Exemplo n.º 1
0
  def supply_rx_baseband(self):
    ## RX Spectrum
    if self.__dict__.has_key('rx_baseband'):
      return self.rx_baseband

    config = self.config

    fftlen = config.fft_length

    my_window = window.hamming(fftlen) #.blackmanharris(fftlen)
    rxs_sampler = vector_sampler(gr.sizeof_gr_complex,fftlen)
    rxs_trigger = gr.vector_source_b(concatenate([[1],[0]*199]),True)
    rxs_window = blocks.multiply_const_vcc(my_window)
    rxs_spectrum = gr.fft_vcc(fftlen,True,[],True)
    rxs_mag = gr.complex_to_mag(fftlen)
    rxs_avg = gr.single_pole_iir_filter_ff(0.01,fftlen)
    rxs_logdb = gr.nlog10_ff(20.0,fftlen,-20*log10(fftlen))
    rxs_decimate_rate = gr.keep_one_in_n(gr.sizeof_float*fftlen,50)

    t = self.u if self.filter is None else self.filter
    self.connect(rxs_trigger,(rxs_sampler,1))
    self.connect(t,rxs_sampler,rxs_window,
                 rxs_spectrum,rxs_mag,rxs_avg,rxs_logdb, rxs_decimate_rate)
    if self._options.log:
          log_to_file(self, rxs_decimate_rate, "data/supply_rx.float")
    self.rx_baseband = rxs_decimate_rate
    return rxs_decimate_rate
Exemplo n.º 2
0
    def supply_rx_baseband(self):
        ## RX Spectrum
        if self.__dict__.has_key('rx_baseband'):
            return self.rx_baseband

        config = self.config

        fftlen = config.fft_length

        my_window = window.hamming(fftlen)  #.blackmanharris(fftlen)
        rxs_sampler = vector_sampler(gr.sizeof_gr_complex, fftlen)
        rxs_trigger = blocks.vector_source_b(concatenate([[1], [0] * 199]),
                                             True)
        rxs_window = blocks.multiply_const_vcc(my_window)
        rxs_spectrum = gr.fft_vcc(fftlen, True, [], True)
        rxs_mag = gr.complex_to_mag(fftlen)
        rxs_avg = gr.single_pole_iir_filter_ff(0.01, fftlen)
        rxs_logdb = gr.nlog10_ff(20.0, fftlen, -20 * log10(fftlen))
        rxs_decimate_rate = gr.keep_one_in_n(gr.sizeof_float * fftlen, 50)

        t = self.u if self.filter is None else self.filter
        self.connect(rxs_trigger, (rxs_sampler, 1))
        self.connect(t, rxs_sampler, rxs_window, rxs_spectrum, rxs_mag,
                     rxs_avg, rxs_logdb, rxs_decimate_rate)
        if self._options.log:
            log_to_file(self, rxs_decimate_rate, "data/supply_rx.float")
        self.rx_baseband = rxs_decimate_rate
        return rxs_decimate_rate
Exemplo n.º 3
0
  def setup_ber_measurement(self):
    """
    Setup bit error rate measurement blocks. Using the decoded ID, a reference
    source identical to that in the transmitter reproduces the sent data. A
    measurement block compares the demodulated stream and the reference. It
    counts the bit errors within the given window (specified at the command
    line).
    Access the BER value via get_ber().
    """
    if self.measuring_ber():
      return

    if(self._options.coding):
        decoding = self._data_decoder
    else:
        demod = self._data_demodulator

    config = station_configuration()


    ## Data Reference Source
    dref_src = self._data_reference_source = ber_reference_source(self._options)
    self.connect(self.id_dec,(dref_src,0))
    self.connect(self.bitcount_src,(dref_src,1))
    

    ## BER Measuring Tool
    ber_mst = self._ber_measuring_tool = ber_measurement(int(config.ber_window))
    if(self._options.coding):
        self.connect(decoding,ber_mst)
    else:
        self.connect(demod,ber_mst)
    self.connect(dref_src,(ber_mst,1))
    
    self._measuring_ber = True


    if self._options.enable_ber2:
      ber2 = ofdm.bit_position_dependent_ber( "BER2_" + strftime("%Y%m%d%H%M%S",gmtime()) )
      if(self._options.coding):
        self.connect( decoding, ( ber2, 1 ) )
      else:
        self.connect( demod, ( ber2, 1 ) )
      self.connect( dref_src, ( ber2, 0 ) )
      self.connect( bc_src, ( ber2, 2 ) )

    if self._options.log:
      log_to_file(self, ber_mst, "data/ber_out.float")
      data_f = gr.char_to_float()
      self.connect(dref_src,data_f)
      log_to_file(self, data_f, "data/dataref_out.float")
Exemplo n.º 4
0
  def setup_ber_measurement(self):
    """
    Setup bit error rate measurement blocks. Using the decoded ID, a reference
    source identical to that in the transmitter reproduces the sent data. A
    measurement block compares the demodulated stream and the reference. It
    counts the bit errors within the given window (specified at the command
    line).
    Access the BER value via get_ber().
    """
    if self.measuring_ber():
      return

    if(self._options.coding):
        decoding = self._data_decoder
    else:
        demod = self._data_demodulator

    config = station_configuration()


    ## Data Reference Source
    dref_src = self._data_reference_source = ber_reference_source(self._options)
    self.connect(self.id_dec,(dref_src,0))
    self.connect(self.bitcount_src,(dref_src,1))

    ## BER Measuring Tool
    ber_mst = self._ber_measuring_tool = ber_measurement(int(config.ber_window))
    if(self._options.coding):
        self.connect(decoding,ber_mst)
    else:
        self.connect(demod,ber_mst)
    self.connect(dref_src,(ber_mst,1))

    self._measuring_ber = True

    if self._options.enable_ber2:
      ber2 = ofdm.bit_position_dependent_ber( "BER2_" + strftime("%Y%m%d%H%M%S",gmtime()) )
      if(self._options.coding):
        self.connect( decoding, ( ber2, 1 ) )
      else:
        self.connect( demod, ( ber2, 1 ) )
      self.connect( dref_src, ( ber2, 0 ) )
      self.connect( bc_src, ( ber2, 2 ) )

    if self._options.log:
      log_to_file(self, ber_mst, "data/ber_out.float")
      data_f = gr.char_to_float()
      self.connect(dref_src,data_f)
      log_to_file(self, data_f, "data/dataref_out.float")
Exemplo n.º 5
0
  def add_mobile_station(self,station_id):
    """
    Adds new receiver mobile station. Station ID must be unique. Initializes
    BER reference source.
    """

    # Initialize
    id_src = self._control._id_source
    dmux = self._data_multiplexer
    port = self._data_multiplexer_nextport
    self._data_multiplexer_nextport += 1

    # Setup
    ctrl_port = self._control.add_mobile_station(station_id)
    options = self._options
    if options.imgxfer:
      ref_src = ofdm.imgtransfer_src( options.img )
    else:
      ref_src = ber_reference_source(self._options)
    
    if(options.coding):
        ## Encoder
        encoder = self._encoder = ofdm.encoder_bb(fo,0)
        unpack = self._unpack = blocks.unpack_k_bits_bb(2)
        
        ## Puncturing
        if not options.nopunct:
            puncturing = self._puncturing = puncture_bb(options.subcarriers)
            #sah = gr.sample_and_hold_bb()
            #sah_trigger = blocks.vector_source_b([1,0],True)
            #decim_sah=gr.keep_one_in_n(gr.sizeof_char,2)
            self.connect(self._bitmap_trigger_puncturing,(puncturing,2))
            frametrigger_bitmap_filter = blocks.vector_source_b([1,0],True)
            bitmap_filter = self._puncturing_bitmap_src_filter = skip(gr.sizeof_char*options.subcarriers,2)# skip_known_symbols(frame_length,subcarriers)
            bitmap_filter.skip_call(0)
            #self.connect(self._bitmap_src_puncturing,bitmap_filter,(puncturing,1))
            self.connect(self._map_src,bitmap_filter,(puncturing,1))
            self.connect(frametrigger_bitmap_filter,(bitmap_filter,1))
            #bmt = gr.char_to_float()
            #self.connect(bitmap_filter,blocks.vector_to_stream(gr.sizeof_char,options.subcarriers), bmt)
            #log_to_file(self, bmt, "data/bitmap_filter_tx.float")
            
        self.connect((self._control,ctrl_port),ref_src,encoder,unpack)
        if not options.nopunct:
            self.connect(unpack,puncturing,(dmux,port))
            #self.connect(sah_trigger, (sah,1))
        else:
            self.connect(unpack,(dmux,port))
    else:
        self.connect((self._control,ctrl_port),ref_src,(dmux,port))
    
    if options.log and options.coding:
        log_to_file(self, encoder, "data/encoder_out.char")
        log_to_file(self, ref_src, "data/reference_data_src.char")
        log_to_file(self, unpack, "data/encoder_unpacked_out.char")
        if not options.nopunct:
            log_to_file(self, puncturing, "data/puncturing_out.char")
Exemplo n.º 6
0
  def filter_constellation_samples_to_file( self ):

    config = self.config

    vlen = config.data_subcarriers



    pda = self._power_deallocator
    bmaptrig_stream = [1, 1]+[0]*(config.frame_data_blocks-1)
    dm_trig = self._bitmap_trigger = blocks.vector_source_b(bmaptrig_stream, True)


    for i in range(8):
      print "pipe",i+1,"to",files[i]
      cfilter = ofdm.constellation_sample_filter( i+1, vlen )
      self.connect( pda, (cfilter,0) )
      self.connect( map_src, (cfilter,1) )
      self.connect( dm_trig, (cfilter,2) )
      log_to_file( self, cfilter, files[i] )
    print "done"
Exemplo n.º 7
0
  def __init__ ( self, noise_power, coherence_time, taps ):
    gr.hier_block2.__init__(self,
      "fading_channel", 
      gr.io_signature( 1, 1, gr.sizeof_gr_complex ),
      gr.io_signature( 1, 1, gr.sizeof_gr_complex ) )

    inp = gr.kludge_copy( gr.sizeof_gr_complex )
    self.connect( self, inp )
    
    tap1_delay = gr.delay( gr.sizeof_gr_complex, 1 )
    tap2_delay = gr.delay( gr.sizeof_gr_complex, 2 )
    self.connect( inp, tap1_delay )
    self.connect( inp, tap2_delay )
    
    fd = 100
    z = numpy.arange(-fd+0.1,fd,0.1)
    t = numpy.sqrt(1. / ( pi * fd * numpy.sqrt( 1. - (z/fd)**2 ) ) )
    
    tap1_noise = ofdm.complex_white_noise( 0.0, taps[0] )
    tap1_filter = gr.fft_filter_ccc(1, t)
    self.connect( tap1_noise, tap1_filter )
    
    tap1_mult = gr.multiply_cc()
    self.connect( tap1_filter, (tap1_mult,0) )
    self.connect( tap1_delay, (tap1_mult,1) )
    
    tap2_noise = ofdm.complex_white_noise( 0.0, taps[1] )
    tap2_filter = gr.fft_filter_ccc(1, t)
    
    self.connect( tap2_noise, tap2_filter )
    
    tap2_mult = gr.multiply_cc()
    self.connect( tap2_filter, (tap2_mult,0) )
    self.connect( tap2_delay, (tap2_mult,1) )
    
    noise_src = ofdm.complex_white_noise( 0.0, sqrt( noise_power ) )
    chan = gr.add_cc()
    
    self.connect( inp, (chan,0) )
    self.connect( tap1_mult, (chan,1) )
    self.connect( tap2_mult, (chan,2) )
    self.connect( noise_src, (chan,3) )
    
    self.connect( chan, self )
    
    log_to_file( self, tap1_filter, "data/tap1_filter.compl")
    log_to_file( self, tap1_filter, "data/tap1_filter.float", mag=True)
    log_to_file( self, tap2_filter, "data/tap2_filter.compl")
    log_to_file( self, tap2_filter, "data/tap2_filter.float", mag=True)
Exemplo n.º 8
0
    def __init__(self, noise_power, coherence_time, taps):
        gr.hier_block2.__init__(self, "fading_channel",
                                gr.io_signature(1, 1, gr.sizeof_gr_complex),
                                gr.io_signature(1, 1, gr.sizeof_gr_complex))

        inp = gr.kludge_copy(gr.sizeof_gr_complex)
        self.connect(self, inp)

        tap1_delay = gr.delay(gr.sizeof_gr_complex, 1)
        tap2_delay = gr.delay(gr.sizeof_gr_complex, 2)
        self.connect(inp, tap1_delay)
        self.connect(inp, tap2_delay)

        fd = 100
        z = numpy.arange(-fd + 0.1, fd, 0.1)
        t = numpy.sqrt(1. / (pi * fd * numpy.sqrt(1. - (z / fd)**2)))

        tap1_noise = ofdm.complex_white_noise(0.0, taps[0])
        tap1_filter = gr.fft_filter_ccc(1, t)
        self.connect(tap1_noise, tap1_filter)

        tap1_mult = gr.multiply_cc()
        self.connect(tap1_filter, (tap1_mult, 0))
        self.connect(tap1_delay, (tap1_mult, 1))

        tap2_noise = ofdm.complex_white_noise(0.0, taps[1])
        tap2_filter = gr.fft_filter_ccc(1, t)

        self.connect(tap2_noise, tap2_filter)

        tap2_mult = gr.multiply_cc()
        self.connect(tap2_filter, (tap2_mult, 0))
        self.connect(tap2_delay, (tap2_mult, 1))

        noise_src = ofdm.complex_white_noise(0.0, sqrt(noise_power))
        chan = gr.add_cc()

        self.connect(inp, (chan, 0))
        self.connect(tap1_mult, (chan, 1))
        self.connect(tap2_mult, (chan, 2))
        self.connect(noise_src, (chan, 3))

        self.connect(chan, self)

        log_to_file(self, tap1_filter, "data/tap1_filter.compl")
        log_to_file(self, tap1_filter, "data/tap1_filter.float", mag=True)
        log_to_file(self, tap2_filter, "data/tap2_filter.compl")
        log_to_file(self, tap2_filter, "data/tap2_filter.float", mag=True)
Exemplo n.º 9
0
  def __init__(self, fft_length, block_length, frame_data_part, block_header,
               options):
    gr.hier_block2.__init__(self, "ofdm_receiver",
        gr.io_signature (1,1,gr.sizeof_gr_complex),
        gr.io_signature2(2,2,gr.sizeof_gr_complex*fft_length,
                             gr.sizeof_char))

    
    frame_length = frame_data_part + block_header.no_pilotsyms
    cp_length = block_length-fft_length
    
    

    self.input=gr.kludge_copy(gr.sizeof_gr_complex)
    self.connect(self, self.input)
    
    self.blocks_out = (self,0)
    self.frame_trigger_out = (self,1)
    self.snr_out = (self,2)


    if options.log:
      log_to_file(self, self.input, "data/receiver_input.compl")



    # peak detector: thresholds low, high
    #self._pd_thres_lo = 0.09
    #self._pd_thres_hi = 0.1
    self._pd_thres = 0.2
    self._pd_lookahead = fft_length / 2 # empirically chosen
    
    

    #########################
    # coarse timing offset estimator
#    self.tm = schmidl.modified_timing_metric(fft_length,[1]*(fft_length))
    self.tm = schmidl.recursive_timing_metric(fft_length)
    self.connect(self.input,self.tm)
    assert(hasattr(block_header, 'sc_preamble_pos'))
    assert(block_header.sc_preamble_pos == 0) # TODO: relax this restriction
    
    if options.filter_timingmetric:
      timingmetric_shift = -2 #int(-cp_length * 0.8)
      tmfilter = gr.fir_filter_fff(1, [1./cp_length]*cp_length)
      self.connect( self.tm, tmfilter )
      self.timing_metric = tmfilter
      print "Filtering timing metric, experimental"
    else:
      self.timing_metric = self.tm
      timingmetric_shift = int(-cp_length/4)
    
    if options.log:
      log_to_file(self, self.timing_metric, "data/tm.float")
        


    # peak detection
    #threshold = gr.threshold_ff(self._pd_thres_lo,self._pd_thres_hi,0)
    #muted_tm = gr.multiply_ff()
    peak_detector = peak_detector_02_fb(self._pd_lookahead, self._pd_thres)
    #self.connect(self.timing_metric, threshold, (muted_tm,0))
    #self.connect(self.timing_metric, (muted_tm,1))
    #self.connect(muted_tm, peak_detector)
    self.connect(self.timing_metric, peak_detector)

    if options.log:
      pd_float = gr.char_to_float()
      self.connect(peak_detector,pd_float)
      log_to_file(self, pd_float, "data/peakdetector.float")
      
    if options.no_timesync:
      terminate_stream( self, peak_detector )
      trigger = [0]*(frame_length*block_length)
      trigger[ block_length-1 ] = 1
      peak_detector = blocks.vector_source_b( trigger, True )
      print "Bypassing timing synchronisation"
    
    
    # TODO: refine detected peaks with 90% average method as proposed
    # from Schmidl & Cox:
    # Starting from peak, find first points to the left and right whose
    # value is less than or equal 90% of the peak value. New trigger point
    # is average of both
    
    
    
    
    
    # Frequency Offset Estimation
    # Used: Algorithm as proposed from Morelli & Mengali
    # Idea: Use periodic preamble, correlate identical parts, determine
    # phase offset. This phase offset is a function of the frequency offset.
    
    assert(hasattr(block_header, 'mm_preamble_pos'))

    foe = morelli_foe(fft_length,block_header.mm_periodic_parts)
    self.connect(self.input,(foe,0))
    
    if block_header.mm_preamble_pos > 0:
      delayed_trigger = gr.delay(gr.sizeof_char,
                                 block_header.mm_preamble_pos*block_length)
      self.connect(peak_detector,delayed_trigger,(foe,1))
    else:
      self.connect(peak_detector,(foe,1))
    
    self.freq_offset = foe

    if options.log:
      log_to_file(self, self.freq_offset, "data/freqoff_out.float")
      
      
    if options.average_freqoff:
      #avg_foe = gr.single_pole_iir_filter_ff( 0.1 )
      avg_foe = ofdm.lms_fir_ff( 20, 1e-3 )
      self.connect( self.freq_offset, avg_foe )
      self.freq_offset = avg_foe
      #log_to_file( self, avg_foe, "data/freqoff_out_avg.float" )
      print "EXPERIMENTAL!!! Filtering frequency offset estimate"
      
    
    if options.no_freqsync:
      terminate_stream( self, self.freq_offset )
      self.freq_offset = blocks.vector_source_f( [0.0], True )
      print "Bypassing frequency offset estimator, offset=0.0"
      
    
    # TODO: dynamic solution
    frametrig_seq = concatenate([[1],[0]*(frame_length-1)])
    self.time_sync = peak_detector
    self.frame_trigger = blocks.vector_source_b(frametrig_seq,True)
    self.connect(self.frame_trigger, self.frame_trigger_out)
    




    ##########################
    # symbol extraction and processing
    #  First, we extract the whole ofdm block, then we divide this block into
    #  several ofdm symbols. This asserts that all symbols belonging to the
    #  same ofdm block will be a consecutive order.
    #  extract ofdm symbols
    #  compensate frequency offset

    # TODO: use PLL and update/reset signals
    delayed_timesync = gr.delay(gr.sizeof_char,
                                (frame_length-1)*block_length+timingmetric_shift)
    self.connect( self.time_sync, delayed_timesync )
    
    self.block_sampler = vector_sampler(gr.sizeof_gr_complex,block_length*frame_length)
    self.discard_cp = vector_mask(block_length,cp_length,fft_length,[])

    
    if options.use_dpll:
      dpll = gr.dpll_bb( frame_length * block_length , .01 )
      self.connect( delayed_timesync, dpll )
      
      if options.log:
        dpll_f = gr.char_to_float()
        delayed_timesync_f = gr.char_to_float()
        self.connect( dpll, dpll_f )
        self.connect( delayed_timesync, delayed_timesync_f )
        log_to_file( self, dpll_f, "data/dpll.float" )
        log_to_file( self, delayed_timesync_f, "data/dpll_in.float" )
        
      delayed_timesync = dpll
      print "Using DPLL, EXPERIMENTAL!!!!!"

    self.connect(self.input,self.block_sampler)
    self.connect(delayed_timesync,(self.block_sampler,1))
    
    if options.log:
      log_to_file(self, self.block_sampler, "data/block_sampler_out.compl")



    # TODO: dynamic solution
    self.ofdm_symbols = blocks.vector_to_stream(gr.sizeof_gr_complex*block_length,
                                            frame_length)
    self.connect(self.block_sampler,self.ofdm_symbols,self.discard_cp)

    if options.log:
      log_to_file(self, self.discard_cp, "data/discard_cp_out.compl")
      dcp_fft = gr.fft_vcc(fft_length, True, [], True)
      self.connect(self.discard_cp,dcp_fft)
      log_to_file(self, dcp_fft, "data/discard_cp_fft.compl")


    # reset phase accumulator inside freq_shift on every block start
    # setup output connection


    freq_shift = frequency_shift_vcc(fft_length, -1.0/fft_length, cp_length)

    self.connect(self.discard_cp,(freq_shift,0))
    self.connect(self.freq_offset,(freq_shift,1))
    self.connect(self.frame_trigger,(freq_shift,2))
    self.connect(freq_shift, self.blocks_out)
    
    if options.log:
      log_to_file(self, freq_shift, "data/freqshift_out.compl")
      
    if options.no_freqshift:
      terminate_stream( self, freq_shift )
      freq_shift = self.discard_cp
      print "Bypassing frequency shift block"
Exemplo n.º 10
0
  def publish_rx_performance_measure(self):
    if self._rx_performance_measure_initialized():
      return

    self.rx_performance_measure_initialized = True

    config = station_configuration()
    vlen = config.data_subcarriers
    vlen_sinr_sc = config.subcarriers

#    self.rx_per_sink = rpsink = rpsink_dummy()

    self.setup_ber_measurement()
    self.setup_snr_measurement()
    self.setup_snr_measurement_2()

    ber_mst = self._ber_measuring_tool
    if self._options.sinr_est:
        sinr_mst = self._sinr_measurement
        sinr_mst_2 = self._sinr_measurement_2
    else:
        snr_mst = self._snr_measurement
        snr_mst_2 = self._snr_measurement_2

    # 1. frame id

    # 2. channel transfer function
    ctf = self.filter_ctf()
    ctf_2 = self.filter_ctf_2()
    
    self.zmq_probe_ctf = zeromq.pub_sink(gr.sizeof_float,config.data_subcarriers, "tcp://*:5559")
    self.zmq_probe_ctf_2 = zeromq.pub_sink(gr.sizeof_float,config.data_subcarriers, "tcp://*:5558")
    self.connect(ctf, blocks.keep_one_in_n(gr.sizeof_float*config.data_subcarriers,20) ,self.zmq_probe_ctf)
    self.connect(ctf_2, blocks.keep_one_in_n(gr.sizeof_float*config.data_subcarriers,20) ,self.zmq_probe_ctf_2)
    
    # 3. BER
    ### FIXME HACK


    print "Normal BER measurement"


    trig_src = dynamic_trigger_ib(False)
    self.connect(self.bitcount_src,trig_src)

    ber_sampler = vector_sampler(gr.sizeof_float,1)
    self.connect(ber_mst,(ber_sampler,0))
    self.connect(trig_src,(ber_sampler,1))
      
    if self._options.log:
          trig_src_float = gr.char_to_float()
          self.connect(trig_src,trig_src_float)
          log_to_file(self, trig_src_float , 'data/dynamic_trigger_out.float')


    if self._options.sinr_est is False:
          self.zmq_probe_ber = zeromq.pub_sink(gr.sizeof_float, 1, "tcp://*:5556")
          self.connect(ber_sampler,blocks.keep_one_in_n(gr.sizeof_float,20) ,self.zmq_probe_ber)

          self.zmq_probe_snr = zeromq.pub_sink(gr.sizeof_float, 1, "tcp://*:5555")
          self.connect(snr_mst,blocks.keep_one_in_n(gr.sizeof_float,20) ,self.zmq_probe_snr)
          
          self.zmq_probe_snr_2 = zeromq.pub_sink(gr.sizeof_float, 1, "tcp://*:5554")
          self.connect(snr_mst_2,blocks.keep_one_in_n(gr.sizeof_float,20) ,self.zmq_probe_snr_2)
Exemplo n.º 11
0
    def __init__(self, options):
        gr.top_block.__init__(self, "ofdm_tx")

        self._tx_freq = options.tx_freq  # tranmitter's center frequency
        self._tx_subdev_spec = options.tx_subdev_spec  # daughterboard to use
        self._fusb_block_size = options.fusb_block_size  # usb info for USRP
        self._fusb_nblocks = options.fusb_nblocks  # usb info for USRP
        self._which = options.which_usrp
        self._bandwidth = options.bandwidth
        self.servants = []

        self._interface = options.interface
        self._mac_addr = options.mac_addr

        self._options = copy.copy(options)

        self._interpolation = 1

        f1 = numpy.array([
            -107, 0, 445, 0, -1271, 0, 2959, 0, -6107, 0, 11953, 0, -24706, 0,
            82359, 262144 / 2, 82359, 0, -24706, 0, 11953, 0, -6107, 0, 2959,
            0, -1271, 0, 445, 0, -107
        ], numpy.float64) / 262144.

        print "Software interpolation: %d" % (self._interpolation)

        bw = 0.5 / self._interpolation
        tb = bw / 5
        if self._interpolation > 1:
            self.filter = gr.hier_block2(
                "filter", gr.io_signature(1, 1, gr.sizeof_gr_complex),
                gr.io_signature(1, 1, gr.sizeof_gr_complex))
            self.filter.connect(self.filter, gr.interp_fir_filter_ccf(2, f1),
                                gr.interp_fir_filter_ccf(2, f1), self.filter)

            print "New"
#
#
#      self.filt_coeff = optfir.low_pass(1.0, 1.0, bw, bw+tb, 0.2, 60.0, 0)
#      self.filter = gr.interp_fir_filter_ccf(self._interpolation,self.filt_coeff)
#      print "Software interpolation filter length: %d" % (len(self.filt_coeff))
        else:
            self.filter = None

        if not options.from_file is None:
            # sent captured file to usrp
            self.src = gr.file_source(gr.sizeof_gr_complex, options.from_file)
            self._setup_usrp_sink()
            if hasattr(self, "filter"):
                self.connect(self.src, self.filter, self.u)  #,self.filter
            else:
                self.connect(self.src, self.u)

            return

        self._setup_tx_path(options)

        config = station_configuration()

        self.enable_info_tx("info_tx", "pa_user")
        #    if not options.no_cheat:
        #      self.txpath.enable_channel_cheating("channelcheat")
        self.txpath.enable_txpower_adjust("txpower")
        self.txpath.publish_txpower("txpower_info")
        #self.enable_txfreq_adjust("txfreq")

        if options.nullsink:
            self.dst = gr.null_sink(gr.sizeof_gr_complex)
            self.dst_2 = gr.null_sink(gr.sizeof_gr_complex)

        else:
            if not options.to_file is None:
                # capture transmitter's stream to disk
                self.dst = gr.file_sink(gr.sizeof_gr_complex, options.to_file)
                self.dst_2 = gr.file_sink(gr.sizeof_gr_complex,
                                          options.to_file)
                tmp = gr.throttle(gr.sizeof_gr_complex, 1e5)
                tmp_2 = gr.throttle(gr.sizeof_gr_complex, 1e5)
                self.connect(tmp, self.dst)
                self.connect(tmp_2, self.dst_2)
                self.dst = tmp
                self.dst_2 = tmp_2

                if options.force_filter:
                    print "Forcing filter usage"
                    self.connect(self.filter, self.dst)
                    self.dst = self.filter

            else:
                # connect transmitter to usrp
                self._setup_usrp_sink()
                if options.dyn_freq:
                    self.enable_txfreq_adjust("txfreq")

                if self.filter is not None:
                    self.connect(self.filter, self.dst)
                    self.dst = self.filter

                if options.record:
                    log_to_file(self, self.txpath, "data/txpath_out.compl")

                #self.publish_spectrum( 256 )

        if options.measure:
            self.m = throughput_measure(gr.sizeof_gr_complex)
            self.connect(self.m, self.dst)
            self.dst = self.m

        if options.samplingoffset is not None:
            soff = options.samplingoffset
            interp = gr.fractional_interpolator_cc(0.0, soff)
            self.connect(interp, self.dst)
            self.dst = interp

        if options.snr is not None:

            #      if options.berm is not None:
            #          noise_sigma = 380 #empirically given, gives the received SNR range of (1:28) for tx amp. range of (500:10000) which is set in rm_ber_measurement.py
            #          #check for fading channel
            #      else:
            snr_db = options.snr
            snr = 10.0**(snr_db / 10.0)
            noise_sigma = sqrt(config.rms_amplitude**2 / snr)
            print " Noise St. Dev. %d" % (noise_sigma)
            awgn_chan = gr.add_cc()
            awgn_noise_src = ofdm.complex_white_noise(0.0, noise_sigma)
            self.connect(awgn_noise_src, (awgn_chan, 1))
            self.connect(awgn_chan, self.dst)
            self.dst = awgn_chan

            if options.berm is False:
                fad_chan = itpp.tdl_channel()  #[0, -7, -20], [0, 2, 6]
                #fad_chan.set_norm_doppler( 1e-9 )
                #fad_chan.set_LOS( [500.,0,0] )
                fad_chan.set_channel_profile(itpp.ITU_Pedestrian_A, 5e-8)
                fad_chan.set_norm_doppler(1e-8)
                #        fad_chan = gr.fir_filter_ccc(1,[1.0,0.0,2e-1+0.1j,1e-4-0.04j])
                self.connect(fad_chan, self.dst)
                self.dst = fad_chan

        if options.freqoff is not None:
            freq_shift = gr.multiply_cc()
            norm_freq = options.freqoff / config.fft_length
            freq_off_src = gr.sig_source_c(1.0, gr.GR_SIN_WAVE, norm_freq, 1.0,
                                           0.0)
            self.connect(freq_off_src, (freq_shift, 1))
            dst = self.dst
            self.connect(freq_shift, dst)
            self.dst = freq_shift

        self.connect((self.txpath, 0), self.dst)
        self.connect((self.txpath, 1), self.dst_2)

        if options.cheat:
            self.txpath.enable_channel_cheating("channelcheat")

        print "Hit Strg^C to terminate"
Exemplo n.º 12
0
  def __init__ (self, options):
    gr.top_block.__init__(self, "ofdm_benchmark")

    ##self._tx_freq            = options.tx_freq         # tranmitter's center frequency
    ##self._tx_subdev_spec     = options.tx_subdev_spec  # daughterboard to use
    ##self._fusb_block_size    = options.fusb_block_size # usb info for USRP
    ##self._fusb_nblocks       = options.fusb_nblocks    # usb info for USRP
    ##self._which              = options.which_usrp
    self._bandwidth          = options.bandwidth
    self.servants = []
    self._verbose            = options.verbose
    
    ##self._interface          = options.interface
    ##self._mac_addr           = options.mac_addr

    self._options = copy.copy( options )


    self._interpolation = 1
    
    f1 = numpy.array([-107,0,445,0,-1271,0,2959,0,-6107,0,11953,
                      0,-24706,0,82359,262144/2,82359,0,-24706,0,
                      11953,0,-6107,0,2959,0,-1271,0,445,0,-107],
                      numpy.float64)/262144.
    
    print "Software interpolation: %d" % (self._interpolation)

    bw = 1.0/self._interpolation
    tb = bw/5
    if self._interpolation > 1:
      self.tx_filter = gr.hier_block2("filter",
                                   gr.io_signature(1,1,gr.sizeof_gr_complex),
                                   gr.io_signature(1,1,gr.sizeof_gr_complex))
      self.tx_filter2 = gr.hier_block2("filter",
                                   gr.io_signature(1,1,gr.sizeof_gr_complex),
                                   gr.io_signature(1,1,gr.sizeof_gr_complex))
      self.tx_filter.connect( self.tx_filter, gr.interp_fir_filter_ccf(2,f1),
                           gr.interp_fir_filter_ccf(2,f1), self.tx_filter )
      self.tx_filter2.connect( self.tx_filter2, gr.interp_fir_filter_ccf(2,f1),
                           gr.interp_fir_filter_ccf(2,f1), self.tx_filter2 )
      print "New"

    else:
      self.tx_filter = None
      self.tx_filter2 = None
      
    self.decimation = 1
    
    if self.decimation > 1:
      bw = 0.5/self.decimation * 1
      tb = bw/5
      # gain, sampling rate, passband cutoff, stopband cutoff
      # passband ripple in dB, stopband attenuation in dB
      # extra taps
      filt_coeff = optfir.low_pass(1.0, 1.0, bw, bw+tb, 0.1, 60.0, 1)
      print "Software decimation filter length: %d" % (len(filt_coeff))
      self.rx_filter = gr.fir_filter_ccf(self.decimation,filt_coeff)
      self.rx_filter2 = gr.fir_filter_ccf(self.decimation,filt_coeff)
    else:
      self.rx_filter = None
      self.rx_filter2 = None
      
      
##    if not options.from_file is None:
##      # sent captured file to usrp
##      self.src = gr.file_source(gr.sizeof_gr_complex,options.from_file)
##      self._setup_usrp_sink()
##      if hasattr(self, "filter"):
##        self.connect(self.src,self.filter,self.u) #,self.filter
##      else:
##        self.connect(self.src,self.u)
##      
##      return 
    
    
    
    self._setup_tx_path(options)
    self._setup_rx_path(options)
    
    config = station_configuration()
    
    self.enable_info_tx("info_tx", "pa_user")
#    if not options.no_cheat:
#      self.txpath.enable_channel_cheating("channelcheat")
    self.txpath.enable_txpower_adjust("txpower")
    self.txpath.publish_txpower("txpower_info")
    
    if options.disable_equalization or options.ideal:
        #print "CHANGE set_k"
        self.rxpath.enable_estim_power_adjust("estim_power")
        #self.rxpath.publish_estim_power("txpower_info")
         
    #self.enable_txfreq_adjust("txfreq")
    
    

    if options.imgxfer:
      self.rxpath.setup_imgtransfer_sink()
    
    if not options.no_decoding:
      self.rxpath.publish_rx_performance_measure()
      
