwise distances
    indices = variograms.lagindices(pwdist, lag, tol)
    # collect the head and tail measurements
    head = data[indices[:, 0], 2]
    tail = data[indices[:, 1], 2]
    # create a scatterplot with equal axes
    fig, ax = subplots()
    ax.scatter(head,
               tail,
               marker="o",
               facecolor="none",
               edgecolor="k",
               alpha=0.5)
    ax.set_aspect("equal")
    # set the labels and the title
    ax.set_ylabel("$z(u+h)$")
    ax.set_xlabel("$z(u)$")
    ax.set_title("Lags Between " + str(lag - tol) + " and " + str(lag + tol))
    # grab the limits of the axes
    xmin, xmax = ax.get_xlim()
    ymin, ymax = ax.get_ylim()
    # calculate the covariance and annotate
    cv = variograms.covariance(data, indices)
    ax.text(xmin * 1.25, ymin * 1.050, 'Covariance = {:3.2f}'.format(cv))
    # calculate the semivariance and annotate
    sv = variograms.semivariance(data, indices)
    ax.text(xmin * 1.25, ymin * 1.025, 'Semivariance = {:3.2f}'.format(sv))
    show()
Exemplo n.º 6
0
def laghistogram(data, pwdist, lags, tol):
    '''
    Input:  (data)    NumPy array with three columns, the first two
                      columns should be the x and y coordinates, and
                      third should be the measurements of the variable
                      of interest
            (pwdist)  the pairwise distances
            (lags)    the lagged distance of interest
            (tol)     the allowable tolerance about (lag)
    Output:           lag histogram figure showing the number of
                      distances at each lag
    '''
    # collect the distances at each lag
    indices = [variograms.lagindices(pwdist, lag, tol) for lag in lags]
    # record the number of indices at each lag
    indices = [len(i) for i in indices]
    # create a bar plot
    fig, ax = subplots()
    ax.bar(lags + tol, indices)
    ax.set_ylabel('Number of Lags')
    ax.set_xlabel('Lag Distance')
    ax.set_title('Lag Histogram')
    show()
Exemplo n.º 7
0
def laghistogram(data, pwdist, lags, tol):
    '''
    Input:  (data)    NumPy array with three columns, the first two 
                      columns should be the x and y coordinates, and 
                      third should be the measurements of the variable
                      of interest
            (pwdist)  the pairwise distances
            (lags)    the lagged distance of interest
            (tol)     the allowable tolerance about (lag)
    Output:           lag histogram figure showing the number of
                      distances at each lag
    '''
    # collect the distances at each lag
    indices = [variograms.lagindices(pwdist, lag, tol) for lag in lags]
    # record the number of indices at each lag
    indices = [len(i) for i in indices]
    # create a bar plot
    fig, ax = subplots()
    ax.bar(lags + tol, indices)
    ax.set_ylabel('Number of Lags')
    ax.set_xlabel('Lag Distance')
    ax.set_title('Lag Histogram')
    show()