    


    self.dst	= (self.rxpath,0)
    self.dst2 	= (self.rxpath,1)
    
    if options.force_rx_filter:
      print "Forcing rx filter usage"
      self.connect( self.rx_filter, self.dst )
      self.connect( self.rx_filter2, self.dst2 )
      self.dst = self.rx_filter
      self.dst2 = self.rx_filter2
    
    
    if options.measure:
      self.m = throughput_measure(gr.sizeof_gr_complex)
      self.m2 = throughput_measure(gr.sizeof_gr_complex)
      self.connect( self.m, self.dst )
      self.connect( self.m2, self.dst2 )
      self.dst = self.m
      self.dst2 = self.m2


    if options.snr is not None:
      if options.berm is not False:
          noise_sigma = 380 #empirically given, gives the received SNR range of (1:28) for tx amp. range of (500:10000) which is set in rm_ber_measurement.py
          #check for fading channel 
      else:
          snr_db = options.snr
          snr = 10.0**(snr_db/10.0)
          noise_sigma = sqrt( config.rms_amplitude**2 / snr )
          
      print " Noise St. Dev. %d" % (noise_sigma)
      awgn_chan = blocks.add_cc()
      awgn_chan2 = blocks.add_cc()
      awgn_noise_src = ofdm.complex_white_noise( 0.0, noise_sigma )
      awgn_noise_src2 = ofdm.complex_white_noise( 0.0, noise_sigma )
      self.connect( awgn_chan, self.dst )
      self.connect( awgn_chan2, self.dst2 )
      self.connect( awgn_noise_src, (awgn_chan,1) )
      self.connect( awgn_noise_src2, (awgn_chan2,1) )  
      self.dst = awgn_chan
      self.dst2 = awgn_chan2



    if options.freqoff is not None:
      freq_shift = blocks.multiply_cc()
      freq_shift2 = blocks.multiply_cc()
      norm_freq = options.freqoff / config.fft_length
      freq_off_src = analog.sig_source_c(1.0, analog.GR_SIN_WAVE, norm_freq, 1.0, 0.0 )
      freq_off_src2 = analog.sig_source_c(1.0, analog.GR_SIN_WAVE, norm_freq, 1.0, 0.0 )
      self.connect( freq_off_src, ( freq_shift, 1 ) )
      self.connect( freq_off_src2, ( freq_shift2, 1 ) )
      dst = self.dst
      dst2 = self.dst2
      self.connect( freq_shift, dst )
      self.connect( freq_shift2, dst2 )
      self.dst = freq_shift
      self.dst2 = freq_shift2


    if options.multipath:
      if options.itu_channel:
        fad_chan = itpp.tdl_channel(  ) #[0, -7, -20], [0, 2, 6]
          #fad_chan.set_norm_doppler( 1e-9 )
          #fad_chan.set_LOS( [500.,0,0] )
        fad_chan2 = itpp.tdl_channel(  )
        fad_chan.set_channel_profile( itpp.ITU_Pedestrian_A, 5e-8 )
        fad_chan.set_norm_doppler( 1e-8 )
        fad_chan2.set_channel_profile( itpp.ITU_Pedestrian_A, 5e-8 )
        fad_chan2.set_norm_doppler( 1e-8 )
      else:
        fad_chan = gr.fir_filter_ccc(1,[1.0,0.0,2e-1+0.1j,1e-4-0.04j])
        fad_chan2 = gr.fir_filter_ccc(1,[1.0,0.0,2e-1+0.1j,1e-4-0.04j])
        
      self.connect( fad_chan, self.dst )
      self.connect( fad_chan2, self.dst2 )
      self.dst = fad_chan
      self.dst2 = fad_chan2

    if options.samplingoffset is not None:
      soff = options.samplingoffset
      interp = moms(1000000+soff,1000000)
      interp2 = moms(1000000+soff,1000000)
      self.connect( interp, self.dst )
      self.connect( interp2, self.dst2 )
      self.dst = interp
      self.dst2 = interp2
      
      if options.record:
       log_to_file( self, interp, "data/interp_out.compl" )
       log_to_file( self, interp2, "data/interp2_out.compl" )
    
    tmm =blocks.throttle(gr.sizeof_gr_complex,self._bandwidth)
    tmm2 =blocks.throttle(gr.sizeof_gr_complex,self._bandwidth)
    tmm_add = blocks.add_cc()
    tmm2_add = blocks.add_cc()
    self.connect( tmm, tmm_add )
    self.connect( tmm2, (tmm_add,1) )
    self.connect( tmm, tmm2_add )
    self.connect( tmm2, (tmm2_add,1) )
    self.connect( tmm_add, self.dst )
    self.connect( tmm2_add, self.dst2 )
    self.dst = tmm
    self.dst2 = tmm2
    
    inter = blocks.interleave(gr.sizeof_gr_complex)
    deinter = blocks.deinterleave(gr.sizeof_gr_complex)
    
    self.connect(inter, deinter)
    self.connect((deinter,0),self.dst)
    self.connect((deinter,1),self.dst2)
    self.dst = inter
    self.dst2 = (inter,1)
    
    
    if options.force_tx_filter:
      print "Forcing tx filter usage"
      self.connect( self.tx_filter, self.dst )
      self.connect( self.tx_filter2, self.dst2 )
      self.dst = self.tx_filter
      self.dst2 = self.tx_filter2
    if options.record:
      log_to_file( self, self.txpath, "data/txpath_out.compl" )
      log_to_file( self, self.txpath2, "data/txpath2_out.compl" )
      
    if options.nullsink:
        self.connect(gr.null_source(gr.sizeof_gr_complex), self.dst)
        self.connect(gr.null_source(gr.sizeof_gr_complex), self.dst2)
        self.dst = gr.null_sink(gr.sizeof_gr_complex)
        self.dst2 = gr.null_sink(gr.sizeof_gr_complex)
        
    
    self.connect( self.txpath,self.dst )
    self.connect( (self.txpath,1),self.dst2 )
    
    
    if options.cheat:
      self.txpath.enable_channel_cheating("channelcheat")

    
      
    print "Hit Strg^C to terminate"

    if options.event_rxbaseband:
      self.publish_rx_baseband_measure()
      
      
    if options.with_old_gui:
      self.publish_spectrum(256)
      self.rxpath.publish_ctf("ctf_display")
      self.rxpath.publish_ber_measurement(["ber"])
      self.rxpath.publish_average_snr(["totalsnr"])
      if options.sinr_est:
        self.rxpath.publish_sinrsc("sinrsc_display")
      

    
    print "Hit Strg^C to terminate"


    # Display some information about the setup
    if self._verbose:
        self._print_verbage()
Exemplo n.º 13
0
  def __init__( self, options, log = False ):
    
    ## Read configuration
    config = station_configuration()
    
    fft_length    = config.fft_length
    #cp_length     = config.cp_length
    block_header  = config.training_data
    data_subc     = config.data_subcarriers
    virtual_subc  = config.virtual_subcarriers
    total_subc    = config.subcarriers
    block_length  = config.block_length
    frame_length  = config.frame_length
    
    L             = block_header.mm_periodic_parts
    
        
    cp_length     = config.cp_length


    
    print "data_subc: ", config.data_subcarriers
    print "total_subc: ", config.subcarriers
    print "frame_lengthframe_length: ", frame_length
    
    
    ## Set Input/Output signature
    gr.hier_block2.__init__( self, 
        "fbmc_inner_receiver",
        gr.io_signature(
            1, 1,
            gr.sizeof_gr_complex ),
        gr.io_signaturev(
            4, 4,
            [gr.sizeof_float * total_subc,    # Normalized |CTF|^2 
            gr.sizeof_char,                       # Frame start
            gr.sizeof_gr_complex * total_subc, # OFDM blocks, SNR est
            gr.sizeof_float] ) )      # CFO
    
    
    ## Input and output ports
    self.input = rx_input = self
    
    out_ofdm_blocks = ( self, 2 )
    out_frame_start = ( self, 1 )
    out_disp_ctf    = ( self, 0 )
    out_disp_cfo    = ( self, 3 )
    #out_snr_pream    = ( self, 3 )
    
    
    
    
    ## pre-FFT processing
    
    '''
    ## Compute autocorrelations for S&C preamble
    ## and cyclic prefix
    
    self._sc_metric = sc_metric = autocorrelator( fft_length/2, fft_length/2 )
    self._gi_metric = gi_metric = autocorrelator( fft_length, cp_length )
    
    self.connect( rx_input, sc_metric )
    self.connect( rx_input, gi_metric )
    terminate_stream(self, gi_metric)
    
    ## Sync. Output contains OFDM blocks
    sync = ofdm.time_sync( fft_length/2, 1)
    self.connect( rx_input, ( sync, 0 ) )
    self.connect( sc_metric, ( sync, 1 ) )
    self.connect( sc_metric, ( sync, 2 ) )
    
    ofdm_blocks = ( sync, 0 )
    frame_start = ( sync, 1 )
    log_to_file( self, ( sync, 1 ), "data/fbmc_peak_detector.char" )
    '''
    if options.ideal is False and options.ideal2 is False:
        #Testing old/new metric
        self.tm = schmidl.recursive_timing_metric(2*fft_length)
        self.connect( self.input, self.tm)
        #log_to_file( self, self.tm, "data/fbmc_rec_sc_metric_ofdm.float" )
        
        timingmetric_shift = 0 #-2 #int(-cp_length * 0.8)
        tmfilter = filter.fft_filter_fff(1, [2./fft_length]*(fft_length/2))# ofdm.lms_fir_ff( fft_length, 1e-3 ) #; filter.fir_filter_fff(1, [1./fft_length]*fft_length)
        self.connect( self.tm, tmfilter )
        self.tm = tmfilter
        #log_to_file( self, self.tm, "data/fbmc_rec_sc_metric_ofdm2.float" )
        
        self._pd_thres = 0.6
        self._pd_lookahead = fft_length # empirically chosen
        peak_detector = ofdm.peak_detector_02_fb(self._pd_lookahead, self._pd_thres)
        self.connect(self.tm, peak_detector)
        #log_to_file( self, peak_detector, "data/fbmc_rec_peak_detector.char" )
        
        
        #frame_start = [0]*frame_length
        #frame_start[0] = 1
        #frame_start = blocks.vector_source_b(frame_start,True)
        
        #OLD
        #delayed_timesync = blocks.delay(gr.sizeof_char,
         #                           (frame_length-10)*fft_length/2 - fft_length/4 -1 + timingmetric_shift)
        delayed_timesync = blocks.delay(gr.sizeof_char,
                                    (frame_length-10)*fft_length/2 - fft_length/4  + int(2.5*fft_length)  + timingmetric_shift-1)
        #delayed_timesync = blocks.delay(gr.sizeof_char,
                                    #(frame_length-10)*fft_length/2 - fft_length/4 + int(3.5*fft_length)  + timingmetric_shift-1)
        self.connect( peak_detector, delayed_timesync )
        
        self.block_sampler = ofdm.vector_sampler(gr.sizeof_gr_complex,fft_length/2*frame_length)
        
        self.connect(self.input,self.block_sampler)
        self.connect(delayed_timesync,(self.block_sampler,1))
        #log_to_file( self, self.block_sampler, "data/fbmc_block_sampler.compl" )
        
        vt2s = blocks.vector_to_stream(gr.sizeof_gr_complex*fft_length,
                                                frame_length/2)
        self.connect(self.block_sampler,vt2s)
        #terminate_stream(self,ofdm_blocks)
        
        ofdm_blocks = vt2s
        
        '''
        # TODO: dynamic solution
        vt2s = blocks.vector_to_stream(gr.sizeof_gr_complex*block_length/2,
                                                frame_length)
        self.connect(self.block_sampler,vt2s)
        terminate_stream(self,( sync, 0 ))
        ofdm_blocks = vt2s
        '''
        
        
        
        
        
        ##stv_help = blocks.stream_to_vector(gr.sizeof_gr_complex*config.fft_length/2, 1)
        #stv_help = blocks.vector_to_stream(gr.sizeof_gr_complex*config.fft_length/2, 2)
       ##self.connect(ofdm_blocks, stv_help)
        ##ofdm_blocks = stv_help
        #ofdm_blocks = ( sync, 0 )
        #frame_start = ( sync, 1 )
        #log_to_file(self, frame_start, "data/frame_start.compl")
        
        #log_to_file( self, sc_metric, "data/sc_metric.float" )
        #log_to_file( self, gi_metric, "data/gi_metric.float" )
        #log_to_file( self, (sync,1), "data/sync.float" )
        
    #    log_to_file(self,ofdm_blocks,"data/ofdm_blocks_original.compl")
        frame_start = [0]*int(frame_length/2)
        frame_start[0] = 1
        frame_start = blocks.vector_source_b(frame_start,True)          
        
        #frame_start2 = [0]*int(frame_length/2)
        #frame_start2[0] = 1
        #frame_start2 = blocks.vector_source_b(frame_start2,True)
    
    if options.disable_time_sync or options.ideal or options.ideal2:
      if options.ideal is False and options.ideal2 is False:
        terminate_stream(self, ofdm_blocks)
        terminate_stream(self, frame_start)
      
      serial_to_parallel = blocks.stream_to_vector(gr.sizeof_gr_complex,fft_length)
      #discard_cp = ofdm.vector_mask(block_length,cp_length,fft_length,[])
      #serial_to_parallel = blocks.stream_to_vector(gr.sizeof_gr_complex,block_length)
      #discard_cp = ofdm.vector_mask(block_length,cp_length,fft_length,[])
      #self.connect( rx_input,serial_to_parallel)
      
      #self.connect( rx_input, blocks.delay(gr.sizeof_gr_complex,0),serial_to_parallel)
      initial_skip = blocks.skiphead(gr.sizeof_gr_complex,2*fft_length)
      self.connect( rx_input, initial_skip)
      if options.ideal is False and options.ideal2 is False:          
          self.connect(  initial_skip, serial_to_parallel)
          ofdm_blocks = serial_to_parallel
      else:
          ofdm_blocks = initial_skip
      #self.connect( rx_input, serial_to_parallel, discard_cp )
      
      frame_start = [0]*int(frame_length/2)
      frame_start[0] = 1
      frame_start = blocks.vector_source_b(frame_start,True)
      
      #frame_start2 = [0]*int(frame_length/2)
      #frame_start2[0] = 1
      #frame_start2 = blocks.vector_source_b(frame_start2,True)
      
      print "Disabled time synchronization stage"
    
    print"\t\t\t\t\tframe_length = ",frame_length
    
    if options.ideal is False and options.ideal2 is False:
        ## Extract preamble, feed to Morelli & Mengali frequency offset estimator
        assert( block_header.mm_preamble_pos == 0 )
        morelli_foe = ofdm.mm_frequency_estimator( fft_length, 2, 1, config.fbmc )
        sampler_preamble = ofdm.vector_sampler( gr.sizeof_gr_complex * fft_length,
                                                1 )
        self.connect( ofdm_blocks, ( sampler_preamble, 0 ) )
        self.connect( frame_start, blocks.delay( gr.sizeof_char, 1 ), ( sampler_preamble, 1 ) )
        self.connect( sampler_preamble, morelli_foe )
        freq_offset = morelli_foe
        print "FRAME_LENGTH: ", frame_length
        #log_to_file( self, sampler_preamble, "data/sampler_preamble.compl" )
        #log_to_file( self, rx_input, "data/rx_input.compl" )
        #log_to_file( self, ofdm_blocks, "data/rx_input.compl" )

        
        #Extracting preamble for SNR estimation
        #fft_snr_est = fft_blocks.fft_vcc( fft_length, True, [], True )
        #self.connect( sampler_preamble, blocks.stream_to_vector(gr.sizeof_gr_complex*fft_length/2, 2),  fft_snr_est )
        
        
        ## Remove virtual subcarriers
        #if fft_length > data_subc:
          #subcarrier_mask_snr_est = ofdm.vector_mask( fft_length, virtual_subc/2,
                        #                       total_subc, [] )
          #self.connect( fft_snr_est, subcarrier_mask_snr_est )
          #fft_snr_est = subcarrier_mask_snr_est
          #log_to_file(self, ofdm_blocks, "data/vec_mask.compl")
           ## Least Squares estimator for channel transfer function (CTF)
        
        #self.connect( fft_snr_est, out_snr_pream ) # Connecting to output
        
        ## Adaptive LMS FIR filtering of frequency offset
        lms_fir = ofdm.lms_fir_ff( 20, 1e-3 ) # TODO: verify parameter choice
        self.connect( freq_offset, lms_fir )
        freq_offset = lms_fir
        
        self.connect(freq_offset, blocks.keep_one_in_n(gr.sizeof_float,20) ,out_disp_cfo)
    else:
        self.connect(blocks.vector_source_f ([1]) ,out_disp_cfo)

    
    #log_to_file(self, lms_fir, "data/lms_fir.float")
    
    if options.disable_freq_sync or options.ideal or options.ideal2:
      if options.ideal is False and options.ideal2 is False:  
          terminate_stream(self, freq_offset)
          freq_offset = blocks.vector_source_f([0.0],True)
      print "Disabled frequency synchronization stage"
    
    if options.ideal is False and options.ideal2 is False:
        ## Correct frequency shift, feed-forward structure
        frequency_shift = ofdm.frequency_shift_vcc( fft_length, -1.0/fft_length,
                                                    0)
        
        #freq_shift = blocks.multiply_cc()
        #norm_freq = -0.1 / config.fft_length
        #freq_off = self.freq_off_src = analog.sig_source_c(1.0, analog.GR_SIN_WAVE, norm_freq, 1.0, 0.0 )
        
        self.connect( ofdm_blocks, ( frequency_shift, 0 ) )
        self.connect( freq_offset, ( frequency_shift, 1 ) )
        self.connect( frame_start,blocks.delay( gr.sizeof_char, 0), ( frequency_shift, 2 ) )
        
        

        
        #self.connect(frequency_shift,s2help)
        #ofdm_blocks = s2help
        ofdm_blocks = frequency_shift
    #terminate_stream(self, frequency_shift)
    
    
    
    #inner_pb_filt = self._inner_pilot_block_filter = fbmc_inner_pilot_block_filter()
    #self.connect(ofdm_blocks,inner_pb_filt)
    #self.connect(frame_start,(inner_pb_filt,1))
    #self.connect((inner_pb_filt,1),blocks.null_sink(gr.sizeof_char))
    
    #ofdm_blocks = (inner_pb_filt,0)
    
    
    overlap_ser_to_par = ofdm.fbmc_overlapping_serial_to_parallel_cvc(fft_length)
    self.separate_vcvc = ofdm.fbmc_separate_vcvc(fft_length, 2)
    self.polyphase_network_vcvc_1 = ofdm.fbmc_polyphase_network_vcvc(fft_length, 4, 4*fft_length-1, True)
    self.polyphase_network_vcvc_2 = ofdm.fbmc_polyphase_network_vcvc(fft_length, 4, 4*fft_length-1, True)
    self.junction_vcvc = ofdm.fbmc_junction_vcvc(fft_length, 2)
    self.fft_fbmc = fft_blocks.fft_vcc(fft_length, True, [], True)
    
    print "config.training_data.fbmc_no_preambles: ", config.training_data.fbmc_no_preambles
    #center_preamble = [1, -1j, -1, 1j]
    
    #self.preamble = preamble = [0]*total_subc + center_preamble*((int)(total_subc/len(center_preamble)))+[0]*total_subc
    
    self.preamble = preamble = config.training_data.fbmc_pilotsym_fd_list
    #inv_preamble = 1. / numpy.array(self.preamble)
    #print "self.preamble: ", len(self.preamble
    #print "inv_preamble: ", list(inv_preamble)
    
    #print "self.preamble", self.preamble
    #print "self.preamble2", self.preamble2
    
    
    self.multiply_const= ofdm.multiply_const_vcc(([1.0/(math.sqrt(fft_length*0.6863))]*total_subc))    
    self.beta_multiplier_vcvc = ofdm.fbmc_beta_multiplier_vcvc(total_subc, 4, 4*fft_length-1, 0)
    #self.skiphead = blocks.skiphead(gr.sizeof_gr_complex*total_subc, 2*4-1-1)
    self.skiphead = blocks.skiphead(gr.sizeof_gr_complex*total_subc,2)
    self.skiphead_1 = blocks.skiphead(gr.sizeof_gr_complex*total_subc, 0)
    #self.remove_preamble_vcvc = ofdm.fbmc_remove_preamble_vcvc(total_subc, config.frame_data_part/2, config.training_data.fbmc_no_preambles*total_subc/2)
    #self.subchannel_processing_vcvc = ofdm.fbmc_subchannel_processing_vcvc(total_subc, config.frame_data_part, 1, 2, 1, 0)
    self.oqam_postprocessing_vcvc = ofdm.fbmc_oqam_postprocessing_vcvc(total_subc, 0, 0)
    
    #log_to_file( self, ofdm_blocks, "data/PRE_FBMC.compl" )
    #log_to_file( self, self.fft_fbmc, "data/FFT_FBMC.compl" )

    if options.ideal is False and options.ideal2 is False:
        self.subchannel_processing_vcvc = ofdm.fbmc_subchannel_processing_vcvc(total_subc, config.frame_data_part, 3, 2, 1, 0)
        help2 = blocks.keep_one_in_n(gr.sizeof_gr_complex*total_subc,frame_length)
        self.connect ((self.subchannel_processing_vcvc,1),help2)
        #log_to_file( self, self.subchannel_processing_vcvc, "data/fbmc_subc.compl" )

    
    #terminate_stream(self, help2)
    
    if options.ideal is False and options.ideal2 is False:
        self.connect(ofdm_blocks, blocks.vector_to_stream(gr.sizeof_gr_complex, fft_length),overlap_ser_to_par)
    else:
        self.connect(ofdm_blocks,overlap_ser_to_par)
        
    self.connect(overlap_ser_to_par, self.separate_vcvc)
    self.connect((self.separate_vcvc, 1), (self.polyphase_network_vcvc_2, 0))
    self.connect((self.separate_vcvc, 0), (self.polyphase_network_vcvc_1, 0))
    self.connect((self.polyphase_network_vcvc_1, 0), (self.junction_vcvc, 0))
    self.connect((self.polyphase_network_vcvc_2, 0), (self.junction_vcvc, 1))
    self.connect(self.junction_vcvc, self.fft_fbmc)
    
    ofdm_blocks = self.fft_fbmc
    print "config.dc_null: ", config.dc_null
    if fft_length > data_subc:
      subcarrier_mask_fbmc = ofdm.vector_mask_dc_null( fft_length, virtual_subc/2,
                                           total_subc, config.dc_null, [] )
      self.connect( ofdm_blocks, subcarrier_mask_fbmc )
      ofdm_blocks = subcarrier_mask_fbmc
      #log_to_file(self, ofdm_blocks, "data/vec_mask.compl")
       ## Least Squares estimator for channel transfer function (CTF)
      #log_to_file( self, subcarrier_mask, "data/OFDM_Blocks.compl" )
      
    
    self.connect(ofdm_blocks, self.beta_multiplier_vcvc)
    
    ofdm_blocks = self.beta_multiplier_vcvc
    #self.connect(ofdm_blocks,self.multiply_const)
    #self.connect(self.multiply_const, (self.skiphead, 0))
    
    self.connect(ofdm_blocks, (self.skiphead, 0))
    #log_to_file( self, self.skiphead, "data/fbmc_skiphead_4.compl" )
    
    
    #self.connect(ofdm_blocks, self.multiply_const)
    #self.connect(self.multiply_const, self.beta_multiplier_vcvc)
    #self.connect((self.beta_multiplier_vcvc, 0), (self.skiphead, 0))
    if options.ideal or options.ideal2:
        self.connect((self.skiphead, 0),(self.skiphead_1, 0))
    else:
        self.connect((self.skiphead, 0), (self.subchannel_processing_vcvc, 0))
        self.connect((self.subchannel_processing_vcvc, 0), (self.skiphead_1, 0))
        
    #log_to_file( self, self.skiphead, "data/fbmc_subc.compl" )    
    #self.connect((self.skiphead_1, 0),(self.remove_preamble_vcvc, 0))
    #self.connect((self.remove_preamble_vcvc, 0),  (self.oqam_postprocessing_vcvc, 0))
    
    #ofdm_blocks = self.oqam_postprocessing_vcvc
    #log_to_file( self, self.subchannel_processing_vcvc, "data/subc_0.compl" )
    #log_to_file( self, (self.subchannel_processing_vcvc,1), "data/subc_1.compl" )
    
    
    
    self.connect((self.skiphead_1, 0),(self.oqam_postprocessing_vcvc, 0))
    #self.connect((self.oqam_postprocessing_vcvc, 0), (self.remove_preamble_vcvc, 0) )
    
    ofdm_blocks = (self.oqam_postprocessing_vcvc, 0)#(self.remove_preamble_vcvc, 0)
    #log_to_file( self, (self.oqam_postprocessing_vcvc, 0), "data/fbmc_before_remove.compl" )
    
    #log_to_file( self, self.skiphead, "data/SKIP_HEAD_FBMC.compl" )
    #log_to_file( self, self.beta_multiplier_vcvc, "data/BETA_REC_FBMC.compl" )
    #log_to_file( self, self.oqam_postprocessing_vcvc, "data/REC_OUT_FBMC.compl" )
        
    

    
    
    
    
    
    """ DISABLED OFDM CHANNEL ESTIMATION PREMBLE -> CORRECT LATER to compare FBMC and OFDM channel estimation
    #TAKING THE CHANNEL ESTIMATION PREAMBLE
    chest_pre_trigger = blocks.delay( gr.sizeof_char, 3 )
    sampled_chest_preamble = ofdm.vector_sampler( gr.sizeof_gr_complex * fft_length/2, 2 )
      
    self.connect( frame_start,       chest_pre_trigger )
    self.connect( chest_pre_trigger, ( sampled_chest_preamble, 1 ) )
    self.connect( frequency_shift,       ( sampled_chest_preamble, 0 ) )
    #ofdm_blocks = sampled_chest_preamble
    
        
    ## FFT
    fft = fft_blocks.fft_vcc( fft_length, True, [], True )
    self.connect( sampled_chest_preamble, fft )
    ofdm_blocks_est = fft
    log_to_file( self, sampled_chest_preamble, "data/SAMPLED_EST_PREAMBLE.compl" )
    log_to_file( self, ofdm_blocks_est, "data/FFT.compl" )
    
    
    ## Remove virtual subcarriers
    if fft_length > data_subc:
      subcarrier_mask = ofdm.vector_mask( fft_length, virtual_subc/2,
                                           total_subc, [] )
      self.connect( ofdm_blocks_est, subcarrier_mask )
      ofdm_blocks_est = subcarrier_mask
      #log_to_file(self, ofdm_blocks, "data/vec_mask.compl")
       ## Least Squares estimator for channel transfer function (CTF)
      log_to_file( self, subcarrier_mask, "data/OFDM_Blocks.compl" )
    
          
    ## post-FFT processing
      
    
    
    ## extract channel estimation preamble from frame
    ##chest_pre_trigger = blocks.delay( gr.sizeof_char, 
                                  ##1 )
    ##sampled_chest_preamble = \
     ## ofdm.vector_sampler( gr.sizeof_gr_complex * total_subc, 1 )
    ##self.connect( frame_start,       chest_pre_trigger )
    ##self.connect( chest_pre_trigger, ( sampled_chest_preamble, 1 ) )
    ##self.connect( ofdm_blocks,       ( sampled_chest_preamble, 0 ) )
    

    
    ## Least Squares estimator for channel transfer function (CTF)
    inv_preamble_fd = numpy.array( block_header.pilotsym_fd[ 
        block_header.channel_estimation_pilot[0] ] )
    #print "Channel estimation pilot: ", inv_preamble_fd
    inv_preamble_fd = 1. / inv_preamble_fd
    
    LS_channel_estimator = ofdm.multiply_const_vcc( list( inv_preamble_fd ) )
    self.connect( ofdm_blocks_est, LS_channel_estimator )
    estimated_CTF = LS_channel_estimator
    terminate_stream(self,estimated_CTF)
    """
    if options.ideal is False and options.ideal2 is False:
        if options.logcir:
         log_to_file( self, sampled_chest_preamble, "data/PREAM.compl" )
     
    
        if not options.disable_ctf_enhancer:
      
      
            if options.logcir:
                ifft1 = fft_blocks.fft_vcc(total_subc,False,[],True)
                self.connect( estimated_CTF, ifft1,gr.null_sink(gr.sizeof_gr_complex*total_subc))
                summ1 = ofdm.vector_sum_vcc(total_subc)
                c2m =gr.complex_to_mag(total_subc)
                self.connect( estimated_CTF,summ1 ,gr.null_sink(gr.sizeof_gr_complex))
                self.connect( estimated_CTF, c2m,gr.null_sink(gr.sizeof_float*total_subc))
                log_to_file( self, ifft1, "data/CIR1.compl" )
                log_to_file( self, summ1, "data/CTFsumm1.compl" )
                log_to_file( self, estimated_CTF, "data/CTF1.compl" )
                log_to_file( self, c2m, "data/CTFmag1.float" )
        
            ## MSE enhancer
            ctf_mse_enhancer = ofdm.CTF_MSE_enhancer( total_subc, cp_length + cp_length)
            self.connect( estimated_CTF, ctf_mse_enhancer )
#      log_to_file( self, ctf_mse_enhancer, "data/ctf_mse_enhancer_original.compl")
      #ifft3 = fft_blocks.fft_vcc(total_subc,False,[],True)
      #null_noise = ofdm.noise_nulling(total_subc, cp_length + cp_length)
      #ctf_mse_enhancer = fft_blocks.fft_vcc(total_subc,True,[],True)
      #ctf_mse_enhancer = ofdm.vector_mask( fft_length, virtual_subc/2,
                                          # total_subc, [] )
      #self.connect( estimated_CTF, ifft3,null_noise,ctf_mse_enhancer )
        
            estimated_CTF = ctf_mse_enhancer 
            print "Disabled CTF MSE enhancer"

        if options.logcir:
         ifft2 = fft_blocks.fft_vcc(total_subc,False,[],True)
         self.connect( estimated_CTF, ifft2,gr.null_sink(gr.sizeof_gr_complex*total_subc))
         summ2 = ofdm.vector_sum_vcc(total_subc)
         c2m2 =gr.complex_to_mag(total_subc)
         self.connect( estimated_CTF,summ2 ,gr.null_sink(gr.sizeof_gr_complex))
         self.connect( estimated_CTF, c2m2,gr.null_sink(gr.sizeof_float*total_subc))
         log_to_file( self, ifft2, "data/CIR2.compl" )
         log_to_file( self, summ2, "data/CTFsumm2.compl" )
         log_to_file( self, estimated_CTF, "data/CTF2.compl" )
         log_to_file( self, c2m2, "data/CTFmag2.float" )
         
        ## Postprocess the CTF estimate
        ## CTF -> inverse CTF (for equalizer)
        ## CTF -> norm |.|^2 (for CTF display)
        ctf_postprocess = ofdm.fbmc_postprocess_CTF_estimate( total_subc )
        
        self.connect( help2, ctf_postprocess )
        #estimated_SNR = ( ctf_postprocess, 0 )
        disp_CTF = ( ctf_postprocess, 0 )
        #self.connect(estimated_SNR,out_snr_pream)
        #log_to_file( self, estimated_SNR, "data/fbmc_SNR.float" )
        
        #Disable measured SNR output
        #terminate_stream(self, estimated_SNR)
        #self.connect(blocks.vector_source_f([10.0],True) ,out_snr_pream)
    
#     if options.disable_equalization or options.ideal:
#       terminate_stream(self, inv_estimated_CTF)
#       inv_estimated_CTF_vec = blocks.vector_source_c([1.0/fft_length*math.sqrt(total_subc)]*total_subc,True,total_subc)
#       inv_estimated_CTF_str = blocks.vector_to_stream(gr.sizeof_gr_complex, total_subc)
#       self.inv_estimated_CTF_mul = ofdm.multiply_const_ccf( 1.0/config.rms_amplitude )
#       #inv_estimated_CTF_mul.set_k(1.0/config.rms_amplitude)
#       inv_estimated_CTF = blocks.stream_to_vector(gr.sizeof_gr_complex, total_subc)
#       self.connect( inv_estimated_CTF_vec, inv_estimated_CTF_str, self.inv_estimated_CTF_mul, inv_estimated_CTF)
#       print "Disabled equalization stage"
    '''
    ## LMS Phase tracking
    ## Track residual frequency offset and sampling clock frequency offset

    nondata_blocks = []
    for i in range(config.frame_length):
      if i in config.training_data.pilotsym_pos:
        nondata_blocks.append(i)
        
    print"\t\t\t\t\tnondata_blocks=",nondata_blocks
    pilot_subc = block_header.pilot_tones
    pilot_subcarriers = block_header.pilot_subc_sym
    print "PILOT SUBCARRIERS: ", pilot_subcarriers
        
    phase_tracking = ofdm.lms_phase_tracking_03( total_subc, pilot_subc,
                                               nondata_blocks, pilot_subcarriers,0 )
    self.connect( ofdm_blocks, ( phase_tracking, 0 ) )
    self.connect( inv_estimated_CTF, ( phase_tracking, 1 ) )
    self.connect( frame_start, ( phase_tracking, 2 ) ) ##
    
    if options.scatter_plot_before_phase_tracking:
      self.before_phase_tracking = equalizer
      
    
    if options.disable_phase_tracking or options.ideal:
      terminate_stream(self, phase_tracking)
      print "Disabled phase tracking stage"
    else:
      ofdm_blocks = phase_tracking
    '''
    ## Channel Equalizer
    ##equalizer = ofdm.channel_equalizer( total_subc )
    ##self.connect( ofdm_blocks,       ( equalizer, 0 ) )
    ##self.connect( inv_estimated_CTF, ( equalizer, 1 ) )
    ##self.connect( frame_start,       ( equalizer, 2 ) )
    ##ofdm_blocks = equalizer
    #log_to_file(self, equalizer,"data/equalizer_siso.compl")
    
    
    #log_to_file(self, ofdm_blocks, "data/equalizer.compl")

    ## LMS Phase tracking
    ## Track residual frequency offset and sampling clock frequency offset

    nondata_blocks = []
    for i in range(config.frame_length):
      if i in config.training_data.pilotsym_pos:
        nondata_blocks.append(i)
        
    print"\t\t\t\t\tnondata_blocks=",nondata_blocks
    pilot_subc = block_header.pilot_tones
    pilot_subcarriers = block_header.pilot_subc_sym
    print "PILOT SUBCARRIERS: ", pilot_subcarriers
    
    if options.scatter_plot_before_phase_tracking:
      self.before_phase_tracking = equalizer
        

    ## Output connections

    self.connect( ofdm_blocks, out_ofdm_blocks )
    self.connect( frame_start, out_frame_start )
    if options.ideal is False and options.ideal2 is False:
        self.connect( disp_CTF, out_disp_ctf )
    else:
        self.connect( blocks.vector_source_f([1.0]*total_subc),blocks.stream_to_vector(gr.sizeof_float,total_subc), out_disp_ctf )
    
    

    if log:
      log_to_file( self, sc_metric, "data/sc_metric.float" )
      log_to_file( self, gi_metric, "data/gi_metric.float" )
      log_to_file( self, morelli_foe, "data/morelli_foe.float" )
      log_to_file( self, lms_fir, "data/lms_fir.float" )
      log_to_file( self, sampler_preamble, "data/preamble.compl" )
      log_to_file( self, sync, "data/sync.compl" )
      log_to_file( self, frequency_shift, "data/frequency_shift.compl" )
      log_to_file( self, fft, "data/fft.compl")
      log_to_file( self, fft, "data/fft.float", mag=True )
      
      if vars().has_key( 'subcarrier_mask' ):
        log_to_file( self, subcarrier_mask, "data/subcarrier_mask.compl" )
      
      log_to_file( self, ofdm_blocks, "data/ofdm_blocks_out.compl" )
      log_to_file( self, frame_start, "data/frame_start.float", 
                   char_to_float=True )
      
      log_to_file( self, sampled_chest_preamble, 
                   "data/sampled_chest_preamble.compl" )
      log_to_file( self, LS_channel_estimator, 
                   "data/ls_channel_estimator.compl" )
      log_to_file( self, LS_channel_estimator, 
                   "data/ls_channel_estimator.float", mag=True )
      
      if "ctf_mse_enhancer" in locals(): 
        log_to_file( self, ctf_mse_enhancer, "data/ctf_mse_enhancer.compl" )
        log_to_file( self, ctf_mse_enhancer, "data/ctf_mse_enhancer.float", 
                     mag=True )
      
      log_to_file( self, (ctf_postprocess,0), "data/inc_estimated_ctf.compl" )
      log_to_file( self, (ctf_postprocess,1), "data/disp_ctf.float" )
      
      log_to_file( self, equalizer, "data/equalizer.compl" )
      log_to_file( self, equalizer, "data/equalizer.float", mag=True )
      
      log_to_file( self, phase_tracking, "data/phase_tracking.compl" )
Exemplo n.º 14
0
  def __init__ (self, options):
    gr.top_block.__init__(self, "ofdm_mrrc_benchmark")

    ##self._tx_freq            = options.tx_freq         # tranmitter's center frequency
    ##self._tx_subdev_spec     = options.tx_subdev_spec  # daughterboard to use
    ##self._fusb_block_size    = options.fusb_block_size # usb info for USRP
    ##self._fusb_nblocks       = options.fusb_nblocks    # usb info for USRP
    ##self._which              = options.which_usrp
    self._bandwidth          = options.bandwidth
    self.servants = []
    self._verbose            = options.verbose
    
    ##self._interface          = options.interface
    ##self._mac_addr           = options.mac_addr

    self._options = copy.copy( options )


    self._interpolation = 1
    
    f1 = numpy.array([-107,0,445,0,-1271,0,2959,0,-6107,0,11953,
                      0,-24706,0,82359,262144/2,82359,0,-24706,0,
                      11953,0,-6107,0,2959,0,-1271,0,445,0,-107],
                      numpy.float64)/262144.
    
    print "Software interpolation: %d" % (self._interpolation)

    bw = 1.0/self._interpolation
    tb = bw/5
    if self._interpolation > 1:
      self.tx_filter = gr.hier_block2("filter",
                                   gr.io_signature(1,1,gr.sizeof_gr_complex),
                                   gr.io_signature(1,1,gr.sizeof_gr_complex))
      self.tx_filter2 = gr.hier_block2("filter",
                                   gr.io_signature(1,1,gr.sizeof_gr_complex),
                                   gr.io_signature(1,1,gr.sizeof_gr_complex))
      self.tx_filter.connect( self.tx_filter, gr.interp_fir_filter_ccf(2,f1),
                           gr.interp_fir_filter_ccf(2,f1), self.tx_filter )
      self.tx_filter2.connect( self.tx_filter2, gr.interp_fir_filter_ccf(2,f1),
                           gr.interp_fir_filter_ccf(2,f1), self.tx_filter2 )
      print "New"

    else:
      self.tx_filter = None
      self.tx_filter2 = None
      
    self.decimation = 1
    
    if self.decimation > 1:
      bw = 0.5/self.decimation * 1
      tb = bw/5
      # gain, sampling rate, passband cutoff, stopband cutoff
      # passband ripple in dB, stopband attenuation in dB
      # extra taps
      filt_coeff = optfir.low_pass(1.0, 1.0, bw, bw+tb, 0.1, 60.0, 1)
      print "Software decimation filter length: %d" % (len(filt_coeff))
      self.rx_filter = gr.fir_filter_ccf(self.decimation,filt_coeff)
      self.rx_filter2 = gr.fir_filter_ccf(self.decimation,filt_coeff)
    else:
      self.rx_filter = None
      self.rx_filter2 = None
      
      
##    if not options.from_file is None:
##      # sent captured file to usrp
##      self.src = gr.file_source(gr.sizeof_gr_complex,options.from_file)
##      self._setup_usrp_sink()
##      if hasattr(self, "filter"):
##        self.connect(self.src,self.filter,self.u) #,self.filter
##      else:
##        self.connect(self.src,self.u)
##      
##      return 
    
    
    
    self._setup_tx_path(options)
    self._setup_rx_path(options)
    self._setup_rpc_manager()
    
    config = self.config = station_configuration()
    
    #self.enable_txfreq_adjust("txfreq")
    
    

    if options.imgxfer:
      self.rxpath.setup_imgtransfer_sink()
    
    if not options.no_decoding:
      self.rxpath.publish_rx_performance_measure()
      
    


    self.dst	= (self.rxpath,0)
    self.dst2 	= (self.rxpath,1)
    
    if options.force_rx_filter:
      print "Forcing rx filter usage"
      self.connect( self.rx_filter, self.dst )
      self.connect( self.rx_filter2, self.dst2 )
      self.dst = self.rx_filter
      self.dst2 = self.rx_filter2
    
    
    if options.measure:
      self.m = throughput_measure(gr.sizeof_gr_complex)
      self.m2 = throughput_measure(gr.sizeof_gr_complex)
      self.connect( self.m, self.dst )
      self.connect( self.m2, self.dst2 )
      self.dst = self.m
      self.dst2 = self.m2


    if options.snr is not None:
      if options.berm is not None:
          noise_sigma = 380/32767.0 #empirically given, gives the received SNR range of (1:28) for tx amp. range of (500:10000) which is set in rm_ber_measurement.py
          print " Noise St. Dev. %f" % (noise_sigma)#check for fading channel 
      else:
          snr_db = options.snr
          snr = 10.0**(snr_db/10.0)
          noise_sigma = sqrt( config.rms_amplitude**2 / snr )
          
      print " Noise St. Dev. %f" % (noise_sigma)
      awgn_chan = blocks.add_cc()
      awgn_chan2 = blocks.add_cc()
      awgn_noise_src = analog.fastnoise_source_c(analog.GR_GAUSSIAN, noise_sigma, 0, 8192)
      awgn_noise_src2 = analog.fastnoise_source_c(analog.GR_GAUSSIAN, noise_sigma*2, 0, 2192)
      self.connect( awgn_chan, self.dst )
      self.connect( awgn_chan2, self.dst2 )
      self.connect( awgn_noise_src, (awgn_chan,1) )
      self.connect( awgn_noise_src2, (awgn_chan2,1) )  
      self.dst = awgn_chan
      self.dst2 = awgn_chan2



    if options.freqoff is not None:
      freq_off = self.freq_off = channel.freq_offset(options.freqoff )
      freq_off2 = self.freq_off2  = channel.freq_offset(options.freqoff )
      dst = self.dst
      dst2 = self.dst2
      self.connect( freq_off, dst )
      self.connect( freq_off2, dst2 )
      self.dst = freq_off
      self.dst2 = freq_off2
      self.rpc_mgr_tx.add_interface("set_freq_offset",self.freq_off.set_freqoff)
      self.rpc_mgr_tx.add_interface("set_freq_offset2",self.freq_off2.set_freqoff)


    if options.multipath:
      if options.itu_channel:
        self.fad_chan = channel.itpp_channel(options.bandwidth)
          #fad_chan.set_norm_doppler( 1e-9 )
          #fad_chan.set_LOS( [500.,0,0] )
        self.fad_chan2 = channel.itpp_channel(options.bandwidth)
        self.fad_chan.set_channel_profile( itpp.ITU_Pedestrian_A, 5e-8 )
        self.fad_chan.set_norm_doppler( 1e-8 )
        self.fad_chan2.set_channel_profile( itpp.ITU_Pedestrian_A, 5e-8 )
        self.fad_chan2.set_norm_doppler( 1e-8 )
        self.rpc_mgr_tx.add_interface("set_channel_profile",self.fad_chan.set_channel_profile)
        self.rpc_mgr_tx.add_interface("set_channel_profile",self.fad_chan2.set_channel_profile)
      else:
        fad_chan = filter.fir_filter_ccc(1,[1.0,0.0,2e-1+0.1j,1e-4-0.04j])
        fad_chan2 = filter.fir_filter_ccc(1,[1.0,0.0,2e-1+0.1j,1e-4-0.04j])
        
      self.connect( self.fad_chan, self.dst )
      self.connect( self.fad_chan2, self.dst2 )
      self.dst = self.fad_chan
      self.dst2 = self.fad_chan2

    if options.samplingoffset is not None:
      soff = options.samplingoffset
      interp = moms(1000000*(1.0+soff),1000000)
      interp2 = moms(1000000*(1.0+soff),1000000)
      self.connect( interp, self.dst )
      self.connect( interp2, self.dst2 )
      self.dst = interp
      self.dst2 = interp2
      
      if options.record:
       log_to_file( self, interp, "data/interp_out.compl" )
       log_to_file( self, interp2, "data/interp2_out.compl" )
    
    tmm =blocks.throttle(gr.sizeof_gr_complex, 1e6)
    #tmm2 =blocks.throttle(gr.sizeof_gr_complex, 1e6)
    
    #self.connect( tmm, self.dst )
    #self.connect( tmm2, self.dst2 )
    #self.dst = tmm
    #self.dst2 = tmm2
    
    #inter = blocks.interleave(gr.sizeof_gr_complex)
    #deinter = blocks.deinterleave(gr.sizeof_gr_complex)
    
    # Interleaving input/output streams
    ##self.connect(inter, deinter)
    #self.connect((deinter,0),self.dst)
    #self.connect((deinter,1),self.dst2)
    #self.dst = inter
    #self.dst2 = (inter,1)
    
    
    if options.force_tx_filter:
      print "Forcing tx filter usage"
      self.connect( self.tx_filter, self.dst )
      self.connect( self.tx_filter2, self.dst2 )
      self.dst = self.tx_filter
      self.dst2 = self.tx_filter2
    if options.record:
      log_to_file( self, self.txpath, "data/txpath_out.compl" )
      log_to_file( self, self.txpath2, "data/txpath2_out.compl" )
      
    if options.nullsink:
        self.connect(gr.null_source(gr.sizeof_gr_complex), self.dst)
        self.connect(gr.null_source(gr.sizeof_gr_complex), self.dst2)
        self.dst = gr.null_sink(gr.sizeof_gr_complex)
        self.dst2 = gr.null_sink(gr.sizeof_gr_complex)
        
    
    self.connect( self.txpath,tmm,self.dst )
    self.connect( tmm,self.dst2 )
    #self.connect( self.txpath,self.dst2 )
    
    print "Hit Strg^C to terminate"

    if self._verbose:
        self._print_verbage()
Exemplo n.º 15
0
  def __init__ (self, options):
    gr.top_block.__init__(self, "ofdm_benchmark")

    self._bandwidth          = options.bandwidth
    self.servants = []
    self._verbose            = options.verbose

    self._options = copy.copy( options )
    
    self.ideal = options.ideal
    self.ideal2 = options.ideal2
    
    rms_amp                    = options.rms_amplitude

    self._interpolation = 1

    f1 = numpy.array([-107,0,445,0,-1271,0,2959,0,-6107,0,11953,
                      0,-24706,0,82359,262144/2,82359,0,-24706,0,
                      11953,0,-6107,0,2959,0,-1271,0,445,0,-107],
                      numpy.float64)/262144.

    print "Software interpolation: %d" % (self._interpolation)

    bw = 1.0/self._interpolation
    tb = bw/5
    if self._interpolation > 1:
      self.tx_filter = gr.hier_block2("filter",
                                   gr.io_signature(1,1,gr.sizeof_gr_complex),
                                   gr.io_signature(1,1,gr.sizeof_gr_complex))
      self.tx_filter.connect( self.tx_filter, gr.interp_fir_filter_ccf(2,f1),
                           gr.interp_fir_filter_ccf(2,f1), self.tx_filter )

      print "New"

    else:
      self.tx_filter = None

    self.decimation = 1

    if self.decimation > 1:
      bw = 0.5/self.decimation * 1
      tb = bw/5
      # gain, sampling rate, passband cutoff, stopband cutoff
      # passband ripple in dB, stopband attenuation in dB
      # extra taps
      filt_coeff = optfir.low_pass(1.0, 1.0, bw, bw+tb, 0.1, 60.0, 1)
      print "Software decimation filter length: %d" % (len(filt_coeff))
      self.rx_filter = gr.fir_filter_ccf(self.decimation,filt_coeff)
    else:
      self.rx_filter = None

    self._setup_tx_path(options)
    self._setup_rx_path(options)
    self._setup_rpc_manager()

    config = self.config = station_configuration()


    if options.imgxfer:
      self.rxpath.setup_imgtransfer_sink()

    if not options.no_decoding:
      self.rxpath.publish_rx_performance_measure()

      # capture transmitter's stream to disk
    #self.dst  = gr.file_sink(gr.sizeof_gr_complex,options.to_file)
    self.dst= self.rxpath
    if options.force_rx_filter:
      print "Forcing rx filter usage"
      self.connect( self.rx_filter, self.dst )
      self.dst = self.rx_filter
      
    if options.ideal or self.ideal2:
       self._amplifier = ofdm.multiply_const_ccf( 1.0 )
       self.connect( self._amplifier, self.dst  )
       self.dst = self._amplifier
       self.set_rms_amplitude(rms_amp)
       


    if options.measure:
      self.m = throughput_measure(gr.sizeof_gr_complex)
      self.connect( self.m, self.dst )
      self.dst = self.m


    if options.snr is not None:
      if options.berm is not None:
          # empirically determined to reach 30db SNR max in simulation mode
          noise_sigma = 0.0035
      else:
          snr_db = options.snr
          snr = 10.0**(snr_db/10.0)
          noise_sigma = sqrt( config.rms_amplitude**2 / snr )

      print " Noise St. Dev. %f" % (noise_sigma)

      awgn_chan = blocks.add_cc()
      #awgn_noise_src = ofdm.complex_white_noise( 0.0, noise_sigma )
      awgn_noise_src = analog.fastnoise_source_c(analog.GR_GAUSSIAN, noise_sigma, 0, 8192)
      self.connect( awgn_noise_src, (awgn_chan,1) )
      self.connect( awgn_chan, self.dst  )
      self.dst = awgn_chan


    if options.freqoff is not None:
      freq_off = self.freq_off = channel.freq_offset(options.freqoff )
      dst = self.dst
      self.connect(freq_off, dst) 
      self.dst = freq_off
      self.rpc_mgr_tx.add_interface("set_freq_offset",self.freq_off.set_freqoff)


    if options.multipath:
      if options.itu_channel:
        self.fad_chan = channel.itpp_channel(options.bandwidth)
        self.rpc_mgr_tx.add_interface("set_channel_profile",self.fad_chan.set_channel_profile)
        self.rpc_mgr_tx.add_interface("set_norm_doppler",self.fad_chan.set_norm_doppler)
      else:
        #self.fad_chan = filter.fir_filter_ccc(1,[1.0,0.0,2e-1+0.1j,1e-4-0.04j])
        # filter coefficients for the lab exercise
        self.fad_chan = filter.fir_filter_ccc(1,[0.3267,0.8868,0.3267])
        #self.fad_chan = filter.fir_filter_ccc(1,[0,0,0.1,0.2,0.01,0.3])#0.3267,0.8868,0.3267])
        #self.fad_chan = channels.selective_fading_model(5, 0.1, False, 1, -1, [0, 0, 0], [0.3267,0.8868,0.3267], 10 )
        #self.fad_chan = channels.fading_model(6, 0.05, False);
        #self.fad_chan = channels.dynamic_channel_model(1000000, 0, 0, 0, 0, 3, 0.01, False, 0, [2e-6,4e-6,8e-6],[0.3267,0.8868,0.3267], 20, 0, 0)


      self.connect(self.fad_chan, self.dst)
      self.dst = self.fad_chan

    if options.samplingoffset is not None:
      soff = options.samplingoffset
      interp = moms(1000000*(1.0+soff),1000000)
      #interp = filter.fractional_resampler_cc(0,1000000*(1.0+soff)/1000000.0)
      self.connect( interp, self.dst )
      self.dst = interp

      if options.record:
       log_to_file( self, interp, "data/interp_out.compl" )

    tmm =blocks.throttle(gr.sizeof_gr_complex,options.bandwidth)
    self.connect( tmm, self.dst )
    self.dst = tmm
    if options.force_tx_filter:
      print "Forcing tx filter usage"
      self.connect( self.tx_filter, self.dst )
      self.dst = self.tx_filter
    if options.record:
      log_to_file( self, self.txpath, "data/txpath_out.compl" )


    if options.scatterplot:
      print "Scatterplot enabled"

    self.connect( self.txpath,self.dst )


    print "Hit Strg^C to terminate"

    print "Hit Strg^C to terminate"


    # Display some information about the setup
    if self._verbose:
        self._print_verbage()
Exemplo n.º 16
0
  def publish_rx_performance_measure(self):
    if self._rx_performance_measure_initialized():
      return

    self.rx_performance_measure_initialized = True

    config = station_configuration()
    vlen = config.data_subcarriers
    vlen_sinr_sc = config.subcarriers

    if self.ideal2 is False:
        self.setup_ber_measurement()
        self.setup_snr_measurement()
        ber_mst = self._ber_measuring_tool
    
    if self._options.sinr_est:
        sinr_mst = self._sinr_measurement
    else:
        if self.ideal2 is False:
            snr_mst = self._snr_measurement

    if self.ideal is False and self.ideal2 is False:
        self.ctf = self.filter_ctf()
        self.zmq_probe_ctf = zeromq.pub_sink(gr.sizeof_float,config.data_subcarriers, "tcp://*:5559")
        self.connect(self.ctf, blocks.keep_one_in_n(gr.sizeof_float*config.data_subcarriers,20) ,self.zmq_probe_ctf)
    else:
        #self.zmq_probe_ctf = zeromq.pub_sink(gr.sizeof_float,config.subcarriers, "tcp://*:5559")
        self.connect(self.ctf,blocks.null_sink(gr.sizeof_float*config.subcarriers))
        #self.rx_per_sink = rpsink = corba_rxinfo_sink("himalaya",config.ns_ip,
#                                    config.ns_port,vlen,config.rx_station_id)



#      print "BER img xfer"
#      self.connect(ber_mst,(rpsink,3))
#      ## no sampling needed
      # 3. SNR

    if self.ideal2 is False:
        print "Normal BER measurement"
    
        trig_src = dynamic_trigger_ib(False)
        self.connect(self.bitcount_src,trig_src)
        
        ber_sampler = vector_sampler(gr.sizeof_float,1)
        self.connect(ber_mst,(ber_sampler,0))
        self.connect(trig_src,(ber_sampler,1))
    else:
        if(self._options.coding):
            demod = self._data_decoder
        else:
            demod = self._data_demodulator
        self.connect(self.bitcount_src,blocks.null_sink(gr.sizeof_int) )
        self.connect(demod,blocks.null_sink(gr.sizeof_char))
    
    
    if self._options.log:
          trig_src_float = gr.char_to_float()
          self.connect(trig_src,trig_src_float)
          log_to_file(self, trig_src_float , 'data/dynamic_trigger_out.float')
    
    
    if self._options.sinr_est is False and self.ideal2 is False:
          self.zmq_probe_ber = zeromq.pub_sink(gr.sizeof_float, 1, "tcp://*:5556")
          self.connect(ber_sampler,blocks.keep_one_in_n(gr.sizeof_float,20) ,self.zmq_probe_ber)
    
          if self.ideal2 is False:
              self.zmq_probe_snr = zeromq.pub_sink(gr.sizeof_float, 1, "tcp://*:5555")
              self.connect(snr_mst,blocks.keep_one_in_n(gr.sizeof_float,20) ,self.zmq_probe_snr)
Exemplo n.º 17
0
    def __init__(self, options, log=False):

        ## Read configuration
        config = station_configuration()

        fft_length = config.fft_length
        #cp_length     = config.cp_length
        block_header = config.training_data
        data_subc = config.data_subcarriers
        virtual_subc = config.virtual_subcarriers
        total_subc = config.subcarriers
        block_length = config.block_length
        frame_length = config.frame_length

        L = block_header.mm_periodic_parts

        cp_length = config.cp_length

        print "data_subc: ", config.data_subcarriers
        print "total_subc: ", config.subcarriers
        print "frame_lengthframe_length: ", frame_length

        ## Set Input/Output signature
        gr.hier_block2.__init__(
            self,
            "fbmc_inner_receiver",
            gr.io_signature(1, 1, gr.sizeof_gr_complex),
            gr.io_signaturev(
                4,
                4,
                [
                    gr.sizeof_float * total_subc,  # Normalized |CTF|^2 
                    gr.sizeof_char,  # Frame start
                    gr.sizeof_gr_complex * total_subc,  # OFDM blocks, SNR est
                    gr.sizeof_float
                ]))  # CFO

        ## Input and output ports
        self.input = rx_input = self

        out_ofdm_blocks = (self, 2)
        out_frame_start = (self, 1)
        out_disp_ctf = (self, 0)
        out_disp_cfo = (self, 3)
        #out_snr_pream    = ( self, 3 )

        ## pre-FFT processing
        '''
    ## Compute autocorrelations for S&C preamble
    ## and cyclic prefix
    
    self._sc_metric = sc_metric = autocorrelator( fft_length/2, fft_length/2 )
    self._gi_metric = gi_metric = autocorrelator( fft_length, cp_length )
    
    self.connect( rx_input, sc_metric )
    self.connect( rx_input, gi_metric )
    terminate_stream(self, gi_metric)
    
    ## Sync. Output contains OFDM blocks
    sync = ofdm.time_sync( fft_length/2, 1)
    self.connect( rx_input, ( sync, 0 ) )
    self.connect( sc_metric, ( sync, 1 ) )
    self.connect( sc_metric, ( sync, 2 ) )
    
    ofdm_blocks = ( sync, 0 )
    frame_start = ( sync, 1 )
    log_to_file( self, ( sync, 1 ), "data/fbmc_peak_detector.char" )
    '''
        if options.ideal is False and options.ideal2 is False:
            #Testing old/new metric
            self.tm = schmidl.recursive_timing_metric(2 * fft_length)
            self.connect(self.input, self.tm)
            #log_to_file( self, self.tm, "data/fbmc_rec_sc_metric_ofdm.float" )

            timingmetric_shift = 0  #-2 #int(-cp_length * 0.8)
            tmfilter = filter.fft_filter_fff(
                1, [2. / fft_length] * (fft_length / 2)
            )  # ofdm.lms_fir_ff( fft_length, 1e-3 ) #; filter.fir_filter_fff(1, [1./fft_length]*fft_length)
            self.connect(self.tm, tmfilter)
            self.tm = tmfilter
            #log_to_file( self, self.tm, "data/fbmc_rec_sc_metric_ofdm2.float" )

            self._pd_thres = 0.6
            self._pd_lookahead = fft_length  # empirically chosen
            peak_detector = ofdm.peak_detector_02_fb(self._pd_lookahead,
                                                     self._pd_thres)
            self.connect(self.tm, peak_detector)
            #log_to_file( self, peak_detector, "data/fbmc_rec_peak_detector.char" )

            #frame_start = [0]*frame_length
            #frame_start[0] = 1
            #frame_start = blocks.vector_source_b(frame_start,True)

            #OLD
            #delayed_timesync = blocks.delay(gr.sizeof_char,
            #                           (frame_length-10)*fft_length/2 - fft_length/4 -1 + timingmetric_shift)
            delayed_timesync = blocks.delay(
                gr.sizeof_char,
                (frame_length - 10) * fft_length / 2 - fft_length / 4 +
                int(2.5 * fft_length) + timingmetric_shift - 1)
            #delayed_timesync = blocks.delay(gr.sizeof_char,
            #(frame_length-10)*fft_length/2 - fft_length/4 + int(3.5*fft_length)  + timingmetric_shift-1)
            self.connect(peak_detector, delayed_timesync)

            self.block_sampler = ofdm.vector_sampler(
                gr.sizeof_gr_complex, fft_length / 2 * frame_length)

            self.connect(self.input, self.block_sampler)
            self.connect(delayed_timesync, (self.block_sampler, 1))
            #log_to_file( self, self.block_sampler, "data/fbmc_block_sampler.compl" )

            vt2s = blocks.vector_to_stream(gr.sizeof_gr_complex * fft_length,
                                           frame_length / 2)
            self.connect(self.block_sampler, vt2s)
            #terminate_stream(self,ofdm_blocks)

            ofdm_blocks = vt2s
            '''
        # TODO: dynamic solution
        vt2s = blocks.vector_to_stream(gr.sizeof_gr_complex*block_length/2,
                                                frame_length)
        self.connect(self.block_sampler,vt2s)
        terminate_stream(self,( sync, 0 ))
        ofdm_blocks = vt2s
        '''

            ##stv_help = blocks.stream_to_vector(gr.sizeof_gr_complex*config.fft_length/2, 1)
            #stv_help = blocks.vector_to_stream(gr.sizeof_gr_complex*config.fft_length/2, 2)
            ##self.connect(ofdm_blocks, stv_help)
            ##ofdm_blocks = stv_help
            #ofdm_blocks = ( sync, 0 )
            #frame_start = ( sync, 1 )
            #log_to_file(self, frame_start, "data/frame_start.compl")

            #log_to_file( self, sc_metric, "data/sc_metric.float" )
            #log_to_file( self, gi_metric, "data/gi_metric.float" )
            #log_to_file( self, (sync,1), "data/sync.float" )

            #    log_to_file(self,ofdm_blocks,"data/ofdm_blocks_original.compl")
            frame_start = [0] * int(frame_length / 2)
            frame_start[0] = 1
            frame_start = blocks.vector_source_b(frame_start, True)

            #frame_start2 = [0]*int(frame_length/2)
            #frame_start2[0] = 1
            #frame_start2 = blocks.vector_source_b(frame_start2,True)

        if options.disable_time_sync or options.ideal or options.ideal2:
            if options.ideal is False and options.ideal2 is False:
                terminate_stream(self, ofdm_blocks)
                terminate_stream(self, frame_start)

            serial_to_parallel = blocks.stream_to_vector(
                gr.sizeof_gr_complex, fft_length)
            #discard_cp = ofdm.vector_mask(block_length,cp_length,fft_length,[])
            #serial_to_parallel = blocks.stream_to_vector(gr.sizeof_gr_complex,block_length)
            #discard_cp = ofdm.vector_mask(block_length,cp_length,fft_length,[])
            #self.connect( rx_input,serial_to_parallel)

            #self.connect( rx_input, blocks.delay(gr.sizeof_gr_complex,0),serial_to_parallel)
            initial_skip = blocks.skiphead(gr.sizeof_gr_complex,
                                           2 * fft_length)
            self.connect(rx_input, initial_skip)
            if options.ideal is False and options.ideal2 is False:
                self.connect(initial_skip, serial_to_parallel)
                ofdm_blocks = serial_to_parallel
            else:
                ofdm_blocks = initial_skip
            #self.connect( rx_input, serial_to_parallel, discard_cp )

            frame_start = [0] * int(frame_length / 2)
            frame_start[0] = 1
            frame_start = blocks.vector_source_b(frame_start, True)

            #frame_start2 = [0]*int(frame_length/2)
            #frame_start2[0] = 1
            #frame_start2 = blocks.vector_source_b(frame_start2,True)

            print "Disabled time synchronization stage"

        print "\t\t\t\t\tframe_length = ", frame_length

        if options.ideal is False and options.ideal2 is False:
            ## Extract preamble, feed to Morelli & Mengali frequency offset estimator
            assert (block_header.mm_preamble_pos == 0)
            morelli_foe = ofdm.mm_frequency_estimator(fft_length, 2, 1,
                                                      config.fbmc)
            sampler_preamble = ofdm.vector_sampler(
                gr.sizeof_gr_complex * fft_length, 1)
            self.connect(ofdm_blocks, (sampler_preamble, 0))
            self.connect(frame_start, blocks.delay(gr.sizeof_char, 1),
                         (sampler_preamble, 1))
            self.connect(sampler_preamble, morelli_foe)
            freq_offset = morelli_foe
            print "FRAME_LENGTH: ", frame_length
            #log_to_file( self, sampler_preamble, "data/sampler_preamble.compl" )
            #log_to_file( self, rx_input, "data/rx_input.compl" )
            #log_to_file( self, ofdm_blocks, "data/rx_input.compl" )

            #Extracting preamble for SNR estimation
            #fft_snr_est = fft_blocks.fft_vcc( fft_length, True, [], True )
            #self.connect( sampler_preamble, blocks.stream_to_vector(gr.sizeof_gr_complex*fft_length/2, 2),  fft_snr_est )

            ## Remove virtual subcarriers
            #if fft_length > data_subc:
            #subcarrier_mask_snr_est = ofdm.vector_mask( fft_length, virtual_subc/2,
            #                       total_subc, [] )
            #self.connect( fft_snr_est, subcarrier_mask_snr_est )
            #fft_snr_est = subcarrier_mask_snr_est
            #log_to_file(self, ofdm_blocks, "data/vec_mask.compl")
            ## Least Squares estimator for channel transfer function (CTF)

            #self.connect( fft_snr_est, out_snr_pream ) # Connecting to output

            ## Adaptive LMS FIR filtering of frequency offset
            lms_fir = ofdm.lms_fir_ff(20,
                                      1e-3)  # TODO: verify parameter choice
            self.connect(freq_offset, lms_fir)
            freq_offset = lms_fir

            self.connect(freq_offset,
                         blocks.keep_one_in_n(gr.sizeof_float,
                                              20), out_disp_cfo)
        else:
            self.connect(blocks.vector_source_f([1]), out_disp_cfo)

        #log_to_file(self, lms_fir, "data/lms_fir.float")

        if options.disable_freq_sync or options.ideal or options.ideal2:
            if options.ideal is False and options.ideal2 is False:
                terminate_stream(self, freq_offset)
                freq_offset = blocks.vector_source_f([0.0], True)
            print "Disabled frequency synchronization stage"

        if options.ideal is False and options.ideal2 is False:
            ## Correct frequency shift, feed-forward structure
            frequency_shift = ofdm.frequency_shift_vcc(fft_length,
                                                       -1.0 / fft_length, 0)

            #freq_shift = blocks.multiply_cc()
            #norm_freq = -0.1 / config.fft_length
            #freq_off = self.freq_off_src = analog.sig_source_c(1.0, analog.GR_SIN_WAVE, norm_freq, 1.0, 0.0 )

            self.connect(ofdm_blocks, (frequency_shift, 0))
            self.connect(freq_offset, (frequency_shift, 1))
            self.connect(frame_start, blocks.delay(gr.sizeof_char, 0),
                         (frequency_shift, 2))

            #self.connect(frequency_shift,s2help)
            #ofdm_blocks = s2help
            ofdm_blocks = frequency_shift
        #terminate_stream(self, frequency_shift)

        #inner_pb_filt = self._inner_pilot_block_filter = fbmc_inner_pilot_block_filter()
        #self.connect(ofdm_blocks,inner_pb_filt)
        #self.connect(frame_start,(inner_pb_filt,1))
        #self.connect((inner_pb_filt,1),blocks.null_sink(gr.sizeof_char))

        #ofdm_blocks = (inner_pb_filt,0)

        overlap_ser_to_par = ofdm.fbmc_overlapping_serial_to_parallel_cvc(
            fft_length)
        self.separate_vcvc = ofdm.fbmc_separate_vcvc(fft_length, 2)
        self.polyphase_network_vcvc_1 = ofdm.fbmc_polyphase_network_vcvc(
            fft_length, 4, 4 * fft_length - 1, True)
        self.polyphase_network_vcvc_2 = ofdm.fbmc_polyphase_network_vcvc(
            fft_length, 4, 4 * fft_length - 1, True)
        self.junction_vcvc = ofdm.fbmc_junction_vcvc(fft_length, 2)
        self.fft_fbmc = fft_blocks.fft_vcc(fft_length, True, [], True)

        print "config.training_data.fbmc_no_preambles: ", config.training_data.fbmc_no_preambles
        #center_preamble = [1, -1j, -1, 1j]

        #self.preamble = preamble = [0]*total_subc + center_preamble*((int)(total_subc/len(center_preamble)))+[0]*total_subc

        self.preamble = preamble = config.training_data.fbmc_pilotsym_fd_list
        #inv_preamble = 1. / numpy.array(self.preamble)
        #print "self.preamble: ", len(self.preamble
        #print "inv_preamble: ", list(inv_preamble)

        #print "self.preamble", self.preamble
        #print "self.preamble2", self.preamble2

        self.multiply_const = ofdm.multiply_const_vcc(
            ([1.0 / (math.sqrt(fft_length * 0.6863))] * total_subc))
        self.beta_multiplier_vcvc = ofdm.fbmc_beta_multiplier_vcvc(
            total_subc, 4, 4 * fft_length - 1, 0)
        #self.skiphead = blocks.skiphead(gr.sizeof_gr_complex*total_subc, 2*4-1-1)
        self.skiphead = blocks.skiphead(gr.sizeof_gr_complex * total_subc, 2)
        self.skiphead_1 = blocks.skiphead(gr.sizeof_gr_complex * total_subc, 0)
        #self.remove_preamble_vcvc = ofdm.fbmc_remove_preamble_vcvc(total_subc, config.frame_data_part/2, config.training_data.fbmc_no_preambles*total_subc/2)
        #self.subchannel_processing_vcvc = ofdm.fbmc_subchannel_processing_vcvc(total_subc, config.frame_data_part, 1, 2, 1, 0)
        self.oqam_postprocessing_vcvc = ofdm.fbmc_oqam_postprocessing_vcvc(
            total_subc, 0, 0)

        #log_to_file( self, ofdm_blocks, "data/PRE_FBMC.compl" )
        #log_to_file( self, self.fft_fbmc, "data/FFT_FBMC.compl" )

        if options.ideal is False and options.ideal2 is False:
            self.subchannel_processing_vcvc = ofdm.fbmc_subchannel_processing_vcvc(
                total_subc, config.frame_data_part, 3, 2, 1, 0)
            help2 = blocks.keep_one_in_n(gr.sizeof_gr_complex * total_subc,
                                         frame_length)
            self.connect((self.subchannel_processing_vcvc, 1), help2)
            #log_to_file( self, self.subchannel_processing_vcvc, "data/fbmc_subc.compl" )

        #terminate_stream(self, help2)

        if options.ideal is False and options.ideal2 is False:
            self.connect(
                ofdm_blocks,
                blocks.vector_to_stream(gr.sizeof_gr_complex, fft_length),
                overlap_ser_to_par)
        else:
            self.connect(ofdm_blocks, overlap_ser_to_par)

        self.connect(overlap_ser_to_par, self.separate_vcvc)
        self.connect((self.separate_vcvc, 1),
                     (self.polyphase_network_vcvc_2, 0))
        self.connect((self.separate_vcvc, 0),
                     (self.polyphase_network_vcvc_1, 0))
        self.connect((self.polyphase_network_vcvc_1, 0),
                     (self.junction_vcvc, 0))
        self.connect((self.polyphase_network_vcvc_2, 0),
                     (self.junction_vcvc, 1))
        self.connect(self.junction_vcvc, self.fft_fbmc)

        ofdm_blocks = self.fft_fbmc
        print "config.dc_null: ", config.dc_null
        if fft_length > data_subc:
            subcarrier_mask_fbmc = ofdm.vector_mask_dc_null(
                fft_length, virtual_subc / 2, total_subc, config.dc_null, [])
            self.connect(ofdm_blocks, subcarrier_mask_fbmc)
            ofdm_blocks = subcarrier_mask_fbmc
            #log_to_file(self, ofdm_blocks, "data/vec_mask.compl")
            ## Least Squares estimator for channel transfer function (CTF)
            #log_to_file( self, subcarrier_mask, "data/OFDM_Blocks.compl" )

        self.connect(ofdm_blocks, self.beta_multiplier_vcvc)

        ofdm_blocks = self.beta_multiplier_vcvc
        #self.connect(ofdm_blocks,self.multiply_const)
        #self.connect(self.multiply_const, (self.skiphead, 0))

        self.connect(ofdm_blocks, (self.skiphead, 0))
        #log_to_file( self, self.skiphead, "data/fbmc_skiphead_4.compl" )

        #self.connect(ofdm_blocks, self.multiply_const)
        #self.connect(self.multiply_const, self.beta_multiplier_vcvc)
        #self.connect((self.beta_multiplier_vcvc, 0), (self.skiphead, 0))
        if options.ideal or options.ideal2:
            self.connect((self.skiphead, 0), (self.skiphead_1, 0))
        else:
            self.connect((self.skiphead, 0),
                         (self.subchannel_processing_vcvc, 0))
            self.connect((self.subchannel_processing_vcvc, 0),
                         (self.skiphead_1, 0))

        #log_to_file( self, self.skiphead, "data/fbmc_subc.compl" )
        #self.connect((self.skiphead_1, 0),(self.remove_preamble_vcvc, 0))
        #self.connect((self.remove_preamble_vcvc, 0),  (self.oqam_postprocessing_vcvc, 0))

        #ofdm_blocks = self.oqam_postprocessing_vcvc
        #log_to_file( self, self.subchannel_processing_vcvc, "data/subc_0.compl" )
        #log_to_file( self, (self.subchannel_processing_vcvc,1), "data/subc_1.compl" )

        self.connect((self.skiphead_1, 0), (self.oqam_postprocessing_vcvc, 0))
        #self.connect((self.oqam_postprocessing_vcvc, 0), (self.remove_preamble_vcvc, 0) )

        ofdm_blocks = (self.oqam_postprocessing_vcvc, 0
                       )  #(self.remove_preamble_vcvc, 0)
        #log_to_file( self, (self.oqam_postprocessing_vcvc, 0), "data/fbmc_before_remove.compl" )

        #log_to_file( self, self.skiphead, "data/SKIP_HEAD_FBMC.compl" )
        #log_to_file( self, self.beta_multiplier_vcvc, "data/BETA_REC_FBMC.compl" )
        #log_to_file( self, self.oqam_postprocessing_vcvc, "data/REC_OUT_FBMC.compl" )
        """ DISABLED OFDM CHANNEL ESTIMATION PREMBLE -> CORRECT LATER to compare FBMC and OFDM channel estimation
    #TAKING THE CHANNEL ESTIMATION PREAMBLE
    chest_pre_trigger = blocks.delay( gr.sizeof_char, 3 )
    sampled_chest_preamble = ofdm.vector_sampler( gr.sizeof_gr_complex * fft_length/2, 2 )
      
    self.connect( frame_start,       chest_pre_trigger )
    self.connect( chest_pre_trigger, ( sampled_chest_preamble, 1 ) )
    self.connect( frequency_shift,       ( sampled_chest_preamble, 0 ) )
    #ofdm_blocks = sampled_chest_preamble
    
        
    ## FFT
    fft = fft_blocks.fft_vcc( fft_length, True, [], True )
    self.connect( sampled_chest_preamble, fft )
    ofdm_blocks_est = fft
    log_to_file( self, sampled_chest_preamble, "data/SAMPLED_EST_PREAMBLE.compl" )
    log_to_file( self, ofdm_blocks_est, "data/FFT.compl" )
    
    
    ## Remove virtual subcarriers
    if fft_length > data_subc:
      subcarrier_mask = ofdm.vector_mask( fft_length, virtual_subc/2,
                                           total_subc, [] )
      self.connect( ofdm_blocks_est, subcarrier_mask )
      ofdm_blocks_est = subcarrier_mask
      #log_to_file(self, ofdm_blocks, "data/vec_mask.compl")
       ## Least Squares estimator for channel transfer function (CTF)
      log_to_file( self, subcarrier_mask, "data/OFDM_Blocks.compl" )
    
          
    ## post-FFT processing
      
    
    
    ## extract channel estimation preamble from frame
    ##chest_pre_trigger = blocks.delay( gr.sizeof_char, 
                                  ##1 )
    ##sampled_chest_preamble = \
     ## ofdm.vector_sampler( gr.sizeof_gr_complex * total_subc, 1 )
    ##self.connect( frame_start,       chest_pre_trigger )
    ##self.connect( chest_pre_trigger, ( sampled_chest_preamble, 1 ) )
    ##self.connect( ofdm_blocks,       ( sampled_chest_preamble, 0 ) )
    

    
    ## Least Squares estimator for channel transfer function (CTF)
    inv_preamble_fd = numpy.array( block_header.pilotsym_fd[ 
        block_header.channel_estimation_pilot[0] ] )
    #print "Channel estimation pilot: ", inv_preamble_fd
    inv_preamble_fd = 1. / inv_preamble_fd
    
    LS_channel_estimator = ofdm.multiply_const_vcc( list( inv_preamble_fd ) )
    self.connect( ofdm_blocks_est, LS_channel_estimator )
    estimated_CTF = LS_channel_estimator
    terminate_stream(self,estimated_CTF)
    """
        if options.ideal is False and options.ideal2 is False:
            if options.logcir:
                log_to_file(self, sampled_chest_preamble, "data/PREAM.compl")

            if not options.disable_ctf_enhancer:

                if options.logcir:
                    ifft1 = fft_blocks.fft_vcc(total_subc, False, [], True)
                    self.connect(
                        estimated_CTF, ifft1,
                        gr.null_sink(gr.sizeof_gr_complex * total_subc))
                    summ1 = ofdm.vector_sum_vcc(total_subc)
                    c2m = gr.complex_to_mag(total_subc)
                    self.connect(estimated_CTF, summ1,
                                 gr.null_sink(gr.sizeof_gr_complex))
                    self.connect(estimated_CTF, c2m,
                                 gr.null_sink(gr.sizeof_float * total_subc))
                    log_to_file(self, ifft1, "data/CIR1.compl")
                    log_to_file(self, summ1, "data/CTFsumm1.compl")
                    log_to_file(self, estimated_CTF, "data/CTF1.compl")
                    log_to_file(self, c2m, "data/CTFmag1.float")

                ## MSE enhancer
                ctf_mse_enhancer = ofdm.CTF_MSE_enhancer(
                    total_subc, cp_length + cp_length)
                self.connect(estimated_CTF, ctf_mse_enhancer)
                #      log_to_file( self, ctf_mse_enhancer, "data/ctf_mse_enhancer_original.compl")
                #ifft3 = fft_blocks.fft_vcc(total_subc,False,[],True)
                #null_noise = ofdm.noise_nulling(total_subc, cp_length + cp_length)
                #ctf_mse_enhancer = fft_blocks.fft_vcc(total_subc,True,[],True)
                #ctf_mse_enhancer = ofdm.vector_mask( fft_length, virtual_subc/2,
                # total_subc, [] )
                #self.connect( estimated_CTF, ifft3,null_noise,ctf_mse_enhancer )

                estimated_CTF = ctf_mse_enhancer
                print "Disabled CTF MSE enhancer"

            if options.logcir:
                ifft2 = fft_blocks.fft_vcc(total_subc, False, [], True)
                self.connect(estimated_CTF, ifft2,
                             gr.null_sink(gr.sizeof_gr_complex * total_subc))
                summ2 = ofdm.vector_sum_vcc(total_subc)
                c2m2 = gr.complex_to_mag(total_subc)
                self.connect(estimated_CTF, summ2,
                             gr.null_sink(gr.sizeof_gr_complex))
                self.connect(estimated_CTF, c2m2,
                             gr.null_sink(gr.sizeof_float * total_subc))
                log_to_file(self, ifft2, "data/CIR2.compl")
                log_to_file(self, summ2, "data/CTFsumm2.compl")
                log_to_file(self, estimated_CTF, "data/CTF2.compl")
                log_to_file(self, c2m2, "data/CTFmag2.float")

            ## Postprocess the CTF estimate
            ## CTF -> inverse CTF (for equalizer)
            ## CTF -> norm |.|^2 (for CTF display)
            ctf_postprocess = ofdm.fbmc_postprocess_CTF_estimate(total_subc)

            self.connect(help2, ctf_postprocess)
            #estimated_SNR = ( ctf_postprocess, 0 )
            disp_CTF = (ctf_postprocess, 0)
            #self.connect(estimated_SNR,out_snr_pream)
            #log_to_file( self, estimated_SNR, "data/fbmc_SNR.float" )

            #Disable measured SNR output
            #terminate_stream(self, estimated_SNR)
            #self.connect(blocks.vector_source_f([10.0],True) ,out_snr_pream)


#     if options.disable_equalization or options.ideal:
#       terminate_stream(self, inv_estimated_CTF)
#       inv_estimated_CTF_vec = blocks.vector_source_c([1.0/fft_length*math.sqrt(total_subc)]*total_subc,True,total_subc)
#       inv_estimated_CTF_str = blocks.vector_to_stream(gr.sizeof_gr_complex, total_subc)
#       self.inv_estimated_CTF_mul = ofdm.multiply_const_ccf( 1.0/config.rms_amplitude )
#       #inv_estimated_CTF_mul.set_k(1.0/config.rms_amplitude)
#       inv_estimated_CTF = blocks.stream_to_vector(gr.sizeof_gr_complex, total_subc)
#       self.connect( inv_estimated_CTF_vec, inv_estimated_CTF_str, self.inv_estimated_CTF_mul, inv_estimated_CTF)
#       print "Disabled equalization stage"
        '''
    ## LMS Phase tracking
    ## Track residual frequency offset and sampling clock frequency offset

    nondata_blocks = []
    for i in range(config.frame_length):
      if i in config.training_data.pilotsym_pos:
        nondata_blocks.append(i)
        
    print"\t\t\t\t\tnondata_blocks=",nondata_blocks
    pilot_subc = block_header.pilot_tones
    pilot_subcarriers = block_header.pilot_subc_sym
    print "PILOT SUBCARRIERS: ", pilot_subcarriers
        
    phase_tracking = ofdm.lms_phase_tracking_03( total_subc, pilot_subc,
                                               nondata_blocks, pilot_subcarriers,0 )
    self.connect( ofdm_blocks, ( phase_tracking, 0 ) )
    self.connect( inv_estimated_CTF, ( phase_tracking, 1 ) )
    self.connect( frame_start, ( phase_tracking, 2 ) ) ##
    
    if options.scatter_plot_before_phase_tracking:
      self.before_phase_tracking = equalizer
      
    
    if options.disable_phase_tracking or options.ideal:
      terminate_stream(self, phase_tracking)
      print "Disabled phase tracking stage"
    else:
      ofdm_blocks = phase_tracking
    '''
        ## Channel Equalizer
        ##equalizer = ofdm.channel_equalizer( total_subc )
        ##self.connect( ofdm_blocks,       ( equalizer, 0 ) )
        ##self.connect( inv_estimated_CTF, ( equalizer, 1 ) )
        ##self.connect( frame_start,       ( equalizer, 2 ) )
        ##ofdm_blocks = equalizer
        #log_to_file(self, equalizer,"data/equalizer_siso.compl")

        #log_to_file(self, ofdm_blocks, "data/equalizer.compl")

        ## LMS Phase tracking
        ## Track residual frequency offset and sampling clock frequency offset

        nondata_blocks = []
        for i in range(config.frame_length):
            if i in config.training_data.pilotsym_pos:
                nondata_blocks.append(i)

        print "\t\t\t\t\tnondata_blocks=", nondata_blocks
        pilot_subc = block_header.pilot_tones
        pilot_subcarriers = block_header.pilot_subc_sym
        print "PILOT SUBCARRIERS: ", pilot_subcarriers

        if options.scatter_plot_before_phase_tracking:
            self.before_phase_tracking = equalizer

        ## Output connections

        self.connect(ofdm_blocks, out_ofdm_blocks)
        self.connect(frame_start, out_frame_start)
        if options.ideal is False and options.ideal2 is False:
            self.connect(disp_CTF, out_disp_ctf)
        else:
            self.connect(blocks.vector_source_f([1.0] * total_subc),
                         blocks.stream_to_vector(gr.sizeof_float, total_subc),
                         out_disp_ctf)

        if log:
            log_to_file(self, sc_metric, "data/sc_metric.float")
            log_to_file(self, gi_metric, "data/gi_metric.float")
            log_to_file(self, morelli_foe, "data/morelli_foe.float")
            log_to_file(self, lms_fir, "data/lms_fir.float")
            log_to_file(self, sampler_preamble, "data/preamble.compl")
            log_to_file(self, sync, "data/sync.compl")
            log_to_file(self, frequency_shift, "data/frequency_shift.compl")
            log_to_file(self, fft, "data/fft.compl")
            log_to_file(self, fft, "data/fft.float", mag=True)

            if vars().has_key('subcarrier_mask'):
                log_to_file(self, subcarrier_mask,
                            "data/subcarrier_mask.compl")

            log_to_file(self, ofdm_blocks, "data/ofdm_blocks_out.compl")
            log_to_file(self,
                        frame_start,
                        "data/frame_start.float",
                        char_to_float=True)

            log_to_file(self, sampled_chest_preamble,
                        "data/sampled_chest_preamble.compl")
            log_to_file(self, LS_channel_estimator,
                        "data/ls_channel_estimator.compl")
            log_to_file(self,
                        LS_channel_estimator,
                        "data/ls_channel_estimator.float",
                        mag=True)

            if "ctf_mse_enhancer" in locals():
                log_to_file(self, ctf_mse_enhancer,
                            "data/ctf_mse_enhancer.compl")
                log_to_file(self,
                            ctf_mse_enhancer,
                            "data/ctf_mse_enhancer.float",
                            mag=True)

            log_to_file(self, (ctf_postprocess, 0),
                        "data/inc_estimated_ctf.compl")
            log_to_file(self, (ctf_postprocess, 1), "data/disp_ctf.float")

            log_to_file(self, equalizer, "data/equalizer.compl")
            log_to_file(self, equalizer, "data/equalizer.float", mag=True)

            log_to_file(self, phase_tracking, "data/phase_tracking.compl")
Exemplo n.º 18
0
  def __init__(self, options):
    gr.hier_block2.__init__(self, "fbmc_receive_path",
        gr.io_signature(1,1,gr.sizeof_gr_complex),
        gr.io_signature(0,0,0))

    print "This is  FBMC receive path 1x1"

    common_options.defaults(options)

    config = self.config = station_configuration()

    config.data_subcarriers     = dsubc = options.subcarriers
    config.cp_length            = 0
    config.frame_data_blocks    = options.data_blocks
    config._verbose             = options.verbose #TODO: update
    config.fft_length           = options.fft_length
    config.dc_null             = options.dc_null
    config.training_data        = default_block_header(dsubc,
                                          config.fft_length,config.dc_null,options)
    config.coding              = options.coding
    config.ber_window           = options.ber_window

    config.periodic_parts       = 8

    config.frame_id_blocks      = 1 # FIXME

    self._options               = copy.copy(options) #FIXME: do we need this?
    
    config.fbmc                 = options.fbmc

    

    config.block_length = config.fft_length + config.cp_length
    config.frame_data_part = config.frame_data_blocks + config.frame_id_blocks
    config.frame_length = config.training_data.fbmc_no_preambles + 2*config.frame_data_part 
    
    config.postpro_frame_length = config.frame_data_part + \
                          config.training_data.no_pilotsyms
    config.subcarriers = dsubc + \
                         config.training_data.pilot_subcarriers
    config.virtual_subcarriers = config.fft_length - config.subcarriers - config.dc_null

    total_subc = config.subcarriers
    


    # check some bounds
    if config.fft_length < config.subcarriers:
      raise SystemError, "Subcarrier number must be less than FFT length"
    if config.fft_length < config.cp_length:
      raise SystemError, "Cyclic prefix length must be less than FFT length"



    #self.input =  gr.kludge_copy(gr.sizeof_gr_complex)
    #self.connect( self, self.input )
    self.input = self
    self.ideal = options.ideal
    self.ideal2 = options.ideal2


    ## Inner receiver

    ## Timing & Frequency Synchronization
    ## Channel estimation + Equalization
    ## Phase Tracking for sampling clock frequency offset correction
    inner_receiver = self.inner_receiver = fbmc_inner_receiver( options, options.log )
    self.connect( self.input, inner_receiver )
    ofdm_blocks = ( inner_receiver, 2 )
    frame_start = ( inner_receiver, 1 )
    disp_ctf = ( inner_receiver, 0 )
    #self.snr_est_preamble = ( inner_receiver, 3 )
    #terminate_stream(self,snr_est_preamble)
    disp_cfo =  ( inner_receiver, 3 )
    
    if self.ideal is False and self.ideal2 is False:
        self.zmq_probe_freqoff = zeromq.pub_sink(gr.sizeof_float, 1, "tcp://*:5557")
        self.connect(disp_cfo, self.zmq_probe_freqoff)
    else:
        self.connect(disp_cfo, blocks.null_sink(gr.sizeof_float))




    # for ID decoder
    used_id_bits = config.used_id_bits = 8 #TODO: constant in source code!
    rep_id_bits = config.rep_id_bits = dsubc/used_id_bits #BPSK
    if options.log:
      print "rep_id_bits %d" % (rep_id_bits)
    if dsubc % used_id_bits <> 0:
      raise SystemError,"Data subcarriers need to be multiple of 10"

    ## Workaround to avoid periodic structure
    seed(1)
    whitener_pn = [randint(0,1) for i in range(used_id_bits*rep_id_bits)]





    ## NOTE!!! BIG HACK!!!
    ## first preamble ain't equalized ....
    ## for Milan's SNR estimator






    ## Outer Receiver

    ## Make new inner receiver compatible with old outer receiver
    ## FIXME: renew outer receiver

    self.ctf = disp_ctf

    #frame_sampler = ofdm_frame_sampler(options)
    frame_sampler = fbmc_frame_sampler(options)

    self.connect( ofdm_blocks, frame_sampler)
    self.connect( frame_start, (frame_sampler,1) )


#
#    ft = [0] * config.frame_length
#    ft[0] = 1
#
#    # The next block ensures that only complete frames find their way into
#    # the old outer receiver. The dynamic frame start trigger is hence
#    # replaced with a static one, fixed to the frame length.
#
#    frame_sampler = ofdm.vector_sampler( gr.sizeof_gr_complex * total_subc,
#                                              config.frame_length )
#    self.symbol_output = blocks.vector_to_stream( gr.sizeof_gr_complex * total_subc,
#                                              config.frame_length )
#    delayed_frame_start = blocks.delay( gr.sizeof_char, config.frame_length - 1 )
#    damn_static_frame_trigger = blocks.vector_source_b( ft, True )
#
#    if options.enable_erasure_decision:
#      frame_gate = vector_sampler(
#        gr.sizeof_gr_complex * total_subc * config.frame_length, 1 )
#      self.connect( ofdm_blocks, frame_sampler, frame_gate,
#                    self.symbol_output )
#    else:
#      self.connect( ofdm_blocks, frame_sampler, self.symbol_output )
#
#    self.connect( frame_start, delayed_frame_start, ( frame_sampler, 1 ) )

    if options.enable_erasure_decision:
      frame_gate = frame_sampler.frame_gate

    self.symbol_output = frame_sampler

    orig_frame_start = frame_start
    frame_start = (frame_sampler,1)
    self.frame_trigger = frame_start
    #terminate_stream(self, self.frame_trigger)








    ## Pilot block filter
    pb_filt = self._pilot_block_filter = fbmc_pilot_block_filter()
    self.connect(self.symbol_output,pb_filt)
    self.connect(self.frame_trigger,(pb_filt,1))

    self.frame_data_trigger = (pb_filt,1)
    
    #self.symbol_output = pb_filt
    

    #if options.log:
      #log_to_file(self, pb_filt, "data/pb_filt_out.compl")


    if config.fbmc:
        pda_in = pb_filt

    else:
        ## Pilot subcarrier filter
        ps_filt = self._pilot_subcarrier_filter = pilot_subcarrier_filter()
        self.connect(self.symbol_output,ps_filt)

        if options.log:
            log_to_file(self, ps_filt, "data/ps_filt_out.compl")
            
        pda_in = ps_filt

    


    ## Workaround to avoid periodic structure
    # for ID decoder
    seed(1)
    whitener_pn = [randint(0,1) for i in range(used_id_bits*rep_id_bits)]

    

    if not options.enable_erasure_decision:

      ## ID Block Filter
      # Filter ID block, skip data blocks
      id_bfilt = self._id_block_filter = vector_sampler(
            gr.sizeof_gr_complex * dsubc, 1 )
      if not config.frame_id_blocks == 1:
        raise SystemExit, "# ID Blocks > 1 not supported"

      self.connect(   pda_in     ,   id_bfilt      )
      self.connect( self.frame_data_trigger, ( id_bfilt, 1 ) ) # trigger

      #log_to_file( self, id_bfilt, "data/id_bfilt.compl" )

      ## ID Demapper and Decoder, soft decision
      self.id_dec = self._id_decoder = ofdm.coded_bpsk_soft_decoder( dsubc,
          used_id_bits, whitener_pn )
      self.connect( id_bfilt, self.id_dec )
      

      print "Using coded BPSK soft decoder for ID detection"


    else: # options.enable_erasure_decision:

      id_bfilt = self._id_block_filter = vector_sampler(
        gr.sizeof_gr_complex * total_subc, config.frame_id_blocks )

      id_bfilt_trig_delay = 0
      for x in range( config.frame_length ):
        if x in config.training_data.pilotsym_pos:
          id_bfilt_trig_delay += 1
        else:
          break
      print "Position of ID block within complete frame: %d" %(id_bfilt_trig_delay)

      assert( id_bfilt_trig_delay > 0 ) # else not supported

      id_bfilt_trig = blocks.delay( gr.sizeof_char, id_bfilt_trig_delay )

      self.connect( ofdm_blocks, id_bfilt )
      self.connect( orig_frame_start, id_bfilt_trig, ( id_bfilt, 1 ) )

      self.id_dec = self._id_decoder = ofdm.coded_bpsk_soft_decoder( total_subc,
          used_id_bits, whitener_pn, config.training_data.shifted_pilot_tones )
      self.connect( id_bfilt, self.id_dec )

      print "Using coded BPSK soft decoder for ID detection"

      # The threshold block either returns 1.0 if the llr-value from the
      # id decoder is below the threshold, else 0.0. Hence we convert this
      # into chars, 0 and 1, and use it as trigger for the sampler.

      min_llr = ( self.id_dec, 1 )
      erasure_threshold = gr.threshold_ff( 10.0, 10.0, 0 ) # FIXME is it the optimal threshold?
      erasure_dec = gr.float_to_char()
      id_gate = vector_sampler( gr.sizeof_short, 1 )
      ctf_gate = vector_sampler( gr.sizeof_float * total_subc, 1 )


      self.connect( self.id_dec ,       id_gate )
      self.connect( self.ctf,      ctf_gate )

      self.connect( min_llr,       erasure_threshold,  erasure_dec )
      self.connect( erasure_dec, ( frame_gate, 1 ) )
      self.connect( erasure_dec, ( id_gate,    1 ) )
      self.connect( erasure_dec, ( ctf_gate,   1 ) )

      self.id_dec = self._id_decoder = id_gate
      self.ctf = ctf_gate



      print "Erasure decision for IDs is enabled"




    if options.log:
      id_dec_f = gr.short_to_float()
      self.connect(self.id_dec,id_dec_f)
      log_to_file(self, id_dec_f, "data/id_dec_out.float")


    if options.log:
      log_to_file(self, id_bfilt, "data/id_blockfilter_out.compl")


    # TODO: refactor names




    if options.log:
      map_src_f = gr.char_to_float(dsubc)
      self.connect(map_src,map_src_f)
      log_to_file(self, map_src_f, "data/map_src_out.float")

    ## Allocation Control
    if options.static_allocation: #DEBUG
        
        if options.coding:
            mode = 1 # Coding mode 1-9
            bitspermode = [0.5,1,1.5,2,3,4,4.5,5,6] # Information bits per mode
            bitcount_vec = [(int)(config.data_subcarriers*config.frame_data_blocks*bitspermode[mode-1])]
            bitloading = mode
        else:
            bitloading = 1
            bitcount_vec = [config.data_subcarriers*config.frame_data_blocks*bitloading]
        #bitcount_vec = [config.data_subcarriers*config.frame_data_blocks]
        self.bitcount_src = blocks.vector_source_i(bitcount_vec,True,1)
        # 0s for ID block, then data
        #bitloading_vec = [0]*dsubc+[0]*(dsubc/2)+[2]*(dsubc/2)
        bitloading_vec = [0]*dsubc+[bitloading]*dsubc
        bitloading_src = blocks.vector_source_b(bitloading_vec,True,dsubc)
        power_vec = [1]*config.data_subcarriers
        power_src = blocks.vector_source_f(power_vec,True,dsubc)
    else:
        self.allocation_buffer = ofdm.allocation_buffer(config.data_subcarriers, config.frame_data_blocks, "tcp://"+options.tx_hostname+":3333",config.coding)
        self.bitcount_src = (self.allocation_buffer,0)
        bitloading_src = (self.allocation_buffer,1)
        power_src = (self.allocation_buffer,2)
        self.connect(self.id_dec, self.allocation_buffer)
        if options.benchmarking:
            self.allocation_buffer.set_allocation([4]*config.data_subcarriers,[1]*config.data_subcarriers)

    if options.log:
        log_to_file(self, self.bitcount_src, "data/bitcount_src_rx.int")
        log_to_file(self, bitloading_src, "data/bitloading_src_rx.char")
        log_to_file(self, power_src, "data/power_src_rx.cmplx")
        log_to_file(self, self.id_dec, "data/id_dec_rx.short")

    ## Power Deallocator
    pda = self._power_deallocator = multiply_frame_fc(config.frame_data_part, dsubc)
    self.connect(pda_in,(pda,0))
    self.connect(power_src,(pda,1))

    ## Demodulator
#    if 0:
#          ac_vector = [0.0+0.0j]*208
#          ac_vector[0] = (2*10**(-0.452))
#          ac_vector[3] = (10**(-0.651))
#          ac_vector[7] = (10**(-1.151))
#          csi_vector_inv=abs(numpy.fft.fft(numpy.sqrt(ac_vector)))**2
#          dm_csi = numpy.fft.fftshift(csi_vector_inv) # TODO

    dm_csi = [1]*dsubc # TODO
    dm_csi = blocks.vector_source_f(dm_csi,True)
    ## Depuncturer
    dp_trig = [0]*(config.frame_data_blocks/2)
    dp_trig[0] = 1
    dp_trig = blocks.vector_source_b(dp_trig,True) # TODO



    if(options.coding):
        fo=ofdm.fsm(1,2,[91,121])
        if options.interleave:
            int_object=trellis.interleaver(2000,666)
            deinterlv = trellis.permutation(int_object.K(),int_object.DEINTER(),1,gr.sizeof_float)
        
        demod = self._data_demodulator = generic_softdemapper_vcf(dsubc, config.frame_data_part, config.coding)
        #self.connect(dm_csi,blocks.stream_to_vector(gr.sizeof_float,dsubc),(demod,2))
        if(options.ideal):
            self.connect(dm_csi,blocks.stream_to_vector(gr.sizeof_float,dsubc),(demod,2))
        else:
            dm_csi_filter = self.dm_csi_filter = filter.single_pole_iir_filter_ff(0.01,dsubc)
            self.connect(self.ctf, self.dm_csi_filter,(demod,2))
            #log_to_file(self, dm_csi_filter, "data/softs_csi.float")
        #self.connect(dm_trig,(demod,3))
    else:
        demod = self._data_demodulator = generic_demapper_vcb(dsubc, config.frame_data_part)
    if options.benchmarking:
        # Do receiver benchmarking until the number of frames x symbols are collected
        self.connect(pda,blocks.head(gr.sizeof_gr_complex*dsubc, options.N*config.frame_data_blocks),demod)
    else:        
        self.connect(pda,demod)
    self.connect(bitloading_src,(demod,1))

    if(options.coding):
        ## Depuncturing
        if not options.nopunct:
            depuncturing = depuncture_ff(dsubc,0)
            frametrigger_bitmap_filter = blocks.vector_source_b([1,0],True)
            self.connect(bitloading_src,(depuncturing,1))
            self.connect(dp_trig,(depuncturing,2))

        ## Decoding
        chunkdivisor = int(numpy.ceil(config.frame_data_blocks/5.0))
        print "Number of chunks at Viterbi decoder: ", chunkdivisor
        decoding = self._data_decoder = ofdm.viterbi_combined_fb(fo,dsubc,-1,-1,2,chunkdivisor,[-1,-1,-1,1,1,-1,1,1],ofdm.TRELLIS_EUCLIDEAN)

        
        if options.log and options.coding:
            log_to_file(self, decoding, "data/decoded.char")
            if not options.nopunct:
                log_to_file(self, depuncturing, "data/vit_in.float")

        if not options.nopunct:
            if options.interleave:
                self.connect(demod,deinterlv,depuncturing,decoding)
            else:
                self.connect(demod,depuncturing,decoding)
        else:
            self.connect(demod,decoding)
        self.connect(self.bitcount_src, multiply_const_ii(1./chunkdivisor), (decoding,1))

    if options.scatterplot or options.scatter_plot_before_phase_tracking:
        if self.ideal2 is False:
            scatter_vec_elem = self._scatter_vec_elem = ofdm.vector_element(dsubc,40)
            scatter_s2v = self._scatter_s2v = blocks.stream_to_vector(gr.sizeof_gr_complex,config.frame_data_blocks)
    
            scatter_id_filt = skip(gr.sizeof_gr_complex*dsubc,config.frame_data_blocks)
            scatter_id_filt.skip_call(0)
            scatter_trig = [0]*config.frame_data_part
            scatter_trig[0] = 1
            scatter_trig = blocks.vector_source_b(scatter_trig,True)
            self.connect(scatter_trig,(scatter_id_filt,1))
            self.connect(scatter_vec_elem,scatter_s2v)
    
            if not options.scatter_plot_before_phase_tracking:
                print "Enabling Scatterplot for data subcarriers"
                self.connect(pda,scatter_id_filt,scatter_vec_elem)
                  # Work on this
                  #scatter_sink = ofdm.scatterplot_sink(dsubc)
                  #self.connect(pda,scatter_sink)
                  #self.connect(map_src,(scatter_sink,1))
                  #self.connect(dm_trig,(scatter_sink,2))
                  #print "Enabled scatterplot gui interface"
                self.zmq_probe_scatter = zeromq.pub_sink(gr.sizeof_gr_complex,config.frame_data_blocks, "tcp://*:5560")
                self.connect(scatter_s2v, blocks.keep_one_in_n(gr.sizeof_gr_complex*config.frame_data_blocks,20), self.zmq_probe_scatter)
            else:
                print "Enabling Scatterplot for data before phase tracking"
                inner_rx = inner_receiver.before_phase_tracking
                #scatter_sink2 = ofdm.scatterplot_sink(dsubc,"phase_tracking")
                op = copy.copy(options)
                op.enable_erasure_decision = False
                new_framesampler = ofdm_frame_sampler(op)
                self.connect( inner_rx, new_framesampler )
                self.connect( orig_frame_start, (new_framesampler,1) )
                new_ps_filter = pilot_subcarrier_filter()
                new_pb_filter = fbmc_pilot_block_filter()
    
                self.connect( (new_framesampler,1), (new_pb_filter,1) )
                self.connect( new_framesampler, new_pb_filter,
                             new_ps_filter, scatter_id_filt, scatter_vec_elem )
    
                #self.connect( new_ps_filter, scatter_sink2 )
                #self.connect( map_src, (scatter_sink2,1))
                #self.connect( dm_trig, (scatter_sink2,2))


    if options.log:
      if(options.coding):
          log_to_file(self, demod, "data/data_stream_out.float")
      else:
          data_f = gr.char_to_float()
          self.connect(demod,data_f)
          log_to_file(self, data_f, "data/data_stream_out.float")



    if options.sfo_feedback:
      used_id_bits = 8
      rep_id_bits = config.data_subcarriers/used_id_bits

      seed(1)
      whitener_pn = [randint(0,1) for i in range(used_id_bits*rep_id_bits)]

      id_enc = ofdm.repetition_encoder_sb(used_id_bits,rep_id_bits,whitener_pn)
      self.connect( self.id_dec, id_enc )

      id_mod = ofdm_bpsk_modulator(dsubc)
      self.connect( id_enc, id_mod )

      id_mod_conj = gr.conjugate_cc(dsubc)
      self.connect( id_mod, id_mod_conj )

      id_mult = blocks.multiply_vcc(dsubc)
      self.connect( id_bfilt, ( id_mult,0) )
      self.connect( id_mod_conj, ( id_mult,1) )

#      id_mult_avg = filter.single_pole_iir_filter_cc(0.01,dsubc)
#      self.connect( id_mult, id_mult_avg )

      id_phase = gr.complex_to_arg(dsubc)
      self.connect( id_mult, id_phase )

      log_to_file( self, id_phase, "data/id_phase.float" )

      est=ofdm.LS_estimator_straight_slope(dsubc)
      self.connect(id_phase,est)

      slope=blocks.multiply_const_ff(1e6/2/3.14159265)
      self.connect( (est,0), slope )

      log_to_file( self, slope, "data/slope.float" )
      log_to_file( self, (est,1), "data/offset.float" )

    # ------------------------------------------------------------------------ #




    # Display some information about the setup
    if config._verbose:
      self._print_verbage()

    ## debug logging ##
    if options.log:
#      log_to_file(self,self.ofdm_symbols,"data/unequalized_rx_ofdm_symbols.compl")
#      log_to_file(self,self.ofdm_symbols,"data/unequalized_rx_ofdm_symbols.float",mag=True)


      fftlen = 256
      my_window = window.hamming(fftlen) #.blackmanharris(fftlen)
      rxs_sampler = vector_sampler(gr.sizeof_gr_complex,fftlen)
      rxs_sampler_vect = concatenate([[1],[0]*49])
      rxs_trigger = blocks.vector_source_b(rxs_sampler_vect.tolist(),True)
      rxs_window = blocks.multiply_const_vcc(my_window)
      rxs_spectrum = gr.fft_vcc(fftlen,True,[],True)
      rxs_mag = gr.complex_to_mag(fftlen)
      rxs_avg = filter.single_pole_iir_filter_ff(0.01,fftlen)
      #rxs_logdb = blocks.nlog10_ff(20.0,fftlen,-20*log10(fftlen))
      rxs_logdb = gr.kludge_copy( gr.sizeof_float * fftlen )
      rxs_decimate_rate = gr.keep_one_in_n(gr.sizeof_float*fftlen,1)
      self.connect(rxs_trigger,(rxs_sampler,1))
      self.connect(self.input,rxs_sampler,rxs_window,
                   rxs_spectrum,rxs_mag,rxs_avg,rxs_logdb, rxs_decimate_rate)
      log_to_file( self, rxs_decimate_rate, "data/psd_input.float" )


    #output branches
    self.publish_rx_performance_measure()
Exemplo n.º 19
0
    def __init__(self, options, log=False):

        ## Read configuration
        config = station_configuration()

        fft_length = config.fft_length
        cp_length = config.cp_length
        block_header = config.training_data
        data_subc = config.data_subcarriers
        virtual_subc = config.virtual_subcarriers
        total_subc = config.subcarriers
        block_length = config.block_length
        frame_length = config.frame_length

        L = block_header.mm_periodic_parts

        frame_data_blocks = options.data_blocks

        ## Set Input/Output signature
        gr.hier_block2.__init__(
            self,
            "ofdm_inner_receiver",
            gr.io_signature(1, 1, gr.sizeof_gr_complex),
            gr.io_signature4(
                4,
                4,
                gr.sizeof_gr_complex * total_subc,  # OFDM blocks
                gr.sizeof_char,  # Frame start
                gr.sizeof_float * total_subc,  # Normalized |CTF|^2
                gr.sizeof_float * total_subc))  # Normalized |CTF|^2

        ## Input and output ports
        self.input = rx_input = (self, 0)

        out_ofdm_blocks = (self, 0)
        out_frame_start = (self, 1)
        out_disp_ctf = (self, 2)
        out_disp_ctf2 = (self, 3)

        ## pre-FFT processing

        ## Compute autocorrelations for S&C preamble
        ## and cyclic prefix
        sc_metric = autocorrelator(fft_length / 2, fft_length / 2)
        gi_metric = autocorrelator(fft_length, cp_length)

        self.connect(rx_input, sc_metric)
        self.connect(rx_input, gi_metric)

        ## Sync. Output contains OFDM blocks
        sync = ofdm.time_sync(fft_length, cp_length)
        self.connect(rx_input, (sync, 0))
        self.connect(sc_metric, (sync, 1))
        self.connect(gi_metric, (sync, 2))
        ofdm_blocks = (sync, 0)
        frame_start = (sync, 1)

        if options.disable_time_sync or options.ideal:
            terminate_stream(self, ofdm_blocks)
            terminate_stream(self, frame_start)

            serial_to_parallel = blocks.stream_to_vector(
                gr.sizeof_gr_complex, block_length)
            discard_cp = ofdm.vector_mask(block_length, cp_length, fft_length,
                                          [])
            ofdm_blocks = discard_cp
            self.connect(rx_input, serial_to_parallel, discard_cp)

            frame_start = [0] * frame_length
            frame_start[0] = 1
            frame_start = blocks.vector_source_b(frame_start, True)

            print "Disabled time synchronization stage"

        ## Extract preamble, feed to Morelli & Mengali frequency offset estimator
        assert (block_header.mm_preamble_pos == 0)
        morelli_foe = ofdm.mm_frequency_estimator(fft_length, L)
        sampler_preamble = ofdm.vector_sampler(
            gr.sizeof_gr_complex * fft_length, 1)
        self.connect(ofdm_blocks, (sampler_preamble, 0))
        self.connect(frame_start, (sampler_preamble, 1))
        self.connect(sampler_preamble, morelli_foe)
        freq_offset = morelli_foe

        ## Adaptive LMS FIR filtering of frequency offset
        lms_fir = ofdm.lms_fir_ff(20, 1e-3)  # TODO: verify parameter choice
        self.connect(freq_offset, lms_fir)
        freq_offset = lms_fir
        log_to_file(self, lms_fir, "data/foe_21.float")

        #    log_to_file(self, lms_fir, "data/lms_fir.float")
        #    log_to_file(self, lms_fir2, "data/lms_fir2.float")

        if options.disable_freq_sync or options.ideal:
            terminate_stream(self, freq_offset)
            freq_offset = blocks.vector_source_f([0.0], True)
            print "Disabled frequency synchronization stage"

        ## Correct frequency shift, feed-forward structure
        frequency_shift = ofdm.frequency_shift_vcc(fft_length,
                                                   -1.0 / fft_length,
                                                   cp_length)
        self.connect(ofdm_blocks, (frequency_shift, 0))
        self.connect(freq_offset, (frequency_shift, 1))
        self.connect(frame_start, (frequency_shift, 2))
        ofdm_blocks = frequency_shift

        ## FFT
        fft = fft_blocks.fft_vcc(fft_length, True, [], True)
        self.connect(ofdm_blocks, fft)
        ofdm_blocks = fft

        ## Remove virtual subcarriers
        if fft_length > data_subc:
            subcarrier_mask = ofdm.vector_mask(fft_length, virtual_subc / 2,
                                               total_subc, [])
            self.connect(ofdm_blocks, subcarrier_mask)
            ofdm_blocks = subcarrier_mask

            ## Least Squares estimator for channel transfer function (CTF)

            # if options.logcir:
            # log_to_file( self, ofdm_blocks, "data/OFDM_Blocks.compl" )

            # inv_preamble_fd = numpy.array( block_header.pilotsym_fd[
            # block_header.channel_estimation_pilot[0] ] )
            # print "Channel estimation pilot: ", inv_preamble_fd
            # inv_preamble_fd = 1. / inv_preamble_fd
            # LS_channel_estimator0 = ofdm.multiply_const_vcc( list( inv_preamble_fd ) )
            # self.connect( ofdm_blocks, LS_channel_estimator0, blocks.null_sink(gr.sizeof_gr_complex*total_subc))
            # log_to_file( self, LS_channel_estimator0, "data/OFDM_Blocks_eq.compl" )

        ## post-FFT processing

        ## extract channel estimation preamble from frame

        if options.est_preamble == 1:
            chest_pre_trigger = blocks.delay(gr.sizeof_char, 1)
            sampled_chest_preamble = \
              ofdm.vector_sampler( gr.sizeof_gr_complex * total_subc, 1 )
            self.connect(frame_start, chest_pre_trigger)
            self.connect(chest_pre_trigger, (sampled_chest_preamble, 1))
            self.connect(ofdm_blocks, (sampled_chest_preamble, 0))

            ## Least Squares estimator for channel transfer function (CTF)

            # Taking inverse for estimating h11 (h12)
            inv_preamble_fd_1 = numpy.array(block_header.pilotsym_fd_1[
                block_header.channel_estimation_pilot[0]])
            print "inv_preamble_fd_1: ", inv_preamble_fd_1
            inv_preamble_fd_1 = inv_preamble_fd_1[0::2]
            #print "inv_preamble_fd_1 ", inv_preamble_fd_1

            # Taking inverse for estimating h21 (h22)
            inv_preamble_fd_2 = numpy.array(block_header.pilotsym_fd_2[
                block_header.channel_estimation_pilot[0]])
            print "inv_preamble_fd_2: ", inv_preamble_fd_2
            inv_preamble_fd_2 = inv_preamble_fd_2[1::2]
            #print "inv_preamble_fd_2 ", inv_preamble_fd_2

            print "inv_preamble_fd_1: ", inv_preamble_fd_1
            print "inv_preamble_fd_2: ", inv_preamble_fd_2

            inv_preamble_fd_1 = 1. / inv_preamble_fd_1
            inv_preamble_fd_2 = 1. / inv_preamble_fd_2

            dd = []
            for i in range(total_subc / 2):
                dd.extend([i * 2])

            skip_block_1 = ofdm.int_skip(total_subc, 2, 0)
            skip_block_2 = ofdm.int_skip(total_subc, 2, 1)
            #    inta_estim_1 = ofdm.interpolator(total_subc,2,dd)
            #    inta_estim_2 = ofdm.interpolator(total_subc,2,dd)

            LS_channel_estimator_1 = ofdm.multiply_const_vcc(
                list(inv_preamble_fd_1))
            LS_channel_estimator_2 = ofdm.multiply_const_vcc(
                list(inv_preamble_fd_2))
            self.connect(sampled_chest_preamble, skip_block_1,
                         LS_channel_estimator_1)  #,inta_estim_1 )
            self.connect(sampled_chest_preamble, skip_block_2,
                         LS_channel_estimator_2)  #,inta_estim_2 )

            estimated_CTF_1 = LS_channel_estimator_1  # h0
            estimated_CTF_2 = LS_channel_estimator_2  # h1              # h3

            if not options.disable_ctf_enhancer:

                # if options.logcir:
                # ifft1 = fft_blocks.fft_vcc(total_subc,False,[],True)
                # self.connect( estimated_CTF, ifft1,blocks.null_sink(gr.sizeof_gr_complex*total_subc))
                # summ1 = ofdm.vector_sum_vcc(total_subc)
                # c2m =gr.complex_to_mag(total_subc)
                # self.connect( estimated_CTF,summ1 ,blocks.null_sink(gr.sizeof_gr_complex))
                # self.connect( estimated_CTF, c2m,blocks.null_sink(gr.sizeof_float*total_subc))
                # log_to_file( self, ifft1, "data/CIR1.compl" )
                # log_to_file( self, summ1, "data/CTFsumm1.compl" )
                # log_to_file( self, estimated_CTF, "data/CTF1.compl" )
                # log_to_file( self, c2m, "data/CTFmag1.float" )

                ## MSE enhancer
                ctf_mse_enhancer_1 = ofdm.CTF_MSE_enhancer(
                    total_subc, cp_length + cp_length)
                ctf_mse_enhancer_2 = ofdm.CTF_MSE_enhancer(
                    total_subc, cp_length + cp_length)
                self.connect(estimated_CTF_1, ctf_mse_enhancer_1)
                self.connect(estimated_CTF_2, ctf_mse_enhancer_2)

                estimated_CTF_1 = ctf_mse_enhancer_1
                estimated_CTF_2 = ctf_mse_enhancer_2

                print "Disabled CTF MSE enhancer"

            ctf_postprocess_1 = ofdm.postprocess_CTF_estimate(total_subc / 2)
            self.connect(estimated_CTF_1, (ctf_postprocess_1, 0))
            ctf_postprocess_2 = ofdm.postprocess_CTF_estimate(total_subc / 2)
            self.connect(estimated_CTF_2, (ctf_postprocess_2, 0))

            inv_CTF_1 = (ctf_postprocess_1, 0)
            disp_CTF_1 = (ctf_postprocess_1, 1)
            inv_CTF_2 = (ctf_postprocess_2, 0)
            disp_CTF_2 = (ctf_postprocess_2, 1)

            disp_CTF_RX0 = blocks.add_ff(total_subc / 2)

            self.connect(disp_CTF_1, (disp_CTF_RX0, 0))
            self.connect(disp_CTF_2, (disp_CTF_RX0, 1))

            terminate_stream(self, disp_CTF_RX0)
            terminate_stream(self, inv_CTF_2)

            disp_CTF_RX0 = blocks.null_source(gr.sizeof_float * total_subc)
            disp_CTF_RX1 = blocks.null_source(gr.sizeof_float * total_subc)
            ## Channel Equalizer

            #log_to_file(self, ofdm_blocks, "data/vec_mask.compl")
            #log_to_file(self, ofdm_blocks2, "data/vec_mask2.compl")

            nondata_blocks = []
            for i in range(config.frame_length):
                if i in config.training_data.pilotsym_pos:
                    nondata_blocks.append(i)

            pilot_subc = block_header.pilot_tones
            pilot_subcarriers = block_header.pilot_subc_sym
            print "PILOT SUBCARRIERS: ", pilot_subcarriers

            phase_tracking = ofdm.lms_phase_tracking_03(
                total_subc, pilot_subc, nondata_blocks, pilot_subcarriers, 0)

            ##phase_tracking = ofdm.lms_phase_tracking_02( total_subc, pilot_subc,
            ##                                          nondata_blocks )
            ##phase_tracking2 = ofdm.lms_phase_tracking_02( total_subc, pilot_subc,
            ##                                           nondata_blocks )

            #    self.connect( ofdm_blocks,          ( phase_tracking, 0 ) )
            #    self.connect( ofdm_blocks2,          ( phase_tracking, 1 ))
            #    self.connect( inv_CTF_1,            ( phase_tracking, 2 ) )
            #    self.connect( inv_CTF_3,            ( phase_tracking, 3 ) )
            #    self.connect( frame_start,            ( phase_tracking, 4 ) )
            #    self.connect( frame_start2,            ( phase_tracking, 5) )
            #
            #    self.connect( ofdm_blocks2,          ( phase_tracking2, 0 ) )
            #    self.connect( ofdm_blocks,          ( phase_tracking2, 1 ))
            #    self.connect( inv_CTF_3,            ( phase_tracking2, 2 ) )
            #    self.connect( inv_CTF_1,            ( phase_tracking2, 3 ) )
            #    self.connect( frame_start2,            ( phase_tracking2, 4 ) )
            #    self.connect( frame_start,            ( phase_tracking2, 5 ) )

            self.connect(ofdm_blocks, (phase_tracking, 0))
            self.connect(inv_CTF_1, (phase_tracking, 1))
            self.connect(frame_start, (phase_tracking, 2))

            #self.connect(phase_tracking,blocks.null_sink(gr.sizeof_gr_complex*total_subc))

            ofdm_blocks = phase_tracking
            '''equalizer = ofdm.channel_equalizer_mimo_2( total_subc )
        self.connect(  ofdm_blocks,         ( equalizer, 0 ) )
        self.connect(  ofdm_blocks2,        ( equalizer, 1 ) )
        self.connect( inv_CTF_1,            ( equalizer, 2 ) )
        self.connect( inv_CTF_2,            ( equalizer, 3 ) )
        self.connect( inv_CTF_3,            ( equalizer, 4 ) )
        self.connect( inv_CTF_4,            ( equalizer, 5 ) )
        self.connect( frame_start,          ( equalizer, 6 ) )
        self.connect( frame_start2,         ( equalizer, 7 ) )
        ofdm_blocks = equalizer'''

            equalizer = ofdm.channel_equalizer_mimo_2(total_subc)
            self.connect(ofdm_blocks, (equalizer, 0))
            self.connect(estimated_CTF_1, (equalizer, 1))
            self.connect(estimated_CTF_2, (equalizer, 2))
            self.connect(frame_start, (equalizer, 3))
            #ofdm_blocks = equalizer

            #ofdm_blocks2 = equalizer2

            ofdm_blocks = equalizer

            #log_to_file(self, equalizer,"data/equalizer.compl")
            log_to_file(self, ofdm_blocks, "data/equalizer.compl")
            log_to_file(self, estimated_CTF_1, "data/estimated_CTF_1.compl")
            log_to_file(self, estimated_CTF_2, "data/estimated_CTF_2.compl")

            ## LMS Phase tracking
            ## Track residual frequency offset and sampling clock frequency offset
            '''
        nondata_blocks = []
        for i in range(config.frame_length):
          if i in config.training_data.pilotsym_pos:
            nondata_blocks.append(i)
            
        pilot_subc = block_header.pilot_tones
            
        phase_tracking = ofdm.lms_phase_tracking_02( total_subc, pilot_subc,
                                                   nondata_blocks )
        self.connect( equalizer, ( phase_tracking, 0 ) )
        self.connect( frame_start, ( phase_tracking, 1 ) )
        
        phase_tracking2 = ofdm.lms_phase_tracking_02( total_subc, pilot_subc,
                                                    nondata_blocks )
        self.connect( equalizer2, ( phase_tracking2, 0 ) )
        self.connect( frame_start2, ( phase_tracking2, 1 ) )
        
        # if options.scatter_plot_before_phase_tracking:
          # self.before_phase_tracking = equalizer
          
        
        if options.disable_phase_tracking or options.ideal:
          terminate_stream(self, phase_tracking)
          terminate_stream(self, phase_tracking2)
          print "Disabled phase tracking stage"
        else:
          ofdm_blocks = phase_tracking
          ofdm_blocks2 = phase_tracking2
          
        log_to_file(self,phase_tracking, "data/phase_tracking.compl")
        '''
            '''combine = blocks.add_cc(config.subcarriers)
        self.connect(ofdm_blocks, (combine,0))
        self.connect(ofdm_blocks2, (combine,1))
        ofdm_blocks = combine'''
            ##    div = gr.multiply_cc(config.subcarriers)
            ##    const = blocks.vector_source_c([[0.5+0]*config.subcarriers],True)
            ##    self.connect(ofdm_blocks,div)
            ##    self.connect(const,(div,1))
            ##    ofdm_blocks=div
            #    log_to_file(self,combine,"data/combine.compl")
            ## Output connections

            self.connect(ofdm_blocks, out_ofdm_blocks)
            self.connect(frame_start, out_frame_start)
            self.connect(disp_CTF_RX0, out_disp_ctf)
            self.connect(disp_CTF_RX1, out_disp_ctf2)

        else:  # (2 preambles for channel estimation)
            chest_pre_trigger_1 = blocks.delay(gr.sizeof_char, 1)

            chest_pre_trigger_2 = blocks.delay(gr.sizeof_char, 2)
            sampled_chest_preamble_1 = \
              ofdm.vector_sampler( gr.sizeof_gr_complex * total_subc, 1 )

            sampled_chest_preamble_2 = \
              ofdm.vector_sampler( gr.sizeof_gr_complex * total_subc, 1 )

            self.connect(frame_start, chest_pre_trigger_1)
            self.connect(chest_pre_trigger_1, (sampled_chest_preamble_1, 1))
            self.connect(ofdm_blocks, (sampled_chest_preamble_1, 0))

            self.connect(frame_start, chest_pre_trigger_2)
            self.connect(chest_pre_trigger_2, (sampled_chest_preamble_2, 1))
            self.connect(ofdm_blocks, (sampled_chest_preamble_2, 0))

            ## Least Squares estimator for channel transfer function (CTF)

            # Taking inverse for estimating h11 (h12)
            inv_preamble_fd_1 = numpy.array(block_header.pilotsym_fd_1[
                block_header.channel_estimation_pilot[0]])
            print "inv_preamble_fd_1: ", inv_preamble_fd_1
            #inv_preamble_fd_1 = inv_preamble_fd_1[0::2]
            #print "inv_preamble_fd_1 ", inv_preamble_fd_1

            # Taking inverse for estimating h21 (h22)
            inv_preamble_fd_2 = numpy.array(block_header.pilotsym_fd_2[
                block_header.channel_estimation_pilot[0] + 1])
            print "inv_preamble_fd_2: ", inv_preamble_fd_2
            #inv_preamble_fd_2 = inv_preamble_fd_2[1::2]
            #print "inv_preamble_fd_2 ", inv_preamble_fd_2

            print "inv_preamble_fd_1: ", inv_preamble_fd_1
            print "inv_preamble_fd_2: ", inv_preamble_fd_2

            inv_preamble_fd_1 = 1. / inv_preamble_fd_1
            inv_preamble_fd_2 = 1. / inv_preamble_fd_2

            #dd = []
            #for i in range (total_subc/2):
            #  dd.extend([i*2])

            skip_block_1 = ofdm.int_skip(total_subc, 2, 0)
            skip_block_11 = ofdm.int_skip(total_subc, 2, 0)
            skip_block_2 = ofdm.int_skip(total_subc, 2, 1)
            #    inta_estim_1 = ofdm.interpolator(total_subc,2,dd)
            #    inta_estim_2 = ofdm.interpolator(total_subc,2,dd)

            LS_channel_estimator_1 = ofdm.multiply_const_vcc(
                list(inv_preamble_fd_1))
            LS_channel_estimator_2 = ofdm.multiply_const_vcc(
                list(inv_preamble_fd_2))
            self.connect(sampled_chest_preamble_1,
                         LS_channel_estimator_1)  #,inta_estim_1 )
            self.connect(sampled_chest_preamble_2,
                         LS_channel_estimator_2)  #,inta_estim_2 )

            estimated_CTF_1 = LS_channel_estimator_1  # h0
            estimated_CTF_2 = LS_channel_estimator_2  # h1              # h3

            if not options.disable_ctf_enhancer:

                # if options.logcir:
                # ifft1 = fft_blocks.fft_vcc(total_subc,False,[],True)
                # self.connect( estimated_CTF, ifft1,blocks.null_sink(gr.sizeof_gr_complex*total_subc))
                # summ1 = ofdm.vector_sum_vcc(total_subc)
                # c2m =gr.complex_to_mag(total_subc)
                # self.connect( estimated_CTF,summ1 ,blocks.null_sink(gr.sizeof_gr_complex))
                # self.connect( estimated_CTF, c2m,blocks.null_sink(gr.sizeof_float*total_subc))
                # log_to_file( self, ifft1, "data/CIR1.compl" )
                # log_to_file( self, summ1, "data/CTFsumm1.compl" )
                # log_to_file( self, estimated_CTF, "data/CTF1.compl" )
                # log_to_file( self, c2m, "data/CTFmag1.float" )

                ## MSE enhancer
                ctf_mse_enhancer_1 = ofdm.CTF_MSE_enhancer(
                    total_subc, cp_length + cp_length)
                ctf_mse_enhancer_2 = ofdm.CTF_MSE_enhancer(
                    total_subc, cp_length + cp_length)
                self.connect(estimated_CTF_1, ctf_mse_enhancer_1)
                self.connect(estimated_CTF_2, ctf_mse_enhancer_2)

                estimated_CTF_1 = ctf_mse_enhancer_1
                estimated_CTF_2 = ctf_mse_enhancer_2

                print "Disabled CTF MSE enhancer"

            ctf_postprocess_1 = ofdm.postprocess_CTF_estimate(total_subc)
            self.connect(estimated_CTF_1, (ctf_postprocess_1, 0))
            ctf_postprocess_2 = ofdm.postprocess_CTF_estimate(total_subc)
            self.connect(estimated_CTF_2, (ctf_postprocess_2, 0))

            inv_CTF_1 = (ctf_postprocess_1, 0)
            disp_CTF_1 = (ctf_postprocess_1, 1)
            inv_CTF_2 = (ctf_postprocess_2, 0)
            disp_CTF_2 = (ctf_postprocess_2, 1)

            #disp_CTF_RX0 = blocks.add_ff(total_subc)

            #self.connect ( disp_CTF_1, (disp_CTF_RX0, 0) )
            #self.connect ( disp_CTF_2, (disp_CTF_RX0, 1) )

            #terminate_stream(self,disp_CTF_RX0)
            terminate_stream(self, inv_CTF_2)

            disp_CTF_RX0 = disp_CTF_1
            disp_CTF_RX1 = disp_CTF_2
            ## Channel Equalizer

            #log_to_file(self, ofdm_blocks, "data/vec_mask.compl")
            #log_to_file(self, ofdm_blocks2, "data/vec_mask2.compl")

            nondata_blocks = []
            for i in range(config.frame_length):
                if i in config.training_data.pilotsym_pos:
                    nondata_blocks.append(i)

            pilot_subc = block_header.pilot_tones
            pilot_subcarriers = block_header.pilot_subc_sym
            print "PILOT SUBCARRIERS: ", pilot_subcarriers

            phase_tracking = ofdm.lms_phase_tracking_03(
                total_subc, pilot_subc, nondata_blocks, pilot_subcarriers, 0)

            ##phase_tracking = ofdm.lms_phase_tracking_02( total_subc, pilot_subc,
            ##                                          nondata_blocks )
            ##phase_tracking2 = ofdm.lms_phase_tracking_02( total_subc, pilot_subc,
            ##                                           nondata_blocks )

            #    self.connect( ofdm_blocks,          ( phase_tracking, 0 ) )
            #    self.connect( ofdm_blocks2,          ( phase_tracking, 1 ))
            #    self.connect( inv_CTF_1,            ( phase_tracking, 2 ) )
            #    self.connect( inv_CTF_3,            ( phase_tracking, 3 ) )
            #    self.connect( frame_start,            ( phase_tracking, 4 ) )
            #    self.connect( frame_start2,            ( phase_tracking, 5) )
            #
            #    self.connect( ofdm_blocks2,          ( phase_tracking2, 0 ) )
            #    self.connect( ofdm_blocks,          ( phase_tracking2, 1 ))
            #    self.connect( inv_CTF_3,            ( phase_tracking2, 2 ) )
            #    self.connect( inv_CTF_1,            ( phase_tracking2, 3 ) )
            #    self.connect( frame_start2,            ( phase_tracking2, 4 ) )
            #    self.connect( frame_start,            ( phase_tracking2, 5 ) )

            self.connect(ofdm_blocks, (phase_tracking, 0))
            self.connect(inv_CTF_1, skip_block_11, (phase_tracking, 1))
            self.connect(frame_start, (phase_tracking, 2))

            #self.connect(phase_tracking,blocks.null_sink(gr.sizeof_gr_complex*total_subc))

            if options.disable_phase_tracking or options.ideal:
                terminate_stream(self, phase_tracking)
                print "Disabled phase tracking stage"
            else:
                ofdm_blocks = phase_tracking
            '''equalizer = ofdm.channel_equalizer_mimo_2( total_subc )
        self.connect(  ofdm_blocks,         ( equalizer, 0 ) )
        self.connect(  ofdm_blocks2,        ( equalizer, 1 ) )
        self.connect( inv_CTF_1,            ( equalizer, 2 ) )
        self.connect( inv_CTF_2,            ( equalizer, 3 ) )
        self.connect( inv_CTF_3,            ( equalizer, 4 ) )
        self.connect( inv_CTF_4,            ( equalizer, 5 ) )
        self.connect( frame_start,          ( equalizer, 6 ) )
        self.connect( frame_start2,         ( equalizer, 7 ) )
        ofdm_blocks = equalizer'''

            equalizer = ofdm.channel_equalizer_mimo_2(total_subc)
            self.connect(ofdm_blocks, (equalizer, 0))
            self.connect(estimated_CTF_1, skip_block_1, (equalizer, 1))
            self.connect(estimated_CTF_2, skip_block_2, (equalizer, 2))
            self.connect(frame_start, (equalizer, 3))
            #ofdm_blocks = equalizer

            #ofdm_blocks2 = equalizer2

            ofdm_blocks = equalizer

            #log_to_file(self, equalizer,"data/equalizer.compl")
            log_to_file(self, ofdm_blocks, "data/equalizer.compl")
            log_to_file(self, estimated_CTF_1, "data/estimated_CTF_1.compl")
            log_to_file(self, estimated_CTF_2, "data/estimated_CTF_2.compl")

            ## LMS Phase tracking
            ## Track residual frequency offset and sampling clock frequency offset
            '''
        nondata_blocks = []
        for i in range(config.frame_length):
          if i in config.training_data.pilotsym_pos:
            nondata_blocks.append(i)
            
        pilot_subc = block_header.pilot_tones
            
        phase_tracking = ofdm.lms_phase_tracking_02( total_subc, pilot_subc,
                                                   nondata_blocks )
        self.connect( equalizer, ( phase_tracking, 0 ) )
        self.connect( frame_start, ( phase_tracking, 1 ) )
        
        phase_tracking2 = ofdm.lms_phase_tracking_02( total_subc, pilot_subc,
                                                    nondata_blocks )
        self.connect( equalizer2, ( phase_tracking2, 0 ) )
        self.connect( frame_start2, ( phase_tracking2, 1 ) )
        
        # if options.scatter_plot_before_phase_tracking:
          # self.before_phase_tracking = equalizer
          
        
        if options.disable_phase_tracking or options.ideal:
          terminate_stream(self, phase_tracking)
          terminate_stream(self, phase_tracking2)
          print "Disabled phase tracking stage"
        else:
          ofdm_blocks = phase_tracking
          ofdm_blocks2 = phase_tracking2
          
        log_to_file(self,phase_tracking, "data/phase_tracking.compl")
        '''
            '''combine = blocks.add_cc(config.subcarriers)
        self.connect(ofdm_blocks, (combine,0))
        self.connect(ofdm_blocks2, (combine,1))
        ofdm_blocks = combine'''
            ##    div = gr.multiply_cc(config.subcarriers)
            ##    const = blocks.vector_source_c([[0.5+0]*config.subcarriers],True)
            ##    self.connect(ofdm_blocks,div)
            ##    self.connect(const,(div,1))
            ##    ofdm_blocks=div
            #    log_to_file(self,combine,"data/combine.compl")
            ## Output connections

            self.connect(ofdm_blocks, out_ofdm_blocks)
            self.connect(frame_start, out_frame_start)
            self.connect(disp_CTF_RX0, out_disp_ctf)
            self.connect(disp_CTF_RX1, out_disp_ctf2)
Exemplo n.º 20
0
  def __init__ (self, options):
    gr.top_block.__init__(self, "fbmc_benchmark")

    self._bandwidth          = options.bandwidth
    self.servants = []
    self._verbose            = options.verbose

    self._options = copy.copy( options )
    
    self.ideal = options.ideal
    self.ideal2 = options.ideal2
    rms_amp                    = options.rms_amplitude
    
    #Disable OFDM channel estimation preamble -> Still experimental
    options.est_preamble = 0

    self._interpolation = 1

    f1 = numpy.array([-107,0,445,0,-1271,0,2959,0,-6107,0,11953,
                      0,-24706,0,82359,262144/2,82359,0,-24706,0,
                      11953,0,-6107,0,2959,0,-1271,0,445,0,-107],
                      numpy.float64)/262144.

    print "Software interpolation: %d" % (self._interpolation)

    bw = 1.0/self._interpolation
    tb = bw/5
    if self._interpolation > 1:
      self.tx_filter = gr.hier_block2("filter",
                                   gr.io_signature(1,1,gr.sizeof_gr_complex),
                                   gr.io_signature(1,1,gr.sizeof_gr_complex))
      self.tx_filter.connect( self.tx_filter, gr.interp_fir_filter_ccf(2,f1),
                           gr.interp_fir_filter_ccf(2,f1), self.tx_filter )

      print "New"

    else:
      self.tx_filter = None

    self.decimation = 1

    if self.decimation > 1:
      bw = 0.5/self.decimation * 1
      tb = bw/5
      # gain, sampling rate, passband cutoff, stopband cutoff
      # passband ripple in dB, stopband attenuation in dB
      # extra taps
      filt_coeff = optfir.low_pass(1.0, 1.0, bw, bw+tb, 0.1, 60.0, 1)
      print "Software decimation filter length: %d" % (len(filt_coeff))
      self.rx_filter = gr.fir_filter_ccf(self.decimation,filt_coeff)
    else:
      self.rx_filter = None

    self._setup_tx_path(options)
    self._setup_rx_path(options)
    self._setup_rpc_manager()

    config = self.config = station_configuration()


    if options.imgxfer:
      self.rxpath.setup_imgtransfer_sink()

    if not options.no_decoding:
      self.rxpath.publish_rx_performance_measure()

      # capture transmitter's stream to disk
    #self.dst  = gr.file_sink(gr.sizeof_gr_complex,options.to_file)
    self.dst= self.rxpath
    if options.force_rx_filter:
      print "Forcing rx filter usage"
      self.connect( self.rx_filter, self.dst )
      self.dst = self.rx_filter

    if options.ideal or self.ideal2:
       self._amplifier = ofdm.multiply_const_ccf( 1.0 )
       self.connect( self._amplifier, self.dst  )
       self.dst = self._amplifier
       self.set_rms_amplitude(rms_amp)
       
    if options.measure:
      self.m = throughput_measure(gr.sizeof_gr_complex)
      self.connect( self.m, self.dst )
      self.dst = self.m

    
    if options.snr is not None:
      if options.berm is not None:
          #noise_sigma = 0.0001/32767.0
          noise_sigma = 380/32767.0#250/32767.0 #380/32767.0 #empirically given, gives the received SNR range of (1:28) for tx amp. range of (500:10000) which is set in rm_ber_measurement.py
          #check for fading channel
      else:
          snr_db = options.snr
          snr = 10.0**(snr_db/10.0)
          noise_sigma = sqrt( config.rms_amplitude**2 / snr )

      print " Noise St. Dev. %d" % (noise_sigma)
      awgn_chan = blocks.add_cc()
      #awgn_noise_src = ofdm.complex_white_noise( 0.0, noise_sigma )
      #noise_sigma = 0.000000000001
      awgn_noise_src = analog.fastnoise_source_c(analog.GR_GAUSSIAN, noise_sigma, 0, 8192)
      self.connect( awgn_noise_src, (awgn_chan,1) )
      self.connect( awgn_chan,self.dst )
      #self.connect( awgn_chan, blocks.skiphead( gr.sizeof_gr_complex, 3* config.fft_length ),self.dst )
      self.dst = awgn_chan
      


    if options.freqoff is not None:
      freq_off = self.freq_off = channel.freq_offset(options.freqoff )
      dst = self.dst
      self.connect(freq_off, dst) 
      self.dst = freq_off
      self.rpc_mgr_tx.add_interface("set_freq_offset",self.freq_off.set_freqoff)
      #log_to_file( self, self.freq_off, "data/TRANSMITTER_OUT.compl" )



    if options.multipath:
      if options.itu_channel:
        self.fad_chan = channel.itpp_channel(options.bandwidth)
        self.rpc_mgr_tx.add_interface("set_channel_profile",self.fad_chan.set_channel_profile)
      else:
        #self.fad_chan = filter.fir_filter_ccc(1,[1.0,0.0,2e-1+0.1j,1e-4-0.04j])
        # filter coefficients for the lab exercise
        self.fad_chan = filter.fir_filter_ccc(1,[0,0,0.3267,0.8868,0.3267])

      self.connect(self.fad_chan, self.dst)
      self.dst = self.fad_chan

    if options.samplingoffset is not None:
      soff = options.samplingoffset
      interp = moms(1000000*(1.0+soff),1000000)
      self.connect( interp, self.dst )
      self.dst = interp

      if options.record:
       log_to_file( self, interp, "data/interp_out.compl" )

    tmm =blocks.throttle(gr.sizeof_gr_complex,1e6)
    self.connect( tmm, self.dst )
    self.dst = tmm
    if options.force_tx_filter:
      print "Forcing tx filter usage"
      self.connect( self.tx_filter, self.dst )
      self.dst = self.tx_filter
    if options.record:
      log_to_file( self, self.txpath, "data/txpath_out.compl" )

    if options.scatterplot:
      print "Scatterplot enabled"

    self.connect( self.txpath,self.dst )
    #log_to_file( self, self.txpath, "data/fbmc_rx_input.compl" )



    print "Hit Strg^C to terminate"

    print "Hit Strg^C to terminate"


    # Display some information about the setup
    if self._verbose:
        self._print_verbage()
Exemplo n.º 21
0
    def __init__(self, fft_length, block_length, frame_data_part, block_header,
                 options):
        gr.hier_block2.__init__(
            self, "ofdm_receiver", gr.io_signature(1, 1, gr.sizeof_gr_complex),
            gr.io_signature2(2, 2, gr.sizeof_gr_complex * fft_length,
                             gr.sizeof_char))

        frame_length = frame_data_part + block_header.no_pilotsyms
        cp_length = block_length - fft_length

        self.input = gr.kludge_copy(gr.sizeof_gr_complex)
        self.connect(self, self.input)

        self.blocks_out = (self, 0)
        self.frame_trigger_out = (self, 1)
        self.snr_out = (self, 2)

        if options.log:
            log_to_file(self, self.input, "data/receiver_input.compl")

        # peak detector: thresholds low, high
        #self._pd_thres_lo = 0.09
        #self._pd_thres_hi = 0.1
        self._pd_thres = 0.2
        self._pd_lookahead = fft_length / 2  # empirically chosen

        #########################
        # coarse timing offset estimator
        #    self.tm = schmidl.modified_timing_metric(fft_length,[1]*(fft_length))
        self.tm = schmidl.recursive_timing_metric(fft_length)
        self.connect(self.input, self.tm)
        assert (hasattr(block_header, 'sc_preamble_pos'))
        assert (block_header.sc_preamble_pos == 0
                )  # TODO: relax this restriction

        if options.filter_timingmetric:
            timingmetric_shift = -2  #int(-cp_length * 0.8)
            tmfilter = gr.fir_filter_fff(1, [1. / cp_length] * cp_length)
            self.connect(self.tm, tmfilter)
            self.timing_metric = tmfilter
            print "Filtering timing metric, experimental"
        else:
            self.timing_metric = self.tm
            timingmetric_shift = int(-cp_length / 4)

        if options.log:
            log_to_file(self, self.timing_metric, "data/tm.float")

        # peak detection
        #threshold = gr.threshold_ff(self._pd_thres_lo,self._pd_thres_hi,0)
        #muted_tm = gr.multiply_ff()
        peak_detector = peak_detector_02_fb(self._pd_lookahead, self._pd_thres)
        #self.connect(self.timing_metric, threshold, (muted_tm,0))
        #self.connect(self.timing_metric, (muted_tm,1))
        #self.connect(muted_tm, peak_detector)
        self.connect(self.timing_metric, peak_detector)

        if options.log:
            pd_float = gr.char_to_float()
            self.connect(peak_detector, pd_float)
            log_to_file(self, pd_float, "data/peakdetector.float")

        if options.no_timesync:
            terminate_stream(self, peak_detector)
            trigger = [0] * (frame_length * block_length)
            trigger[block_length - 1] = 1
            peak_detector = blocks.vector_source_b(trigger, True)
            print "Bypassing timing synchronisation"

        # TODO: refine detected peaks with 90% average method as proposed
        # from Schmidl & Cox:
        # Starting from peak, find first points to the left and right whose
        # value is less than or equal 90% of the peak value. New trigger point
        # is average of both

        # Frequency Offset Estimation
        # Used: Algorithm as proposed from Morelli & Mengali
        # Idea: Use periodic preamble, correlate identical parts, determine
        # phase offset. This phase offset is a function of the frequency offset.

        assert (hasattr(block_header, 'mm_preamble_pos'))

        foe = morelli_foe(fft_length, block_header.mm_periodic_parts)
        self.connect(self.input, (foe, 0))

        if block_header.mm_preamble_pos > 0:
            delayed_trigger = gr.delay(
                gr.sizeof_char, block_header.mm_preamble_pos * block_length)
            self.connect(peak_detector, delayed_trigger, (foe, 1))
        else:
            self.connect(peak_detector, (foe, 1))

        self.freq_offset = foe

        if options.log:
            log_to_file(self, self.freq_offset, "data/freqoff_out.float")

        if options.average_freqoff:
            #avg_foe = gr.single_pole_iir_filter_ff( 0.1 )
            avg_foe = ofdm.lms_fir_ff(20, 1e-3)
            self.connect(self.freq_offset, avg_foe)
            self.freq_offset = avg_foe
            #log_to_file( self, avg_foe, "data/freqoff_out_avg.float" )
            print "EXPERIMENTAL!!! Filtering frequency offset estimate"

        if options.no_freqsync:
            terminate_stream(self, self.freq_offset)
            self.freq_offset = blocks.vector_source_f([0.0], True)
            print "Bypassing frequency offset estimator, offset=0.0"

        # TODO: dynamic solution
        frametrig_seq = concatenate([[1], [0] * (frame_length - 1)])
        self.time_sync = peak_detector
        self.frame_trigger = blocks.vector_source_b(frametrig_seq, True)
        self.connect(self.frame_trigger, self.frame_trigger_out)

        ##########################
        # symbol extraction and processing
        #  First, we extract the whole ofdm block, then we divide this block into
        #  several ofdm symbols. This asserts that all symbols belonging to the
        #  same ofdm block will be a consecutive order.
        #  extract ofdm symbols
        #  compensate frequency offset

        # TODO: use PLL and update/reset signals
        delayed_timesync = gr.delay(gr.sizeof_char,
                                    (frame_length - 1) * block_length +
                                    timingmetric_shift)
        self.connect(self.time_sync, delayed_timesync)

        self.block_sampler = vector_sampler(gr.sizeof_gr_complex,
                                            block_length * frame_length)
        self.discard_cp = vector_mask(block_length, cp_length, fft_length, [])

        if options.use_dpll:
            dpll = gr.dpll_bb(frame_length * block_length, .01)
            self.connect(delayed_timesync, dpll)

            if options.log:
                dpll_f = gr.char_to_float()
                delayed_timesync_f = gr.char_to_float()
                self.connect(dpll, dpll_f)
                self.connect(delayed_timesync, delayed_timesync_f)
                log_to_file(self, dpll_f, "data/dpll.float")
                log_to_file(self, delayed_timesync_f, "data/dpll_in.float")

            delayed_timesync = dpll
            print "Using DPLL, EXPERIMENTAL!!!!!"

        self.connect(self.input, self.block_sampler)
        self.connect(delayed_timesync, (self.block_sampler, 1))

        if options.log:
            log_to_file(self, self.block_sampler,
                        "data/block_sampler_out.compl")

        # TODO: dynamic solution
        self.ofdm_symbols = blocks.vector_to_stream(
            gr.sizeof_gr_complex * block_length, frame_length)
        self.connect(self.block_sampler, self.ofdm_symbols, self.discard_cp)

        if options.log:
            log_to_file(self, self.discard_cp, "data/discard_cp_out.compl")
            dcp_fft = gr.fft_vcc(fft_length, True, [], True)
            self.connect(self.discard_cp, dcp_fft)
            log_to_file(self, dcp_fft, "data/discard_cp_fft.compl")

        # reset phase accumulator inside freq_shift on every block start
        # setup output connection

        freq_shift = frequency_shift_vcc(fft_length, -1.0 / fft_length,
                                         cp_length)

        self.connect(self.discard_cp, (freq_shift, 0))
        self.connect(self.freq_offset, (freq_shift, 1))
        self.connect(self.frame_trigger, (freq_shift, 2))
        self.connect(freq_shift, self.blocks_out)

        if options.log:
            log_to_file(self, freq_shift, "data/freqshift_out.compl")

        if options.no_freqshift:
            terminate_stream(self, freq_shift)
            freq_shift = self.discard_cp
            print "Bypassing frequency shift block"
Exemplo n.º 22
0
    def __init__(self, options):
        gr.hier_block2.__init__(self, "transmit_path",
                                gr.io_signature(0, 0, 0),
                                gr.io_signature(1, 1, gr.sizeof_gr_complex))

        common_options.defaults(options)

        config = self.config = station_configuration()

        config.data_subcarriers = options.subcarriers
        config.cp_length = options.cp_length
        config.frame_data_blocks = options.data_blocks
        config._verbose = options.verbose
        config.fft_length = options.fft_length
        config.dc_null = options.dc_null
        config.training_data = default_block_header(config.data_subcarriers,
                                                    config.fft_length,
                                                    config.dc_null, options)
        config.coding = options.coding
        config.bandwidth = options.bandwidth
        config.gui_frame_rate = options.gui_frame_rate
        config.fbmc = options.fbmc

        config.frame_id_blocks = 1  # FIXME

        # digital rms amplitude sent to USRP
        rms_amp = options.rms_amplitude
        self._options = copy.copy(options)

        config.block_length = config.fft_length + config.cp_length
        config.frame_data_part = config.frame_data_blocks + config.frame_id_blocks
        config.frame_length = config.frame_data_part + \
                              config.training_data.no_pilotsyms
        config.subcarriers = config.data_subcarriers + \
                             config.training_data.pilot_subcarriers
        config.virtual_subcarriers = config.fft_length - config.subcarriers - config.dc_null

        # default values if parameters not set
        if rms_amp is None:
            rms_amp = math.sqrt(config.subcarriers)
        config.rms_amplitude = rms_amp

        # check some bounds
        if config.fft_length < config.subcarriers:
            raise SystemError, "Subcarrier number must be less than FFT length"
        if config.fft_length < config.cp_length:
            raise SystemError, "Cyclic prefix length must be less than FFT length"

        ## shortcuts
        blen = config.block_length
        flen = config.frame_length
        dsubc = config.data_subcarriers
        vsubc = config.virtual_subcarriers

        # Adaptive Transmitter Concept
        used_id_bits = config.used_id_bits = 8  #TODO: no constant in source code
        rep_id_bits = config.rep_id_bits = config.data_subcarriers / used_id_bits  #BPSK
        if config.data_subcarriers % used_id_bits <> 0:
            raise SystemError, "Data subcarriers need to be multiple of %d" % (
                used_id_bits)

        # adapt OFDM frame rate and GUI display frame rate
        self.keep_frame_n = int(
            1.0 / (config.frame_length *
                   (config.cp_length + config.fft_length) / config.bandwidth) /
            config.gui_frame_rate)

        ## Allocation Control
        self.allocation_src = allocation_src(
            config.data_subcarriers, config.frame_data_blocks, config.coding,
            "tcp://*:3333", "tcp://" + options.rx_hostname + ":3322")
        if options.static_allocation:  #DEBUG
            # how many bits per subcarrier

            if options.coding:
                mode = 1  # Coding mode 1-9
                bitspermode = [0.5, 1, 1.5, 2, 3, 4, 4.5, 5,
                               6]  # Information bits per mode
                modulbitspermode = [1, 2, 2, 4, 4, 6, 6, 6,
                                    8]  # Coding bits per mode
                bitcount_vec = [
                    (int)(config.data_subcarriers * config.frame_data_blocks *
                          bitspermode[mode - 1])
                ]
                modul_bitcount_vec = [
                    config.data_subcarriers * config.frame_data_blocks *
                    modulbitspermode[mode - 1]
                ]
                bitcount_src = blocks.vector_source_i(bitcount_vec, True, 1)
                modul_bitcount_src = blocks.vector_source_i(
                    modul_bitcount_vec, True, 1)
                bitloading = mode
            else:
                bitloading = 1
                bitcount_vec = [
                    config.data_subcarriers * config.frame_data_blocks *
                    bitloading
                ]
                bitcount_src = blocks.vector_source_i(bitcount_vec, True, 1)
                modul_bitcount_src = bitcount_src

            # id's for frames
            id_vec = range(0, 256)
            id_src = blocks.vector_source_s(id_vec, True, 1)
            # bitloading for ID symbol and then once for data symbols
            #bitloading_vec = [1]*dsubc+[0]*(dsubc/2)+[2]*(dsubc/2)

            #test_allocation = [bitloading]*(int)(config.data_subcarriers/8)+ [0]*(int)(config.data_subcarriers/4*3) + [bitloading]*(int)(config.data_subcarriers/8)
            #bitloading_vec = [1]*dsubc+[bitloading]*dsubc
            test_allocation = [bitloading] * dsubc
            bitloading_vec = [bitloading] * dsubc + test_allocation
            bitloading_src = blocks.vector_source_b(bitloading_vec, True,
                                                    dsubc)
            # bitcount for frames
            #bitcount_vec = [config.data_subcarriers*config.frame_data_blocks*bitloading]
            bitcount_vec = [config.frame_data_blocks * sum(test_allocation)]
            bitcount_src = blocks.vector_source_i(bitcount_vec, True, 1)
            # power loading, here same for all symbols
            #power_vec = [1]*(int)(config.data_subcarriers/8)+ [0]*(int)(config.data_subcarriers/4*3) + [1]*(int)(config.data_subcarriers/8)
            power_vec = [1] * config.data_subcarriers
            power_src = blocks.vector_source_f(power_vec, True, dsubc)
            # mux control stream to mux id and data bits
            mux_vec = [0] * dsubc + [1] * bitcount_vec[0]
            mux_ctrl = blocks.vector_source_b(mux_vec, True, 1)
        else:
            id_src = (self.allocation_src, 0)
            bitcount_src = (self.allocation_src, 4)
            bitloading_src = (self.allocation_src, 2)
            power_src = (self.allocation_src, 1)
            if options.coding:
                modul_bitcount_src = (self.allocation_src, 5)
            else:
                modul_bitcount_src = bitcount_src
            mux_ctrl = ofdm.tx_mux_ctrl(dsubc)
            self.connect(modul_bitcount_src, mux_ctrl)

            #Initial allocation
            self.allocation_src.set_allocation([2] * config.data_subcarriers,
                                               [1] * config.data_subcarriers)
            self.allocation_src.set_allocation_scheme(0)
            if options.benchmarking:
                self.allocation_src.set_allocation(
                    [4] * config.data_subcarriers,
                    [1] * config.data_subcarriers)

        if options.lab_special_case:
            self.allocation_src.set_allocation(
                [0] * (config.data_subcarriers / 4) + [2] *
                (config.data_subcarriers / 2) + [0] *
                (config.data_subcarriers / 4), [1] * config.data_subcarriers)

        if options.log:
            log_to_file(self, id_src, "data/id_src.short")
            log_to_file(self, bitcount_src, "data/bitcount_src.int")
            log_to_file(self, bitloading_src, "data/bitloading_src.char")
            log_to_file(self, power_src, "data/power_src.cmplx")

        ## GUI probe output
        zmq_probe_bitloading = zeromq.pub_sink(gr.sizeof_char, dsubc,
                                               "tcp://*:4445")
        # also skip ID symbol bitloading with keep_one_in_n (side effect)
        # factor 2 for bitloading because we have two vectors per frame, one for id symbol and one for all payload/data symbols
        # factor config.frame_data_part for power because there is one vector per ofdm symbol per frame
        self.connect(bitloading_src,
                     blocks.keep_one_in_n(gr.sizeof_char * dsubc, 2 * 40),
                     zmq_probe_bitloading)
        zmq_probe_power = zeromq.pub_sink(gr.sizeof_float, dsubc,
                                          "tcp://*:4444")
        #self.connect(power_src, blocks.keep_one_in_n(gr.sizeof_gr_complex*dsubc,40), blocks.complex_to_real(dsubc), zmq_probe_power)
        self.connect(power_src,
                     blocks.keep_one_in_n(gr.sizeof_float * dsubc, 40),
                     zmq_probe_power)

        ## Workaround to avoid periodic structure
        seed(1)
        whitener_pn = [
            randint(0, 1) for i in range(used_id_bits * rep_id_bits)
        ]

        ## ID Encoder
        id_enc = self._id_encoder = repetition_encoder_sb(
            used_id_bits, rep_id_bits, whitener_pn)
        self.connect(id_src, id_enc)

        if options.log:
            id_enc_f = gr.char_to_float()
            self.connect(id_enc, id_enc_f)
            log_to_file(self, id_enc_f, "data/id_enc_out.float")

        ## Reference Data Source
        ber_ref_src = ber_reference_source(self._options)
        self.connect(id_src, (ber_ref_src, 0))
        self.connect(bitcount_src, (ber_ref_src, 1))

        if options.log:
            log_to_file(self, ber_ref_src, "data/ber_rec_src_tx.char")

        if options.log:
            log_to_file(self, btrig, "data/bitmap_trig.char")

        ## Bitmap Update Trigger for puncturing
        if not options.nopunct:
            bmaptrig_stream_puncturing = [
                1
            ] + [0] * (config.frame_data_blocks / 2 - 1)

            btrig_puncturing = self._bitmap_trigger_puncturing = blocks.vector_source_b(
                bmaptrig_stream_puncturing, True)
            bmapsrc_stream_puncturing = [1] * dsubc + [2] * dsubc
            bsrc_puncturing = self._bitmap_src_puncturing = blocks.vector_source_b(
                bmapsrc_stream_puncturing, True, dsubc)

        if options.log and options.coding and not options.nopunct:
            log_to_file(self, btrig_puncturing,
                        "data/bitmap_trig_puncturing.char")

        ## Frame Trigger
        ftrig_stream = [1] + [0] * (config.frame_data_part - 1)
        ftrig = self._frame_trigger = blocks.vector_source_b(
            ftrig_stream, True)

        ## Data Multiplexer
        # Input 0: control stream
        # Input 1: encoded ID stream
        # Inputs 2..n: data streams
        dmux = self._data_multiplexer = stream_controlled_mux_b()
        self.connect(mux_ctrl, (dmux, 0))
        self.connect(id_enc, (dmux, 1))

        if options.coding:
            fo = trellis.fsm(1, 2, [91, 121])
            encoder = self._encoder = trellis.encoder_bb(fo, 0)
            unpack = self._unpack = blocks.unpack_k_bits_bb(2)
            self.connect(ber_ref_src, encoder, unpack)

            if options.interleave:
                int_object = trellis.interleaver(2000, 666)
                interlv = trellis.permutation(int_object.K(),
                                              int_object.INTER(), 1,
                                              gr.sizeof_char)

            if not options.nopunct:
                bmaptrig_stream_puncturing = [
                    1
                ] + [0] * (config.frame_data_blocks / 2 - 1)
                btrig_puncturing = self._bitmap_trigger_puncturing = blocks.vector_source_b(
                    bmaptrig_stream_puncturing, True)
                puncturing = self._puncturing = puncture_bb(
                    config.data_subcarriers)
                self.connect(bitloading_src, (puncturing, 1))
                self.connect(self._bitmap_trigger_puncturing, (puncturing, 2))
                self.connect(unpack, puncturing)
                last_block = puncturing

                if options.interleave:
                    self.connect(last_block, interlv)
                    last_block = interlv

                if options.benchmarking:
                    self.connect(last_block,
                                 blocks.head(gr.sizeof_char, options.N),
                                 (dmux, 2))
                else:
                    self.connect(last_block, (dmux, 2))
            else:
                if options.benchmarking:
                    self.connect(unpack, blocks.head(gr.sizeof_char,
                                                     options.N), (dmux, 2))
                else:
                    self.connect(unpack, (dmux, 2))

        else:
            if options.benchmarking:
                self.connect(ber_ref_src, blocks.head(gr.sizeof_char,
                                                      options.N), (dmux, 2))
            else:
                self.connect(ber_ref_src, (dmux, 2))

        if options.log:
            dmux_f = gr.char_to_float()
            self.connect(dmux, dmux_f)
            log_to_file(self, dmux_f, "data/dmux_out.float")

        ## Modulator
        mod = self._modulator = generic_mapper_bcv(config.data_subcarriers,
                                                   config.coding,
                                                   config.frame_data_part)
        self.connect(dmux, (mod, 0))
        self.connect(bitloading_src, (mod, 1))
        #log_to_file(self, mod, "data/mod_out.compl")

        if options.log:
            log_to_file(self, mod, "data/mod_out.compl")
            modi = blocks.complex_to_imag(config.data_subcarriers)
            modr = blocks.complex_to_real(config.data_subcarriers)
            self.connect(mod, modi)
            self.connect(mod, modr)
            log_to_file(self, modi, "data/mod_imag_out.float")
            log_to_file(self, modr, "data/mod_real_out.float")

        ## Power allocator
        pa = self._power_allocator = multiply_frame_fc(config.frame_data_part,
                                                       config.data_subcarriers)
        self.connect(mod, (pa, 0))
        self.connect(power_src, (pa, 1))

        if options.log:
            log_to_file(self, pa, "data/pa_out.compl")

        # Standard Transmitter Parts

        ## Pilot subcarriers
        psubc = self._pilot_subcarrier_inserter = pilot_subcarrier_inserter()
        self.connect(pa, psubc)

        if options.log:
            log_to_file(self, psubc, "data/psubc_out.compl")

        ## Add virtual subcarriers
        if config.fft_length > config.subcarriers:
            vsubc = self._virtual_subcarrier_extender = \
                    vector_padding_dc_null(config.subcarriers, config.fft_length,config.dc_null)
            self.connect(psubc, vsubc)
        else:
            vsubc = self._virtual_subcarrier_extender = psubc

        if options.log:
            log_to_file(self, vsubc, "data/vsubc_out.compl")

        ## IFFT, no window, block shift
        ifft = self._ifft = fft_blocks.fft_vcc(config.fft_length, False, [],
                                               True)
        self.connect(vsubc, ifft)

        if options.log:
            log_to_file(self, ifft, "data/ifft_out.compl")

        ## Pilot blocks (preambles)
        pblocks = self._pilot_block_inserter = pilot_block_inserter(5, False)
        self.connect(ifft, pblocks)

        if options.log:
            log_to_file(self, pblocks, "data/pilot_block_ins_out.compl")

        ## Cyclic Prefix
        cp = self._cyclic_prefixer = cyclic_prefixer(config.fft_length,
                                                     config.block_length)
        self.connect(pblocks, cp)

        lastblock = cp

        if options.log:
            log_to_file(self, cp, "data/cp_out.compl")

        #Digital Amplifier for resource allocation
        #if not options.coding:
        rep = blocks.repeat(gr.sizeof_gr_complex,
                            config.frame_length * config.block_length)
        amp = blocks.multiply_cc()
        self.connect(lastblock, (amp, 0))
        self.connect((self.allocation_src, 3), rep, (amp, 1))
        lastblock = amp

        ## Digital Amplifier
        #amp = self._amplifier = gr.multiply_const_cc(1)
        amp = self._amplifier = ofdm.multiply_const_ccf(1.0)
        self.connect(lastblock, amp)
        self.set_rms_amplitude(rms_amp)

        if options.log:
            log_to_file(self, amp, "data/amp_tx_out.compl")

        ## Tx parameters
        bandwidth = options.bandwidth or 2e6
        bits = 8 * config.data_subcarriers * config.frame_data_blocks  # max. QAM256
        samples_per_frame = config.frame_length * config.block_length
        tb = samples_per_frame / bandwidth
        # set dummy carrier frequency if none available due to baseband mode
        if (options.tx_freq is None):
            options.tx_freq = 0.0
        self.tx_parameters = {'carrier_frequency':options.tx_freq/1e9,'fft_size':config.fft_length, 'cp_size':config.cp_length \
                              , 'subcarrier_spacing':options.bandwidth/config.fft_length/1e3 \
                              , 'data_subcarriers':config.data_subcarriers, 'bandwidth':options.bandwidth/1e6 \
                              , 'frame_length':config.frame_length  \
                              , 'symbol_time':(config.cp_length + config.fft_length)/options.bandwidth*1e6, 'max_data_rate':(bits/tb)/1e6}

        ## Setup Output
        self.connect(amp, self)

        # Display some information about the setup
        if config._verbose:
            self._print_verbage()
Exemplo n.º 23
0
    def __init__(self, options):
        gr.top_block.__init__(self, "ofdm_mrrc_benchmark")

        ##self._tx_freq            = options.tx_freq         # tranmitter's center frequency
        ##self._tx_subdev_spec     = options.tx_subdev_spec  # daughterboard to use
        ##self._fusb_block_size    = options.fusb_block_size # usb info for USRP
        ##self._fusb_nblocks       = options.fusb_nblocks    # usb info for USRP
        ##self._which              = options.which_usrp
        self._bandwidth = options.bandwidth
        self.servants = []
        self._verbose = options.verbose

        ##self._interface          = options.interface
        ##self._mac_addr           = options.mac_addr

        self._options = copy.copy(options)

        self._interpolation = 1

        f1 = numpy.array([
            -107, 0, 445, 0, -1271, 0, 2959, 0, -6107, 0, 11953, 0, -24706, 0,
            82359, 262144 / 2, 82359, 0, -24706, 0, 11953, 0, -6107, 0, 2959,
            0, -1271, 0, 445, 0, -107
        ], numpy.float64) / 262144.

        print "Software interpolation: %d" % (self._interpolation)

        bw = 1.0 / self._interpolation
        tb = bw / 5
        if self._interpolation > 1:
            self.tx_filter = gr.hier_block2(
                "filter", gr.io_signature(1, 1, gr.sizeof_gr_complex),
                gr.io_signature(1, 1, gr.sizeof_gr_complex))
            self.tx_filter2 = gr.hier_block2(
                "filter", gr.io_signature(1, 1, gr.sizeof_gr_complex),
                gr.io_signature(1, 1, gr.sizeof_gr_complex))
            self.tx_filter.connect(self.tx_filter,
                                   gr.interp_fir_filter_ccf(2, f1),
                                   gr.interp_fir_filter_ccf(2, f1),
                                   self.tx_filter)
            self.tx_filter2.connect(self.tx_filter2,
                                    gr.interp_fir_filter_ccf(2, f1),
                                    gr.interp_fir_filter_ccf(2, f1),
                                    self.tx_filter2)
            print "New"

        else:
            self.tx_filter = None
            self.tx_filter2 = None

        self.decimation = 1

        if self.decimation > 1:
            bw = 0.5 / self.decimation * 1
            tb = bw / 5
            # gain, sampling rate, passband cutoff, stopband cutoff
            # passband ripple in dB, stopband attenuation in dB
            # extra taps
            filt_coeff = optfir.low_pass(1.0, 1.0, bw, bw + tb, 0.1, 60.0, 1)
            print "Software decimation filter length: %d" % (len(filt_coeff))
            self.rx_filter = gr.fir_filter_ccf(self.decimation, filt_coeff)
            self.rx_filter2 = gr.fir_filter_ccf(self.decimation, filt_coeff)
        else:
            self.rx_filter = None
            self.rx_filter2 = None

##    if not options.from_file is None:
##      # sent captured file to usrp
##      self.src = gr.file_source(gr.sizeof_gr_complex,options.from_file)
##      self._setup_usrp_sink()
##      if hasattr(self, "filter"):
##        self.connect(self.src,self.filter,self.u) #,self.filter
##      else:
##        self.connect(self.src,self.u)
##
##      return

        self._setup_tx_path(options)
        self._setup_rx_path(options)
        self._setup_rpc_manager()

        config = self.config = station_configuration()

        #self.enable_txfreq_adjust("txfreq")

        if options.imgxfer:
            self.rxpath.setup_imgtransfer_sink()

        if not options.no_decoding:
            self.rxpath.publish_rx_performance_measure()

        self.dst = (self.rxpath, 0)
        self.dst2 = (self.rxpath, 1)

        if options.force_rx_filter:
            print "Forcing rx filter usage"
            self.connect(self.rx_filter, self.dst)
            self.connect(self.rx_filter2, self.dst2)
            self.dst = self.rx_filter
            self.dst2 = self.rx_filter2

        if options.measure:
            self.m = throughput_measure(gr.sizeof_gr_complex)
            self.m2 = throughput_measure(gr.sizeof_gr_complex)
            self.connect(self.m, self.dst)
            self.connect(self.m2, self.dst2)
            self.dst = self.m
            self.dst2 = self.m2

        if options.snr is not None:
            if options.berm is not None:
                noise_sigma = 380 / 32767.0  #empirically given, gives the received SNR range of (1:28) for tx amp. range of (500:10000) which is set in rm_ber_measurement.py
                print " Noise St. Dev. %f" % (noise_sigma
                                              )  #check for fading channel
            else:
                snr_db = options.snr
                snr = 10.0**(snr_db / 10.0)
                noise_sigma = sqrt(config.rms_amplitude**2 / snr)

            print " Noise St. Dev. %f" % (noise_sigma)
            awgn_chan = blocks.add_cc()
            awgn_chan2 = blocks.add_cc()
            awgn_noise_src = analog.fastnoise_source_c(analog.GR_GAUSSIAN,
                                                       noise_sigma, 0, 8192)
            awgn_noise_src2 = analog.fastnoise_source_c(
                analog.GR_GAUSSIAN, noise_sigma * 2, 0, 2192)
            self.connect(awgn_chan, self.dst)
            self.connect(awgn_chan2, self.dst2)
            self.connect(awgn_noise_src, (awgn_chan, 1))
            self.connect(awgn_noise_src2, (awgn_chan2, 1))
            self.dst = awgn_chan
            self.dst2 = awgn_chan2

        if options.freqoff is not None:
            freq_off = self.freq_off = channel.freq_offset(options.freqoff)
            freq_off2 = self.freq_off2 = channel.freq_offset(options.freqoff)
            dst = self.dst
            dst2 = self.dst2
            self.connect(freq_off, dst)
            self.connect(freq_off2, dst2)
            self.dst = freq_off
            self.dst2 = freq_off2
            self.rpc_mgr_tx.add_interface("set_freq_offset",
                                          self.freq_off.set_freqoff)
            self.rpc_mgr_tx.add_interface("set_freq_offset2",
                                          self.freq_off2.set_freqoff)

        if options.multipath:
            if options.itu_channel:
                self.fad_chan = channel.itpp_channel(options.bandwidth)
                #fad_chan.set_norm_doppler( 1e-9 )
                #fad_chan.set_LOS( [500.,0,0] )
                self.fad_chan2 = channel.itpp_channel(options.bandwidth)
                self.fad_chan.set_channel_profile(itpp.ITU_Pedestrian_A, 5e-8)
                self.fad_chan.set_norm_doppler(1e-8)
                self.fad_chan2.set_channel_profile(itpp.ITU_Pedestrian_A, 5e-8)
                self.fad_chan2.set_norm_doppler(1e-8)
                self.rpc_mgr_tx.add_interface(
                    "set_channel_profile", self.fad_chan.set_channel_profile)
                self.rpc_mgr_tx.add_interface(
                    "set_channel_profile", self.fad_chan2.set_channel_profile)
            else:
                fad_chan = filter.fir_filter_ccc(
                    1, [1.0, 0.0, 2e-1 + 0.1j, 1e-4 - 0.04j])
                fad_chan2 = filter.fir_filter_ccc(
                    1, [1.0, 0.0, 2e-1 + 0.1j, 1e-4 - 0.04j])

            self.connect(self.fad_chan, self.dst)
            self.connect(self.fad_chan2, self.dst2)
            self.dst = self.fad_chan
            self.dst2 = self.fad_chan2

        if options.samplingoffset is not None:
            soff = options.samplingoffset
            interp = moms(1000000 * (1.0 + soff), 1000000)
            interp2 = moms(1000000 * (1.0 + soff), 1000000)
            self.connect(interp, self.dst)
            self.connect(interp2, self.dst2)
            self.dst = interp
            self.dst2 = interp2

            if options.record:
                log_to_file(self, interp, "data/interp_out.compl")
                log_to_file(self, interp2, "data/interp2_out.compl")

        tmm = blocks.throttle(gr.sizeof_gr_complex, 1e6)
        #tmm2 =blocks.throttle(gr.sizeof_gr_complex, 1e6)

        #self.connect( tmm, self.dst )
        #self.connect( tmm2, self.dst2 )
        #self.dst = tmm
        #self.dst2 = tmm2

        #inter = blocks.interleave(gr.sizeof_gr_complex)
        #deinter = blocks.deinterleave(gr.sizeof_gr_complex)

        # Interleaving input/output streams
        ##self.connect(inter, deinter)
        #self.connect((deinter,0),self.dst)
        #self.connect((deinter,1),self.dst2)
        #self.dst = inter
        #self.dst2 = (inter,1)

        if options.force_tx_filter:
            print "Forcing tx filter usage"
            self.connect(self.tx_filter, self.dst)
            self.connect(self.tx_filter2, self.dst2)
            self.dst = self.tx_filter
            self.dst2 = self.tx_filter2
        if options.record:
            log_to_file(self, self.txpath, "data/txpath_out.compl")
            log_to_file(self, self.txpath2, "data/txpath2_out.compl")

        if options.nullsink:
            self.connect(gr.null_source(gr.sizeof_gr_complex), self.dst)
            self.connect(gr.null_source(gr.sizeof_gr_complex), self.dst2)
            self.dst = gr.null_sink(gr.sizeof_gr_complex)
            self.dst2 = gr.null_sink(gr.sizeof_gr_complex)

        self.connect(self.txpath, tmm, self.dst)
        self.connect(tmm, self.dst2)
        #self.connect( self.txpath,self.dst2 )

        print "Hit Strg^C to terminate"

        if self._verbose:
            self._print_verbage()
Exemplo n.º 24
0
    def __init__(self, options):
        gr.top_block.__init__(self, "ofdm_benchmark")

        self._bandwidth = options.bandwidth
        self.servants = []
        self._verbose = options.verbose

        self._options = copy.copy(options)

        self.ideal = options.ideal
        self.ideal2 = options.ideal2

        rms_amp = options.rms_amplitude

        self._interpolation = 1

        f1 = numpy.array([
            -107, 0, 445, 0, -1271, 0, 2959, 0, -6107, 0, 11953, 0, -24706, 0,
            82359, 262144 / 2, 82359, 0, -24706, 0, 11953, 0, -6107, 0, 2959,
            0, -1271, 0, 445, 0, -107
        ], numpy.float64) / 262144.

        print "Software interpolation: %d" % (self._interpolation)

        bw = 1.0 / self._interpolation
        tb = bw / 5
        if self._interpolation > 1:
            self.tx_filter = gr.hier_block2(
                "filter", gr.io_signature(1, 1, gr.sizeof_gr_complex),
                gr.io_signature(1, 1, gr.sizeof_gr_complex))
            self.tx_filter.connect(self.tx_filter,
                                   gr.interp_fir_filter_ccf(2, f1),
                                   gr.interp_fir_filter_ccf(2, f1),
                                   self.tx_filter)

            print "New"

        else:
            self.tx_filter = None

        self.decimation = 1

        if self.decimation > 1:
            bw = 0.5 / self.decimation * 1
            tb = bw / 5
            # gain, sampling rate, passband cutoff, stopband cutoff
            # passband ripple in dB, stopband attenuation in dB
            # extra taps
            filt_coeff = optfir.low_pass(1.0, 1.0, bw, bw + tb, 0.1, 60.0, 1)
            print "Software decimation filter length: %d" % (len(filt_coeff))
            self.rx_filter = gr.fir_filter_ccf(self.decimation, filt_coeff)
        else:
            self.rx_filter = None

        self._setup_tx_path(options)
        self._setup_rx_path(options)
        self._setup_rpc_manager()

        config = self.config = station_configuration()

        if options.imgxfer:
            self.rxpath.setup_imgtransfer_sink()

        if not options.no_decoding:
            self.rxpath.publish_rx_performance_measure()

            # capture transmitter's stream to disk
        #self.dst  = gr.file_sink(gr.sizeof_gr_complex,options.to_file)
        self.dst = self.rxpath
        if options.force_rx_filter:
            print "Forcing rx filter usage"
            self.connect(self.rx_filter, self.dst)
            self.dst = self.rx_filter

        if options.ideal or self.ideal2:
            self._amplifier = ofdm.multiply_const_ccf(1.0)
            self.connect(self._amplifier, self.dst)
            self.dst = self._amplifier
            self.set_rms_amplitude(rms_amp)

        if options.measure:
            self.m = throughput_measure(gr.sizeof_gr_complex)
            self.connect(self.m, self.dst)
            self.dst = self.m

        if options.snr is not None:
            if options.berm is not None:
                noise_sigma = 380 / 32767.0  #empirically given, gives the received SNR range of (1:28) for tx amp. range of (500:10000) which is set in rm_ber_measurement.py
                #check for fading channel
            else:
                snr_db = options.snr
                snr = 10.0**(snr_db / 10.0)
                noise_sigma = sqrt(config.rms_amplitude**2 / snr)

            print " Noise St. Dev. %f" % (noise_sigma)

            awgn_chan = blocks.add_cc()
            #awgn_noise_src = ofdm.complex_white_noise( 0.0, noise_sigma )
            awgn_noise_src = analog.fastnoise_source_c(analog.GR_GAUSSIAN,
                                                       noise_sigma, 0, 8192)
            self.connect(awgn_noise_src, (awgn_chan, 1))
            self.connect(awgn_chan, self.dst)
            self.dst = awgn_chan

        if options.freqoff is not None:
            freq_off = self.freq_off = channel.freq_offset(options.freqoff)
            dst = self.dst
            self.connect(freq_off, dst)
            self.dst = freq_off
            self.rpc_mgr_tx.add_interface("set_freq_offset",
                                          self.freq_off.set_freqoff)

        if options.multipath:
            if options.itu_channel:
                self.fad_chan = channel.itpp_channel(options.bandwidth)
                self.rpc_mgr_tx.add_interface(
                    "set_channel_profile", self.fad_chan.set_channel_profile)
                self.rpc_mgr_tx.add_interface("set_norm_doppler",
                                              self.fad_chan.set_norm_doppler)
            else:
                #self.fad_chan = filter.fir_filter_ccc(1,[1.0,0.0,2e-1+0.1j,1e-4-0.04j])
                # filter coefficients for the lab exercise
                self.fad_chan = filter.fir_filter_ccc(1,
                                                      [0.3267, 0.8868, 0.3267])
                #self.fad_chan = filter.fir_filter_ccc(1,[0,0,0.1,0.2,0.01,0.3])#0.3267,0.8868,0.3267])
                #self.fad_chan = channels.selective_fading_model(5, 0.1, False, 1, -1, [0, 0, 0], [0.3267,0.8868,0.3267], 10 )
                #self.fad_chan = channels.fading_model(6, 0.05, False);
                #self.fad_chan = channels.dynamic_channel_model(1000000, 0, 0, 0, 0, 3, 0.01, False, 0, [2e-6,4e-6,8e-6],[0.3267,0.8868,0.3267], 20, 0, 0)

            self.connect(self.fad_chan, self.dst)
            self.dst = self.fad_chan

        if options.samplingoffset is not None:
            soff = options.samplingoffset
            interp = moms(1000000 * (1.0 + soff), 1000000)
            #interp = filter.fractional_resampler_cc(0,1000000*(1.0+soff)/1000000.0)
            self.connect(interp, self.dst)
            self.dst = interp

            if options.record:
                log_to_file(self, interp, "data/interp_out.compl")

        tmm = blocks.throttle(gr.sizeof_gr_complex, options.bandwidth)
        self.connect(tmm, self.dst)
        self.dst = tmm
        if options.force_tx_filter:
            print "Forcing tx filter usage"
            self.connect(self.tx_filter, self.dst)
            self.dst = self.tx_filter
        if options.record:
            log_to_file(self, self.txpath, "data/txpath_out.compl")

        if options.scatterplot:
            print "Scatterplot enabled"

        self.connect(self.txpath, self.dst)

        print "Hit Strg^C to terminate"

        print "Hit Strg^C to terminate"

        # Display some information about the setup
        if self._verbose:
            self._print_verbage()
Exemplo n.º 25
0
  def __init__ (self, options):
    gr.top_block.__init__(self, "ofdm_tx")

    self._tx_freq            = options.tx_freq         # tranmitter's center frequency
    self._tx_subdev_spec     = options.tx_subdev_spec  # daughterboard to use
    self._fusb_block_size    = options.fusb_block_size # usb info for USRP
    self._fusb_nblocks       = options.fusb_nblocks    # usb info for USRP
    self._which              = options.which_usrp
    self._bandwidth          = options.bandwidth
    self.servants = []
    
    
    self._interface          = options.interface
    self._mac_addr           = options.mac_addr

    self._options = copy.copy( options )


    self._interpolation = 1
    
    f1 = numpy.array([-107,0,445,0,-1271,0,2959,0,-6107,0,11953,
                      0,-24706,0,82359,262144/2,82359,0,-24706,0,
                      11953,0,-6107,0,2959,0,-1271,0,445,0,-107],
                      numpy.float64)/262144.
    
    print "Software interpolation: %d" % (self._interpolation)

    bw = 0.5/self._interpolation
    tb = bw/5
    if self._interpolation > 1:
      self.filter = gr.hier_block2("filter",
                                   gr.io_signature(1,1,gr.sizeof_gr_complex),
                                   gr.io_signature(1,1,gr.sizeof_gr_complex))
      self.filter.connect( self.filter, gr.interp_fir_filter_ccf(2,f1),
                           gr.interp_fir_filter_ccf(2,f1), self.filter )
      
      print "New"
#      
#      
#      self.filt_coeff = optfir.low_pass(1.0, 1.0, bw, bw+tb, 0.2, 60.0, 0)
#      self.filter = gr.interp_fir_filter_ccf(self._interpolation,self.filt_coeff)
#      print "Software interpolation filter length: %d" % (len(self.filt_coeff))
    else:
      self.filter = None
      
      
    if not options.from_file is None:
      # sent captured file to usrp
      self.src = gr.file_source(gr.sizeof_gr_complex,options.from_file)
      self._setup_usrp_sink()
      if hasattr(self, "filter"):
        self.connect(self.src,self.filter,self.u) #,self.filter
      else:
        self.connect(self.src,self.u)
      
      return 
    
    
    
    self._setup_tx_path(options)
    
    config = station_configuration()
    
    self.enable_info_tx("info_tx", "pa_user")
#    if not options.no_cheat:
#      self.txpath.enable_channel_cheating("channelcheat")
    self.txpath.enable_txpower_adjust("txpower")
    self.txpath.publish_txpower("txpower_info")
    #self.enable_txfreq_adjust("txfreq")
    
    
    
    if options.nullsink:
      self.dst = gr.null_sink( gr.sizeof_gr_complex )
    
    else:  
      if not options.to_file is None:
        # capture transmitter's stream to disk
        self.dst  = gr.file_sink(gr.sizeof_gr_complex,options.to_file)
        tmp = gr.throttle(gr.sizeof_gr_complex,1e5)
        self.connect( tmp, self.dst )
        self.dst = tmp
        
        if options.force_filter:
          print "Forcing filter usage"
          self.connect( self.filter, self.dst )
          self.dst = self.filter
        
      else:
        # connect transmitter to usrp
        self._setup_usrp_sink()
        if options.dyn_freq:
            self.enable_txfreq_adjust("txfreq")
            
        if self.filter is not None:
          self.connect( self.filter,self.dst )
          self.dst = self.filter
          
        if options.record:
          log_to_file( self, self.txpath, "data/txpath_out.compl" )
        
        #self.publish_spectrum( 256 )
        
      
        
        
        
    if options.measure:
      self.m = throughput_measure(gr.sizeof_gr_complex)
      self.connect( self.m, self.dst )
      self.dst = self.m
        
    if options.samplingoffset is not None:
      soff = options.samplingoffset
      interp = gr.fractional_interpolator_cc(0.0,soff)
      self.connect( interp, self.dst )
      self.dst = interp

    if options.snr is not None:
      
#      if options.berm is not None:
#          noise_sigma = 380 #empirically given, gives the received SNR range of (1:28) for tx amp. range of (500:10000) which is set in rm_ber_measurement.py
#          #check for fading channel 
#      else:
      snr_db = options.snr
      snr = 10.0**(snr_db/10.0)
      noise_sigma = sqrt( config.rms_amplitude**2 / snr )
      print " Noise St. Dev. %d" % (noise_sigma)
      awgn_chan = gr.add_cc()
      awgn_noise_src = ofdm.complex_white_noise( 0.0, noise_sigma )
      self.connect( awgn_noise_src, (awgn_chan,1) )
      self.connect( awgn_chan, self.dst )
      self.dst = awgn_chan
      
      if options.berm is False:
          fad_chan = itpp.tdl_channel(  ) #[0, -7, -20], [0, 2, 6]
          #fad_chan.set_norm_doppler( 1e-9 )
          #fad_chan.set_LOS( [500.,0,0] )
          fad_chan.set_channel_profile( itpp.ITU_Pedestrian_A, 5e-8 )
          fad_chan.set_norm_doppler( 1e-8 )
    #        fad_chan = gr.fir_filter_ccc(1,[1.0,0.0,2e-1+0.1j,1e-4-0.04j])
          self.connect( fad_chan, self.dst )
          self.dst = fad_chan


    if options.freqoff is not None:
      freq_shift = gr.multiply_cc()
      norm_freq = options.freqoff / config.fft_length
      freq_off_src = gr.sig_source_c(1.0, gr.GR_SIN_WAVE, norm_freq, 1.0, 0.0 )
      self.connect( freq_off_src, ( freq_shift, 1 ) )
      dst = self.dst
      self.connect( freq_shift, dst )
      self.dst = freq_shift
      



    
    self.connect( self.txpath, self.dst )
    
    

    if options.cheat:
      self.txpath.enable_channel_cheating("channelcheat")

    
      
    print "Hit Strg^C to terminate"
Exemplo n.º 26
0
  def __init__(self, options):
    gr.hier_block2.__init__(self, "transmit_path",
        gr.io_signature(0,0,0),
        gr.io_signature(2,2,gr.sizeof_gr_complex))

    common_options.defaults(options)

    config = self.config = station_configuration()

    config.data_subcarriers    = options.subcarriers
    config.cp_length           = options.cp_length
    config.frame_data_blocks   = options.data_blocks
    config._verbose            = options.verbose
    config.fft_length          = options.fft_length
    config.training_data       = default_block_header(config.data_subcarriers,
                                          config.fft_length,options)
    config.tx_station_id       = options.station_id
    config.coding              = options.coding
    

    if config.tx_station_id is None:
      raise SystemError, "Station ID not set"

    config.frame_id_blocks     = 1 # FIXME

    # digital rms amplitude sent to USRP
    rms_amp                    = options.rms_amplitude
    self._options              = copy.copy(options)

    self.servants = [] # FIXME

    config.block_length = config.fft_length + config.cp_length
    config.frame_data_part = config.frame_data_blocks + config.frame_id_blocks
    config.frame_length = config.frame_data_part + \
                          config.training_data.no_pilotsyms
    config.subcarriers = config.data_subcarriers + \
                         config.training_data.pilot_subcarriers
    config.virtual_subcarriers = config.fft_length - config.subcarriers

    # default values if parameters not set
    if rms_amp is None:
      rms_amp = math.sqrt(config.subcarriers)
    config.rms_amplitude = rms_amp

    # check some bounds
    if config.fft_length < config.subcarriers:
      raise SystemError, "Subcarrier number must be less than FFT length"
    if config.fft_length < config.cp_length:
      raise SystemError, "Cyclic prefix length must be less than FFT length"

    ## shortcuts
    blen = config.block_length
    flen = config.frame_length
    dsubc = config.data_subcarriers
    vsubc = config.virtual_subcarriers


    # ------------------------------------------------------------------------ #
    # Adaptive Transmitter Concept

    used_id_bits = config.used_id_bits = 8 #TODO: no constant in source code
    rep_id_bits = config.rep_id_bits = config.data_subcarriers/used_id_bits #BPSK
    if config.data_subcarriers % used_id_bits <> 0:
      raise SystemError,"Data subcarriers need to be multiple of %d" % (used_id_bits)


    ## Control Part
    if options.debug:
      self._control = ctrl = static_tx_control(options)
      print "Statix TX Control used"
    else:
      self._control = ctrl = corba_tx_control(options)
      print "CORBA TX Control used"

    id_src = (ctrl,0)
    mux_src = (ctrl,1)
    map_src = self._map_src = (ctrl,2)
    pa_src = (ctrl,3)


    if options.log:
      id_src_f = gr.short_to_float()
      self.connect(id_src,id_src_f)
      log_to_file(self, id_src_f, "data/id_src_out.float")

      mux_src_f = gr.short_to_float()
      self.connect(mux_src,mux_src_f)
      log_to_file(self, mux_src_f, "data/mux_src_out.float")

      map_src_s = blocks.vector_to_stream(gr.sizeof_char,config.data_subcarriers)
      map_src_f = gr.char_to_float()
      self.connect(map_src,map_src_s,map_src_f)
      ##log_to_file(self, map_src_f, "data/map_src.float")

      ##log_to_file(self, pa_src, "data/pa_src_out.float")

    ## Workaround to avoid periodic structure
    seed(1)
    whitener_pn = [randint(0,1) for i in range(used_id_bits*rep_id_bits)]

    ## ID Encoder
    id_enc = self._id_encoder = repetition_encoder_sb(used_id_bits,rep_id_bits,whitener_pn)
    self.connect(id_src,id_enc)

    if options.log:
      id_enc_f = gr.char_to_float()
      self.connect(id_enc,id_enc_f)
      log_to_file(self, id_enc_f, "data/id_enc_out.float")

    ## Bitmap Update Trigger
    # TODO
    #bmaptrig_stream = concatenate([[1, 2],[0]*(config.frame_data_part-7)])
    bmaptrig_stream = concatenate([[1, 1],[0]*(config.frame_data_part-2)])
    print"bmaptrig_stream = ",bmaptrig_stream
    btrig = self._bitmap_trigger = blocks.vector_source_b(bmaptrig_stream.tolist(), True)
    if options.log:
      log_to_file(self, btrig, "data/bitmap_trig.char")
      
    ## Bitmap Update Trigger for puncturing
    # TODO
    if not options.nopunct:
        #bmaptrig_stream_puncturing = concatenate([[1],[0]*(config.frame_data_part-2)])
        bmaptrig_stream_puncturing = concatenate([[1],[0]*(config.frame_data_blocks/2-1)])
        
        btrig_puncturing = self._bitmap_trigger_puncturing = blocks.vector_source_b(bmaptrig_stream_puncturing.tolist(), True)
        bmapsrc_stream_puncturing = concatenate([[1]*dsubc,[2]*dsubc])
        bsrc_puncturing = self._bitmap_src_puncturing = blocks.vector_source_b(bmapsrc_stream_puncturing.tolist(), True, dsubc)
        
    if options.log and options.coding and not options.nopunct:
      log_to_file(self, btrig_puncturing, "data/bitmap_trig_puncturing.char")

    ## Frame Trigger
    # TODO
    ftrig_stream = concatenate([[1],[0]*(config.frame_data_part-1)])
    ftrig = self._frame_trigger = blocks.vector_source_b(ftrig_stream.tolist(),True)

    ## Data Multiplexer
    # Input 0: control stream
    # Input 1: encoded ID stream
    # Inputs 2..n: data streams
    dmux = self._data_multiplexer = stream_controlled_mux_b()
    self.connect(mux_src,(dmux,0))
    self.connect(id_enc,(dmux,1))
                      
    self._data_multiplexer_nextport = 2

    if options.log:
      dmux_f = gr.char_to_float()
      self.connect(dmux,dmux_f)
      log_to_file(self, dmux_f, "data/dmux_out.float")
      
    ## Modulator
    mod = self._modulator = generic_mapper_bcv(config.data_subcarriers,options.coding)



    self.connect(dmux,(mod,0))
    self.connect(map_src,(mod,1))
    self.connect(btrig,(mod,2))
    
    if options.log:
      log_to_file(self, mod, "data/mod_out.compl")
      modi = gr.complex_to_imag(config.data_subcarriers)
      modr = gr.complex_to_real(config.data_subcarriers)
      self.connect(mod,modi)
      self.connect(mod,modr)
      log_to_file(self, modi, "data/mod_imag_out.float")
      log_to_file(self, modr, "data/mod_real_out.float")



    ## Power allocator
    if options.debug:

      ## static
      pa = self._power_allocator = power_allocator(config.data_subcarriers)
      self.connect(mod,(pa,0))
      self.connect(pa_src,(pa,1))

    else:

      ## with CORBA control event channel
      ns_ip = ctrl.ns_ip
      ns_port = ctrl.ns_port
      evchan = ctrl.evchan
      pa = self._power_allocator = corba_power_allocator(dsubc, \
          evchan, ns_ip, ns_port, True)

      self.connect(mod,(pa,0))
      self.connect(id_src,(pa,1))
      self.connect(ftrig,(pa,2))

    if options.log:
      log_to_file(self, pa, "data/pa_out.compl")



    ## Pilot subcarriers
    psubc = self._pilot_subcarrier_inserter = pilot_subcarrier_inserter()
    self.connect( pa ,psubc )
        
    pilot_subc = config.training_data.shifted_pilot_tones;
    print "pilot_subc", pilot_subc
    stc = stc_encoder( config.subcarriers, config.frame_data_blocks,  pilot_subc )
    
    self.connect(psubc, stc)
    
    if options.log:
      log_to_file(self, psubc, "data/psubc_out.compl")
      log_to_file(self, psubc_2, "data/psubc2_out.compl")
      log_to_file(self, pa, "data/pa.compl")
      log_to_file(self, ( stc, 0 ), "data/stc_0.compl")
      log_to_file(self, ( stc, 1 ), "data/stc_1.compl")

    ## Add virtual subcarriers
    if config.fft_length > config.subcarriers:
      vsubc = self._virtual_subcarrier_extender = \
              vector_padding(config.subcarriers, config.fft_length)
      self.connect(stc,vsubc)
      vsubc_2 = self._virtual_subcarrier_extender_2 = \
              vector_padding(config.subcarriers, config.fft_length)
      self.connect((stc,1),vsubc_2)
    else:
      vsubc = self._virtual_subcarrier_extender = psubc
      vsubc_2 = self._virtual_subcarrier_extender_2 = psubc_2
      
    log_to_file(self, psubc, "data/psubc.compl")
    log_to_file(self, stc, "data/stc1.compl")
    log_to_file(self, (stc,1), "data/stc2.compl")
    if options.log:
      log_to_file(self, vsubc, "data/vsubc_out.compl")
      log_to_file(self, vsubc_2, "data/vsubc2_out.compl")

    
    ## IFFT, no window, block shift
    ifft = self._ifft = fft_blocks.fft_vcc(config.fft_length,False,[],True)
    self.connect(vsubc,ifft)
    ifft_2 = self._ifft_2 = fft_blocks.fft_vcc(config.fft_length,False,[],True)
    self.connect(vsubc_2,ifft_2)

    if options.log:
      log_to_file(self, ifft, "data/ifft_out.compl")
      log_to_file(self, ifft_2, "data/ifft2_out.compl")


    ## Pilot blocks (preambles)
    pblocks = self._pilot_block_inserter = pilot_block_inserter(1, False)
    self.connect( ifft, pblocks )
    pblocks_2 = self._pilot_block_inserter_2 = pilot_block_inserter( 2, False)
    self.connect( ifft_2, pblocks_2 )
    
    if options.log:
      log_to_file(self, pblocks, "data/pilot_block_ins_out.compl")
      log_to_file(self, pblocks_2, "data/pilot_block_ins2_out.compl")
    
    ## Cyclic Prefix
    cp = self._cyclic_prefixer = cyclic_prefixer(config.fft_length,
                                                 config.block_length)
    self.connect( pblocks, cp )
    cp_2 = self._cyclic_prefixer_2 = cyclic_prefixer(config.fft_length,
                                                 config.block_length)
    self.connect( pblocks_2, cp_2 )
    
    lastblock = cp
    lastblock_2 = cp_2

    
    if options.log:
      log_to_file(self, cp, "data/cp_out.compl")
      log_to_file(self, cp_2, "data/cp2_out.compl")


    if options.cheat:
      ## Artificial Channel
      # kept to compare with previous system
      achan_ir = concatenate([[1.0],[0.0]*(config.cp_length-1)])
      achan = self._artificial_channel = gr.fir_filter_ccc(1,achan_ir)
      self.connect( lastblock, achan )
      lastblock = achan
      achan_2 = self._artificial_channel_2 = gr.fir_filter_ccc(1,achan_ir)
      self.connect( lastblock_2, achan_2 )
      lastblock_2 = achan_2


    ## Digital Amplifier
    amp = self._amplifier = ofdm.multiply_const_ccf( 1.0/math.sqrt(2) )
    self.connect( lastblock, amp )
    amp_2 = self._amplifier_2 = ofdm.multiply_const_ccf( 1.0/math.sqrt(2) )
    self.connect( lastblock_2, amp_2 )
    self.set_rms_amplitude(rms_amp)
    
    if options.log:
      log_to_file(self, amp, "data/amp_tx_out.compl")
      log_to_file(self, amp_2, "data/amp_tx2_out.compl")

    ## Setup Output
    self.connect(amp,(self,0))
    self.connect(amp_2,(self,1))

    # ------------------------------------------------------------------------ #

    # Display some information about the setup
    if config._verbose:
      self._print_verbage()
Exemplo n.º 27
0
    def __init__(self, options, log=False):

        ## Read configuration
        config = station_configuration()

        fft_length = config.fft_length
        cp_length = config.cp_length
        block_header = config.training_data
        data_subc = config.data_subcarriers
        virtual_subc = config.virtual_subcarriers
        total_subc = config.subcarriers
        block_length = config.block_length
        frame_length = config.frame_length
        dc_null = config.dc_null

        L = block_header.mm_periodic_parts

        ## Set Input/Output signature
        gr.hier_block2.__init__(
            self,
            "ofdm_inner_receiver",
            gr.io_signature(1, 1, gr.sizeof_gr_complex),
            gr.io_signaturev(
                4,
                4,
                [
                    gr.sizeof_gr_complex * total_subc,  # OFDM blocks
                    gr.sizeof_char,  # Frame start
                    gr.sizeof_float * total_subc,
                    gr.sizeof_float
                ]))  # Normalized |CTF|^2

        ## Input and output ports
        self.input = rx_input = self

        out_ofdm_blocks = (self, 0)
        out_frame_start = (self, 1)
        out_disp_ctf = (self, 2)
        out_disp_cfo = (self, 3)

        ## pre-FFT processing
        if options.ideal is False and options.ideal2 is False:
            if options.old_receiver is False:
                ## Compute autocorrelations for S&C preamble
                ## and cyclic prefix

                self._sc_metric = sc_metric = autocorrelator(
                    fft_length / 2, fft_length / 2)
                self._gi_metric = gi_metric = autocorrelator(
                    fft_length, cp_length)

                self.connect(rx_input, sc_metric)
                self.connect(rx_input, gi_metric)

                ## Sync. Output contains OFDM blocks
                sync = ofdm.time_sync(fft_length, cp_length)
                self.connect(rx_input, (sync, 0))
                self.connect(sc_metric, (sync, 1))
                self.connect(gi_metric, (sync, 2))
                ofdm_blocks = (sync, 0)
                frame_start = (sync, 1)
                #log_to_file( self, ( sync, 1 ), "data/peak_detector.char" )
            else:

                #Testing old/new metric
                self.tm = schmidl.recursive_timing_metric(fft_length)
                self.connect(self.input, self.tm)
                #log_to_file( self, self.tm, "data/rec_sc_metric_ofdm.float" )

                timingmetric_shift = -2  #int(-cp_length/4)# 0#-2 #int(-cp_length * 0.8)
                tmfilter = filter.fft_filter_fff(1,
                                                 [1. / cp_length] * cp_length)
                self.connect(self.tm, tmfilter)
                self.tm = tmfilter

                self._pd_thres = 0.3
                self._pd_lookahead = fft_length / 2  # empirically chosen
                peak_detector = ofdm.peak_detector_02_fb(
                    self._pd_lookahead, self._pd_thres)
                self.connect(self.tm, peak_detector)
                #log_to_file( self, peak_detector, "data/rec_peak_detector.char" )

                frame_start = [0] * frame_length
                frame_start[0] = 1
                frame_start = self.frame_trigger_old = blocks.vector_source_b(
                    frame_start, True)

                delayed_timesync = blocks.delay(
                    gr.sizeof_char,
                    (frame_length - 1) * block_length + timingmetric_shift)
                self.connect(peak_detector, delayed_timesync)

                self.block_sampler = ofdm.vector_sampler(
                    gr.sizeof_gr_complex, block_length * frame_length)
                self.discard_cp = ofdm.vector_mask(block_length, cp_length,
                                                   fft_length, [])

                self.connect(self.input, self.block_sampler)
                self.connect(delayed_timesync, (self.block_sampler, 1))

                # TODO: dynamic solution
                vt2s = blocks.vector_to_stream(
                    gr.sizeof_gr_complex * block_length, frame_length)
                self.connect(self.block_sampler, vt2s, self.discard_cp)
                #terminate_stream(self,ofdm_blocks)
                ofdm_blocks = self.discard_cp
#     else:
#       serial_to_parallel = blocks.stream_to_vector(gr.sizeof_gr_complex,block_length)
#       discard_cp = ofdm.vector_mask(block_length,cp_length,fft_length,[])
#       ofdm_blocks = discard_cp
#       self.connect( rx_input, serial_to_parallel, discard_cp )
#       frame_start = [0]*frame_length
#       frame_start[0] = 1
#       frame_start = blocks.vector_source_b(frame_start,True)
#
#       print "Disabled time synchronization stage"

## Compute autocorrelations for S&C preamble
## and cyclic prefix

#log_to_file( self, sc_metric, "data/sc_metric_ofdm.float" )
#log_to_file(self, frame_start, "data/frame_start.compl")

#    log_to_file(self,ofdm_blocks,"data/ofdm_blocks_original.compl")

        if options.disable_time_sync or options.ideal or options.ideal2:
            if options.ideal is False and options.ideal2 is False:
                terminate_stream(self, ofdm_blocks)
                terminate_stream(self, frame_start)

            serial_to_parallel = blocks.stream_to_vector(
                gr.sizeof_gr_complex, block_length)
            discard_cp = ofdm.vector_mask_dc_null(block_length, cp_length,
                                                  fft_length, dc_null, [])
            ofdm_blocks = discard_cp
            self.connect(rx_input, serial_to_parallel, discard_cp)

            frame_start = [0] * frame_length
            frame_start[0] = 1
            frame_start = blocks.vector_source_b(frame_start, True)

            print "Disabled time synchronization stage"

        print "\t\t\t\t\tframe_length = ", frame_length

        if options.ideal is False and options.ideal2 is False:
            ## Extract preamble, feed to Morelli & Mengali frequency offset estimator
            assert (block_header.mm_preamble_pos == 0)
            morelli_foe = ofdm.mm_frequency_estimator(fft_length, L, 1, 0)
            sampler_preamble = ofdm.vector_sampler(
                gr.sizeof_gr_complex * fft_length, 1)
            self.connect(ofdm_blocks, (sampler_preamble, 0))
            self.connect(frame_start, (sampler_preamble, 1))
            self.connect(sampler_preamble, morelli_foe)
            freq_offset = morelli_foe

            ## Adaptive LMS FIR filtering of frequency offset
            lms_fir = ofdm.lms_fir_ff(20,
                                      1e-3)  # TODO: verify parameter choice
            self.connect(freq_offset, lms_fir)
            freq_offset = lms_fir

            #self.zmq_probe_freqoff = zeromq.pub_sink(gr.sizeof_float, 1, "tcp://*:5557")
            self.connect(lms_fir, blocks.keep_one_in_n(gr.sizeof_float, 20),
                         out_disp_cfo)
        else:
            self.connect(blocks.vector_source_f([1]), out_disp_cfo)

            #log_to_file(self, lms_fir, "data/lms_fir.float")

        if options.disable_freq_sync or options.ideal or options.ideal2:
            if options.ideal is False and options.ideal2 is False:
                terminate_stream(self, freq_offset)
                freq_offset = blocks.vector_source_f([0.0], True)
            print "Disabled frequency synchronization stage"

        if options.ideal is False and options.ideal2 is False:
            ## Correct frequency shift, feed-forward structure
            frequency_shift = ofdm.frequency_shift_vcc(fft_length,
                                                       -1.0 / fft_length,
                                                       cp_length)
            self.connect(ofdm_blocks, (frequency_shift, 0))
            self.connect(freq_offset, (frequency_shift, 1))
            self.connect(frame_start, (frequency_shift, 2))
            ofdm_blocks = frequency_shift

        ## FFT
        fft = fft_blocks.fft_vcc(fft_length, True, [], True)
        self.connect(ofdm_blocks, fft)
        ofdm_blocks = fft
        #log_to_file( self, fft, "data/compen.float" )

        ## Remove virtual subcarriers
        if fft_length > data_subc:
            subcarrier_mask = ofdm.vector_mask_dc_null(fft_length,
                                                       virtual_subc / 2,
                                                       total_subc, dc_null, [])
            self.connect(ofdm_blocks, subcarrier_mask)
            ofdm_blocks = subcarrier_mask
            #log_to_file(self, ofdm_blocks, "data/vec_mask.compl")
            ## Least Squares estimator for channel transfer function (CTF)

            if options.logcir:
                log_to_file(self, ofdm_blocks, "data/OFDM_Blocks.compl")

                inv_preamble_fd = numpy.array(block_header.pilotsym_fd[
                    block_header.channel_estimation_pilot[0]])
                inv_preamble_fd = numpy.concatenate([
                    inv_preamble_fd[:total_subc / 2],
                    inv_preamble_fd[total_subc / 2 + dc_null:]
                ])
                #print "Channel estimation pilot: ", inv_preamble_fd
                inv_preamble_fd = 1. / inv_preamble_fd
                LS_channel_estimator0 = ofdm.multiply_const_vcc(
                    list(inv_preamble_fd))
                self.connect(ofdm_blocks, LS_channel_estimator0,
                             gr.null_sink(gr.sizeof_gr_complex * total_subc))
                log_to_file(self, LS_channel_estimator0,
                            "data/OFDM_Blocks_eq.compl")

        ## post-FFT processing

        ## extract channel estimation preamble from frame
        if options.ideal is False and options.ideal2 is False:
            chest_pre_trigger = blocks.delay(gr.sizeof_char, 1)
            sampled_chest_preamble = ofdm.vector_sampler(
                gr.sizeof_gr_complex * total_subc, 1)
            self.connect(frame_start, chest_pre_trigger)
            self.connect(chest_pre_trigger, (sampled_chest_preamble, 1))
            self.connect(ofdm_blocks, (sampled_chest_preamble, 0))

            ## Least Squares estimator for channel transfer function (CTF)
            inv_preamble_fd = numpy.array(block_header.pilotsym_fd[
                block_header.channel_estimation_pilot[0]])
            inv_preamble_fd = numpy.concatenate([
                inv_preamble_fd[:total_subc / 2],
                inv_preamble_fd[total_subc / 2 + dc_null:]
            ])
            #print "Channel estimation pilot: ", inv_preamble_fd
            inv_preamble_fd = 1. / inv_preamble_fd

            LS_channel_estimator = ofdm.multiply_const_vcc(
                list(inv_preamble_fd))
            self.connect(sampled_chest_preamble, LS_channel_estimator)
            estimated_CTF = LS_channel_estimator

            if options.logcir:
                log_to_file(self, sampled_chest_preamble, "data/PREAM.compl")

            if not options.disable_ctf_enhancer:

                if options.logcir:
                    ifft1 = fft_blocks.fft_vcc(total_subc, False, [], True)
                    self.connect(
                        estimated_CTF, ifft1,
                        gr.null_sink(gr.sizeof_gr_complex * total_subc))
                    summ1 = ofdm.vector_sum_vcc(total_subc)
                    c2m = gr.complex_to_mag(total_subc)
                    self.connect(estimated_CTF, summ1,
                                 gr.null_sink(gr.sizeof_gr_complex))
                    self.connect(estimated_CTF, c2m,
                                 gr.null_sink(gr.sizeof_float * total_subc))
                    log_to_file(self, ifft1, "data/CIR1.compl")
                    log_to_file(self, summ1, "data/CTFsumm1.compl")
                    log_to_file(self, estimated_CTF, "data/CTF1.compl")
                    log_to_file(self, c2m, "data/CTFmag1.float")

                ## MSE enhancer
                ctf_mse_enhancer = ofdm.CTF_MSE_enhancer(
                    total_subc, cp_length + cp_length)
                self.connect(estimated_CTF, ctf_mse_enhancer)
                #      log_to_file( self, ctf_mse_enhancer, "data/ctf_mse_enhancer_original.compl")
                #ifft3 = fft_blocks.fft_vcc(total_subc,False,[],True)
                #null_noise = ofdm.noise_nulling(total_subc, cp_length + cp_length)
                #ctf_mse_enhancer = fft_blocks.fft_vcc(total_subc,True,[],True)
                #ctf_mse_enhancer = ofdm.vector_mask( fft_length, virtual_subc/2,
                # total_subc, [] )
                #self.connect( estimated_CTF, ifft3,null_noise,ctf_mse_enhancer )

                estimated_CTF = ctf_mse_enhancer
                print "Disabled CTF MSE enhancer"

            if options.logcir:
                ifft2 = fft_blocks.fft_vcc(total_subc, False, [], True)
                self.connect(estimated_CTF, ifft2,
                             gr.null_sink(gr.sizeof_gr_complex * total_subc))
                summ2 = ofdm.vector_sum_vcc(total_subc)
                c2m2 = gr.complex_to_mag(total_subc)
                self.connect(estimated_CTF, summ2,
                             gr.null_sink(gr.sizeof_gr_complex))
                self.connect(estimated_CTF, c2m2,
                             gr.null_sink(gr.sizeof_float * total_subc))
                log_to_file(self, ifft2, "data/CIR2.compl")
                log_to_file(self, summ2, "data/CTFsumm2.compl")
                log_to_file(self, estimated_CTF, "data/CTF2.compl")
                log_to_file(self, c2m2, "data/CTFmag2.float")

        ## Postprocess the CTF estimate
        ## CTF -> inverse CTF (for equalizer)
        ## CTF -> norm |.|^2 (for CTF display)
            ctf_postprocess = ofdm.postprocess_CTF_estimate(total_subc)
            self.connect(estimated_CTF, ctf_postprocess)
            inv_estimated_CTF = (ctf_postprocess, 0)
            disp_CTF = (ctf_postprocess, 1)


#     if options.disable_equalization or options.ideal:
#       terminate_stream(self, inv_estimated_CTF)
#       inv_estimated_CTF_vec = blocks.vector_source_c([1.0/fft_length*math.sqrt(total_subc)]*total_subc,True,total_subc)
#       inv_estimated_CTF_str = blocks.vector_to_stream(gr.sizeof_gr_complex, total_subc)
#       self.inv_estimated_CTF_mul = ofdm.multiply_const_ccf( 1.0/config.rms_amplitude )
#       #inv_estimated_CTF_mul.set_k(1.0/config.rms_amplitude)
#       inv_estimated_CTF = blocks.stream_to_vector(gr.sizeof_gr_complex, total_subc)
#       self.connect( inv_estimated_CTF_vec, inv_estimated_CTF_str, self.inv_estimated_CTF_mul, inv_estimated_CTF)
#       print "Disabled equalization stage"
        '''
    ## LMS Phase tracking
    ## Track residual frequency offset and sampling clock frequency offset

    nondata_blocks = []
    for i in range(config.frame_length):
      if i in config.training_data.pilotsym_pos:
        nondata_blocks.append(i)
        
    print"\t\t\t\t\tnondata_blocks=",nondata_blocks
    pilot_subc = block_header.pilot_tones
    pilot_subcarriers = block_header.pilot_subc_sym
    print "PILOT SUBCARRIERS: ", pilot_subcarriers
        
    phase_tracking = ofdm.lms_phase_tracking_03( total_subc, pilot_subc,
                                               nondata_blocks, pilot_subcarriers,0 )
    self.connect( ofdm_blocks, ( phase_tracking, 0 ) )
    self.connect( inv_estimated_CTF, ( phase_tracking, 1 ) )
    self.connect( frame_start, ( phase_tracking, 2 ) ) ##
    
    if options.scatter_plot_before_phase_tracking:
      self.before_phase_tracking = equalizer
      
    
    if options.disable_phase_tracking or options.ideal:
      terminate_stream(self, phase_tracking)
      print "Disabled phase tracking stage"
    else:
      ofdm_blocks = phase_tracking
    '''
        ## Channel Equalizer
        if options.disable_equalization or options.ideal or options.ideal2:
            print "Disabled equalization stage"
            if options.ideal is False and options.ideal2 is False:
                terminate_stream(self, inv_estimated_CTF)
        else:
            equalizer = ofdm.channel_equalizer(total_subc)
            self.connect(ofdm_blocks, (equalizer, 0))
            self.connect(inv_estimated_CTF, (equalizer, 1))
            self.connect(frame_start, (equalizer, 2))
            ofdm_blocks = equalizer
        #log_to_file(self, equalizer,"data/equalizer_siso.compl")

        #log_to_file(self, ofdm_blocks, "data/equalizer.compl")

        ## LMS Phase tracking
        ## Track residual frequency offset and sampling clock frequency offset
        if options.ideal is False and options.ideal2 is False:
            nondata_blocks = []
            for i in range(config.frame_length):
                if i in config.training_data.pilotsym_pos:
                    nondata_blocks.append(i)

            print "\t\t\t\t\tnondata_blocks=", nondata_blocks
            pilot_subc = block_header.pilot_tones
            pilot_subcarriers = block_header.pilot_subc_sym
            print "PILOT SUBCARRIERS: ", pilot_subcarriers

            phase_tracking2 = ofdm.lms_phase_tracking_dc_null(
                total_subc, pilot_subc, nondata_blocks, pilot_subcarriers,
                dc_null)
            self.connect(ofdm_blocks, (phase_tracking2, 0))
            self.connect(frame_start, (phase_tracking2, 1))  ##

        if options.disable_phase_tracking or options.ideal or options.ideal2:
            if options.ideal is False and options.ideal2 is False:
                terminate_stream(self, phase_tracking2)
            print "Disabled phase tracking stage"
        else:
            ofdm_blocks = phase_tracking2

        if options.scatter_plot_before_phase_tracking:
            self.before_phase_tracking = equalizer

        ## Output connections

        self.connect(ofdm_blocks, out_ofdm_blocks)
        self.connect(frame_start, out_frame_start)
        if options.ideal is False and options.ideal2 is False:
            self.connect(disp_CTF, out_disp_ctf)
        else:
            self.connect(blocks.vector_source_f([1.0] * total_subc),
                         blocks.stream_to_vector(gr.sizeof_float, total_subc),
                         out_disp_ctf)

        if log:
            log_to_file(self, sc_metric, "data/sc_metric.float")
            log_to_file(self, gi_metric, "data/gi_metric.float")
            log_to_file(self, morelli_foe, "data/morelli_foe.float")
            log_to_file(self, lms_fir, "data/lms_fir.float")
            log_to_file(self, sampler_preamble, "data/preamble.compl")
            log_to_file(self, sync, "data/sync.compl")
            log_to_file(self, frequency_shift, "data/frequency_shift.compl")
            log_to_file(self, fft, "data/fft.compl")
            log_to_file(self, fft, "data/fft.float", mag=True)

            if vars().has_key('subcarrier_mask'):
                log_to_file(self, subcarrier_mask,
                            "data/subcarrier_mask.compl")

            log_to_file(self, ofdm_blocks, "data/ofdm_blocks_out.compl")
            log_to_file(self,
                        frame_start,
                        "data/frame_start.float",
                        char_to_float=True)

            log_to_file(self, sampled_chest_preamble,
                        "data/sampled_chest_preamble.compl")
            log_to_file(self, LS_channel_estimator,
                        "data/ls_channel_estimator.compl")
            log_to_file(self,
                        LS_channel_estimator,
                        "data/ls_channel_estimator.float",
                        mag=True)

            if "ctf_mse_enhancer" in locals():
                log_to_file(self, ctf_mse_enhancer,
                            "data/ctf_mse_enhancer.compl")
                log_to_file(self,
                            ctf_mse_enhancer,
                            "data/ctf_mse_enhancer.float",
                            mag=True)

            log_to_file(self, (ctf_postprocess, 0),
                        "data/inc_estimated_ctf.compl")
            log_to_file(self, (ctf_postprocess, 1), "data/disp_ctf.float")

            log_to_file(self, equalizer, "data/equalizer.compl")
            log_to_file(self, equalizer, "data/equalizer.float", mag=True)

            log_to_file(self, phase_tracking, "data/phase_tracking.compl")
Exemplo n.º 28
0
  def setup_snr_measurement(self):
    """
    Perform SNR measurement.
    It uses the data reference from the BER measurement. I.e. if that is not
    setup, it will be setup. Only data subcarriers that are assigned to the
    station are considered in the measurement. Note that there is no sink
    prepared. You need to setup a sink, e.g. with one or more invocation
    of a "publish.."-function.
    SNR output is in dB.
    """
    if not self.measuring_ber():
      self.setup_ber_measurement()
      print "Warning: Setup BER Measurement forced"

    if self.measuring_snr():
      return

    config = station_configuration()

    vlen = config.subcarriers
    frame_length = config.frame_length
    L = config.periodic_parts
    
    snr_est_filt = skip(gr.sizeof_gr_complex*vlen,frame_length/2)
    skipping_symbols = [0] + range(config.training_data.fbmc_no_preambles/2,frame_length/2)
    for x in skipping_symbols:
        snr_est_filt.skip_call(x)

    #snr_est_filt = skip(gr.sizeof_gr_complex*vlen,frame_length)
    #for x in range(1,frame_length):
      #snr_est_filt.skip_call(x)

    ## NOTE HACK!! first preamble is not equalized

    self.connect(self.symbol_output,snr_est_filt)
    self.connect(self.frame_trigger,(snr_est_filt,1))

#    snrm = self._snr_measurement = milans_snr_estimator( vlen, vlen, L )
#
#    self.connect(snr_est_filt,snrm)
#
#    if self._options.log:
#          log_to_file(self, self._snr_measurement, "data/milan_snr.float")

    #Addition for SINR estimation
    if self._options.sinr_est:
        snr_est_filt_2 = skip(gr.sizeof_gr_complex*vlen,frame_length)
        for x in range(frame_length):
          if x != config.training_data.channel_estimation_pilot[0]:
            snr_est_filt_2.skip_call(x)

        self.connect(self.symbol_output,snr_est_filt_2)
        self.connect(self.frame_trigger,(snr_est_filt_2,1))

        sinrm = self._sinr_measurement = milans_sinr_sc_estimator2( vlen, vlen, L )

        self.connect(snr_est_filt,sinrm)
        self.connect(snr_est_filt_2,(sinrm,1))
        if self._options.log:
            log_to_file(self, (self._sinr_measurement,0), "data/milan_sinr_sc.float")
            log_to_file(self, (self._sinr_measurement,1), "data/milan_snr.float")

    else:
        #snrm = self._snr_measurement = milans_snr_estimator( vlen, vlen, L )
        snr_estim = fbmc_snr_estimator( vlen, config.training_data.fbmc_no_preambles/2 -1 )
        scsnrdb = filter.single_pole_iir_filter_ff(0.1)
        snrm = self._snr_measurement = blocks.nlog10_ff(10,1,0)
        #self.connect(self.snr_est_preamble,scsnrdb,snrm)
        #terminate_stream(self,self.snr_est_preamble)
        #self.connect(self.snr_est_preamble,snr_estim,scsnrdb,snrm)
        #self.connect((snr_estim,1),blocks.null_sink(gr.sizeof_float))
        #log_to_file(self, snrm, "data/snrm.float")
        
        #log_to_file(self, snrm, "data/snrm.float")
        collect_preambles = blocks.stream_to_vector(gr.sizeof_gr_complex*vlen, config.training_data.fbmc_no_preambles/2 -1)
        self.connect(snr_est_filt, collect_preambles)
        self.connect(collect_preambles,snr_estim,scsnrdb,snrm)
        self.connect((snr_estim,1),blocks.null_sink(gr.sizeof_float))
Exemplo n.º 29
0
    def add_mobile_station(self, station_id):
        """
    Adds new receiver mobile station. Station ID must be unique. Initializes
    BER reference source.
    """

        # Initialize
        id_src = self._control._id_source
        dmux = self._data_multiplexer
        port = self._data_multiplexer_nextport
        self._data_multiplexer_nextport += 1

        # Setup
        ctrl_port = self._control.add_mobile_station(station_id)
        options = self._options
        if options.imgxfer:
            ref_src = ofdm.imgtransfer_src(options.img)
        else:
            ref_src = ber_reference_source(self._options)

        if (options.coding):
            ## Encoder
            encoder = self._encoder = ofdm.encoder_bb(fo, 0)
            unpack = self._unpack = blocks.unpack_k_bits_bb(2)

            ## Puncturing
            if not options.nopunct:
                puncturing = self._puncturing = puncture_bb(
                    options.subcarriers)
                #sah = gr.sample_and_hold_bb()
                #sah_trigger = blocks.vector_source_b([1,0],True)
                #decim_sah=gr.keep_one_in_n(gr.sizeof_char,2)
                self.connect(self._bitmap_trigger_puncturing, (puncturing, 2))
                frametrigger_bitmap_filter = blocks.vector_source_b([1, 0],
                                                                    True)
                bitmap_filter = self._puncturing_bitmap_src_filter = skip(
                    gr.sizeof_char * options.subcarriers,
                    2)  # skip_known_symbols(frame_length,subcarriers)
                bitmap_filter.skip_call(0)
                #self.connect(self._bitmap_src_puncturing,bitmap_filter,(puncturing,1))
                self.connect(self._map_src, bitmap_filter, (puncturing, 1))
                self.connect(frametrigger_bitmap_filter, (bitmap_filter, 1))
                #bmt = gr.char_to_float()
                #self.connect(bitmap_filter,blocks.vector_to_stream(gr.sizeof_char,options.subcarriers), bmt)
                #log_to_file(self, bmt, "data/bitmap_filter_tx.float")

            self.connect((self._control, ctrl_port), ref_src, encoder, unpack)
            if not options.nopunct:
                self.connect(unpack, puncturing, (dmux, port))
                #self.connect(sah_trigger, (sah,1))
            else:
                self.connect(unpack, (dmux, port))
        else:
            self.connect((self._control, ctrl_port), ref_src, (dmux, port))

        if options.log and options.coding:
            log_to_file(self, encoder, "data/encoder_out.char")
            log_to_file(self, ref_src, "data/reference_data_src.char")
            log_to_file(self, unpack, "data/encoder_unpacked_out.char")
            if not options.nopunct:
                log_to_file(self, puncturing, "data/puncturing_out.char")
Exemplo n.º 30
0
    def __init__(self, options):
        gr.hier_block2.__init__(
            self, "fbmc_transmit_path", gr.io_signature(0, 0, 0), gr.io_signature(1, 1, gr.sizeof_gr_complex)
        )

        common_options.defaults(options)

        config = self.config = station_configuration()

        config.data_subcarriers = options.subcarriers
        config.cp_length = 0
        config.frame_data_blocks = options.data_blocks
        config._verbose = options.verbose
        config.fft_length = options.fft_length
        config.dc_null = options.dc_null
        config.training_data = default_block_header(config.data_subcarriers, config.fft_length, config.dc_null, options)
        config.coding = options.coding
        config.fbmc = options.fbmc
        config.adaptive_fbmc = options.adaptive_fbmc

        config.frame_id_blocks = 1  # FIXME

        # digital rms amplitude sent to USRP
        rms_amp = options.rms_amplitude
        self._options = copy.copy(options)

        config.block_length = config.fft_length + config.cp_length
        config.frame_data_part = config.frame_data_blocks + config.frame_id_blocks
        config.frame_length = config.training_data.fbmc_no_preambles + 2 * config.frame_data_part
        config.subcarriers = config.data_subcarriers + config.training_data.pilot_subcarriers
        config.virtual_subcarriers = config.fft_length - config.subcarriers - config.dc_null

        # default values if parameters not set
        if rms_amp is None:
            rms_amp = math.sqrt(config.subcarriers)
        config.rms_amplitude = rms_amp

        # check some bounds
        if config.fft_length < config.subcarriers:
            raise SystemError, "Subcarrier number must be less than FFT length"
        if config.fft_length < config.cp_length:
            raise SystemError, "Cyclic prefix length must be less than FFT length"

        ## shortcuts
        blen = config.block_length
        flen = config.frame_length
        dsubc = config.data_subcarriers
        vsubc = config.virtual_subcarriers

        # Adaptive Transmitter Concept

        used_id_bits = config.used_id_bits = 8  # TODO: no constant in source code
        rep_id_bits = config.rep_id_bits = config.data_subcarriers / used_id_bits  # BPSK
        if config.data_subcarriers % used_id_bits <> 0:
            raise SystemError, "Data subcarriers need to be multiple of %d" % (used_id_bits)

        ## Allocation Control
        self.allocation_src = allocation_src(
            config.data_subcarriers,
            config.frame_data_blocks,
            config.coding,
            "tcp://*:3333",
            "tcp://" + options.rx_hostname + ":3322",
        )
        if options.static_allocation:  # DEBUG
            # how many bits per subcarrier

            if options.coding:
                mode = 1  # Coding mode 1-9
                bitspermode = [0.5, 1, 1.5, 2, 3, 4, 4.5, 5, 6]  # Information bits per mode
                modulbitspermode = [1, 2, 2, 4, 4, 6, 6, 6, 8]  # Coding bits per mode
                bitcount_vec = [(int)(config.data_subcarriers * config.frame_data_blocks * bitspermode[mode - 1])]
                modul_bitcount_vec = [config.data_subcarriers * config.frame_data_blocks * modulbitspermode[mode - 1]]
                bitcount_src = blocks.vector_source_i(bitcount_vec, True, 1)
                modul_bitcount_src = blocks.vector_source_i(modul_bitcount_vec, True, 1)
                bitloading = mode
            else:
                bitloading = 1
                bitcount_vec = [config.data_subcarriers * config.frame_data_blocks * bitloading]
                bitcount_src = blocks.vector_source_i(bitcount_vec, True, 1)
                modul_bitcount_src = bitcount_src
            # id's for frames
            id_vec = range(0, 256)
            id_src = blocks.vector_source_s(id_vec, True, 1)
            # bitloading for ID symbol and then once for data symbols
            # bitloading_vec = [1]*dsubc+[0]*(dsubc/2)+[2]*(dsubc/2)

            test_allocation = (
                [bitloading] * (int)(config.data_subcarriers / 8)
                + [0] * (int)(config.data_subcarriers / 4 * 3)
                + [bitloading] * (int)(config.data_subcarriers / 8)
            )
            # bitloading_vec = [1]*dsubc+[bitloading]*dsubc
            bitloading_vec = [1] * dsubc + test_allocation
            bitloading_src = blocks.vector_source_b(bitloading_vec, True, dsubc)
            # bitcount for frames
            # bitcount_vec = [config.data_subcarriers*config.frame_data_blocks*bitloading]
            bitcount_vec = [config.frame_data_blocks * sum(test_allocation)]
            bitcount_src = blocks.vector_source_i(bitcount_vec, True, 1)
            # power loading, here same for all symbols
            power_vec = (
                [1] * (int)(config.data_subcarriers / 8)
                + [0] * (int)(config.data_subcarriers / 4 * 3)
                + [1] * (int)(config.data_subcarriers / 8)
            )
            power_src = blocks.vector_source_f(power_vec, True, dsubc)
            # mux control stream to mux id and data bits
            mux_vec = [0] * dsubc + [1] * bitcount_vec[0]
            mux_ctrl = blocks.vector_source_b(mux_vec, True, 1)
        else:
            id_src = (self.allocation_src, 0)
            bitcount_src = (self.allocation_src, 4)
            bitloading_src = (self.allocation_src, 2)
            power_src = (self.allocation_src, 1)
            if options.coding:
                modul_bitcount_src = (self.allocation_src, 5)
            else:
                modul_bitcount_src = bitcount_src
            mux_ctrl = ofdm.tx_mux_ctrl(dsubc)
            self.connect(modul_bitcount_src, mux_ctrl)
            # Initial allocation
            self.allocation_src.set_allocation([4] * config.data_subcarriers, [1] * config.data_subcarriers)
            if options.benchmarking:
                self.allocation_src.set_allocation([4] * config.data_subcarriers, [1] * config.data_subcarriers)

        if options.lab_special_case:
            self.allocation_src.set_allocation(
                [0] * (config.data_subcarriers / 4)
                + [2] * (config.data_subcarriers / 2)
                + [0] * (config.data_subcarriers / 4),
                [1] * config.data_subcarriers,
            )

        if options.log:
            log_to_file(self, id_src, "data/id_src.short")
            log_to_file(self, bitcount_src, "data/bitcount_src.int")
            log_to_file(self, bitloading_src, "data/bitloading_src.char")
            log_to_file(self, power_src, "data/power_src.cmplx")

        ## GUI probe output
        zmq_probe_bitloading = zeromq.pub_sink(gr.sizeof_char, dsubc, "tcp://*:4445")
        # also skip ID symbol bitloading with keep_one_in_n (side effect)
        # factor 2 for bitloading because we have two vectors per frame, one for id symbol and one for all payload/data symbols
        # factor config.frame_data_part for power because there is one vector per ofdm symbol per frame
        self.connect(bitloading_src, blocks.keep_one_in_n(gr.sizeof_char * dsubc, 2 * 40), zmq_probe_bitloading)
        zmq_probe_power = zeromq.pub_sink(gr.sizeof_float, dsubc, "tcp://*:4444")
        # self.connect(power_src, blocks.keep_one_in_n(gr.sizeof_gr_complex*dsubc,40), blocks.complex_to_real(dsubc), zmq_probe_power)
        self.connect(power_src, blocks.keep_one_in_n(gr.sizeof_float * dsubc, 40), zmq_probe_power)

        ## Workaround to avoid periodic structure
        seed(1)
        whitener_pn = [randint(0, 1) for i in range(used_id_bits * rep_id_bits)]

        ## ID Encoder
        id_enc = self._id_encoder = repetition_encoder_sb(used_id_bits, rep_id_bits, whitener_pn)
        self.connect(id_src, id_enc)

        if options.log:
            id_enc_f = gr.char_to_float()
            self.connect(id_enc, id_enc_f)
            log_to_file(self, id_enc_f, "data/id_enc_out.float")

        ## Reference Data Source
        ber_ref_src = ber_reference_source(self._options)
        self.connect(id_src, (ber_ref_src, 0))
        self.connect(bitcount_src, (ber_ref_src, 1))

        if options.log:
            log_to_file(self, ber_ref_src, "data/ber_rec_src_tx.char")

        if options.log:
            log_to_file(self, btrig, "data/bitmap_trig.char")

        ## Frame Trigger
        ftrig_stream = [1] + [0] * (config.frame_data_part - 1)
        ftrig = self._frame_trigger = blocks.vector_source_b(ftrig_stream, True)

        ## Data Multiplexer
        # Input 0: control stream
        # Input 1: encoded ID stream
        # Inputs 2..n: data streams
        dmux = self._data_multiplexer = stream_controlled_mux_b()
        self.connect(mux_ctrl, (dmux, 0))
        self.connect(id_enc, (dmux, 1))

        if options.coding:
            fo = trellis.fsm(1, 2, [91, 121])
            encoder = self._encoder = trellis.encoder_bb(fo, 0)
            unpack = self._unpack = blocks.unpack_k_bits_bb(2)
            self.connect(ber_ref_src, encoder, unpack)

            if options.interleave:
                int_object = trellis.interleaver(2000, 666)
                interlv = trellis.permutation(int_object.K(), int_object.INTER(), 1, gr.sizeof_char)

            if not options.nopunct:
                bmaptrig_stream_puncturing = [1] + [0] * (config.frame_data_blocks / 2 - 1)
                btrig_puncturing = self._bitmap_trigger_puncturing = blocks.vector_source_b(
                    bmaptrig_stream_puncturing, True
                )
                puncturing = self._puncturing = puncture_bb(config.data_subcarriers)
                self.connect(bitloading_src, (puncturing, 1))
                self.connect(self._bitmap_trigger_puncturing, (puncturing, 2))
                self.connect(unpack, puncturing)
                last_block = puncturing

                if options.interleave:
                    self.connect(last_block, interlv)
                    last_block = interlv

                if options.benchmarking:
                    self.connect(last_block, blocks.head(gr.sizeof_char, options.N), (dmux, 2))
                else:
                    self.connect(last_block, (dmux, 2))
            else:
                if options.benchmarking:
                    self.connect(unpack, blocks.head(gr.sizeof_char, options.N), (dmux, 2))
                else:
                    self.connect(unpack, (dmux, 2))

        else:
            if options.benchmarking:
                self.connect(ber_ref_src, blocks.head(gr.sizeof_char, options.N), (dmux, 2))
            else:
                self.connect(ber_ref_src, (dmux, 2))

        if options.log:
            dmux_f = gr.char_to_float()
            self.connect(dmux, dmux_f)
            log_to_file(self, dmux_f, "data/dmux_out.float")

        ## Modulator
        mod = self._modulator = generic_mapper_bcv(config.data_subcarriers, config.coding, config.frame_data_part)
        self.connect(dmux, (mod, 0))
        self.connect(bitloading_src, (mod, 1))

        if options.log:
            log_to_file(self, mod, "data/mod_out.compl")
            modi = blocks.complex_to_imag(config.data_subcarriers)
            modr = blocks.complex_to_real(config.data_subcarriers)
            self.connect(mod, modi)
            self.connect(mod, modr)
            log_to_file(self, modi, "data/mod_imag_out.float")
            log_to_file(self, modr, "data/mod_real_out.float")

        ## Power allocator
        pa = self._power_allocator = multiply_frame_fc(config.frame_data_part, config.data_subcarriers)
        self.connect(mod, (pa, 0))
        self.connect(power_src, (pa, 1))

        if options.log:
            log_to_file(self, pa, "data/pa_out.compl")

        if options.fbmc:
            psubc = pa
        else:
            psubc = self._pilot_subcarrier_inserter = pilot_subcarrier_inserter()
            self.connect(pa, psubc)

            if options.log:
                log_to_file(self, psubc, "data/psubc_out.compl")

        subcarriers = config.subcarriers

        # fbmc_pblocks_timing = self._fbmc_timing_pilot_block_inserter = fbmc_timing_pilot_block_inserter(5,False)

        oqam_prep = self._oqam_prep = fbmc_oqam_preprocessing_vcvc(config.subcarriers, 0, 0)
        self.connect(psubc, oqam_prep)

        fbmc_pblocks = self._fbmc_pilot_block_inserter = fbmc_pilot_block_inserter(5, False)
        self.connect(oqam_prep, fbmc_pblocks)
        # log_to_file(self, fbmc_pblocks, "data/fbmc_pblocks_out.compl")
        # fbmc_insert_pream = self._fbmc_insert_pream = fbmc_insert_preamble_vcvc(M, syms_per_frame, preamble)
        # log_to_file(self, oqam_prep, "data/oqam_prep.compl")
        # log_to_file(self, psubc, "data/psubc_out.compl")
        # fbmc_pblocks = fbmc_pblocks_timing
        # log_to_file(self, fbmc_pblocks, "data/fbmc_pblocks_out.compl")

        beta_mult = self._beta_mult = fbmc_beta_multiplier_vcvc(config.subcarriers, 4, 4 * config.fft_length - 1, 0)
        self.connect(fbmc_pblocks, beta_mult)
        log_to_file(self, beta_mult, "data/beta_mult.compl")

        ## Add virtual subcarriers
        if config.fft_length > subcarriers:
            vsubc = self._virtual_subcarrier_extender = vector_padding_dc_null(
                config.subcarriers, config.fft_length, config.dc_null
            )
            self.connect(beta_mult, vsubc)
        else:
            vsubc = self._virtual_subcarrier_extender = beta_mult

        if options.log:
            log_to_file(self, vsubc, "data/vsubc_out.compl")

        ## IFFT, no window, block shift
        ifft = self._ifft = fft_blocks.fft_vcc(config.fft_length, False, [], True)
        self.connect(vsubc, ifft)

        if options.log:
            log_to_file(self, ifft, "data/ifft_out.compl")

        # FBMC separate stream + filterbanks
        separate_oqam = self._separate_oqam = fbmc_separate_vcvc(config.fft_length, 2)
        poly_netw_1 = self._poly_netw_1 = fbmc_polyphase_network_vcvc(
            config.fft_length, 4, 4 * config.fft_length - 1, False
        )
        poly_netw_2 = self._poly_netw_2 = fbmc_polyphase_network_vcvc(
            config.fft_length, 4, 4 * config.fft_length - 1, False
        )
        overlap_p2s = self._overlap_p2s = fbmc_overlapping_parallel_to_serial_vcc(config.fft_length)

        self.connect(ifft, (separate_oqam, 0), poly_netw_1)
        self.connect((separate_oqam, 1), poly_netw_2)
        self.connect(poly_netw_1, (overlap_p2s, 0))
        self.connect(poly_netw_2, (overlap_p2s, 1))

        ## Pilot blocks (preambles)
        # pblocks = self._pilot_block_inserter = pilot_block_inserter2(5,False)
        # self.connect( overlap_p2s, blocks.stream_to_vector(gr.sizeof_gr_complex,config.fft_length/2),  pblocks )

        # log_to_file(self, pblocks, "data/fbmc_pilot_block_ins_out.compl")

        if options.log:
            log_to_file(self, pblocks, "data/pilot_block_ins_out.compl")

        ## Cyclic Prefix
        # cp = self._cyclic_prefixer = cyclic_prefixer(config.fft_length,
        # config.block_length)

        # cp= blocks.vector_to_stream(gr.sizeof_gr_complex, config.fft_length/2)
        # self.connect(pblocks, cp )
        # self.connect( overlap_p2s,blocks.stream_to_vector(gr.sizeof_gr_complex,config.fft_length/2), cp )

        lastblock = overlap_p2s

        if options.log:
            log_to_file(self, overlap_p2s, "data/overlap_p2s_out.compl")

        # Digital Amplifier for resource allocation
        if config.adaptive_fbmc:
            rep = blocks.repeat(gr.sizeof_gr_complex, config.frame_length * config.block_length)
            amp = blocks.multiply_cc()
            self.connect(lastblock, (amp, 0))
            self.connect((self.allocation_src, 3), rep, (amp, 1))
            lastblock = amp
        else:
            self.connect((self.allocation_src, 3), blocks.null_sink(gr.sizeof_gr_complex))

        ## Digital Amplifier
        # amp = self._amplifier = gr.multiply_const_cc(1)
        amp = self._amplifier = ofdm.multiply_const_ccf(1.0)
        self.connect(lastblock, amp)
        self.set_rms_amplitude(rms_amp)
        # log_to_file(self, amp, "data/amp_tx_out.compl")

        if options.log:
            log_to_file(self, amp, "data/amp_tx_out.compl")

        ## Tx parameters
        bandwidth = options.bandwidth or 2e6
        bits = 8 * config.data_subcarriers * config.frame_data_blocks  # max. QAM256
        samples_per_frame = config.frame_length * config.block_length
        tb = samples_per_frame / bandwidth
        # set dummy carrier frequency if none available due to baseband mode
        if options.tx_freq is None:
            options.tx_freq = 0.0
        self.tx_parameters = {
            "carrier_frequency": options.tx_freq / 1e9,
            "fft_size": config.fft_length,
            "cp_size": config.cp_length,
            "subcarrier_spacing": options.bandwidth / config.fft_length / 1e3,
            "data_subcarriers": config.data_subcarriers,
            "bandwidth": options.bandwidth / 1e6,
            "frame_length": config.frame_length,
            "symbol_time": (config.cp_length + config.fft_length) / options.bandwidth * 1e6,
            "max_data_rate": (bits / tb) / 1e6,
        }

        ## Setup Output
        self.connect(amp, self)

        # Display some information about the setup
        if config._verbose:
            self._print_verbage()
Exemplo n.º 31
0
    def __init__(self, options):
        gr.hier_block2.__init__(self, "transmit_path",
                                gr.io_signature(0, 0, 0),
                                gr.io_signature(2, 2, gr.sizeof_gr_complex))

        common_options.defaults(options)

        config = self.config = station_configuration()

        config.data_subcarriers = options.subcarriers
        config.cp_length = options.cp_length
        config.frame_data_blocks = options.data_blocks
        config._verbose = options.verbose
        config.fft_length = options.fft_length
        config.training_data = default_block_header(config.data_subcarriers,
                                                    config.fft_length, options)
        config.tx_station_id = options.station_id
        config.coding = options.coding

        if config.tx_station_id is None:
            raise SystemError, "Station ID not set"

        config.frame_id_blocks = 1  # FIXME

        # digital rms amplitude sent to USRP
        rms_amp = options.rms_amplitude
        self._options = copy.copy(options)

        self.servants = []  # FIXME

        config.block_length = config.fft_length + config.cp_length
        config.frame_data_part = config.frame_data_blocks + config.frame_id_blocks
        config.frame_length = config.frame_data_part + \
                              config.training_data.no_pilotsyms
        config.subcarriers = config.data_subcarriers + \
                             config.training_data.pilot_subcarriers
        config.virtual_subcarriers = config.fft_length - config.subcarriers

        # default values if parameters not set
        if rms_amp is None:
            rms_amp = math.sqrt(config.subcarriers)
        config.rms_amplitude = rms_amp

        # check some bounds
        if config.fft_length < config.subcarriers:
            raise SystemError, "Subcarrier number must be less than FFT length"
        if config.fft_length < config.cp_length:
            raise SystemError, "Cyclic prefix length must be less than FFT length"

        ## shortcuts
        blen = config.block_length
        flen = config.frame_length
        dsubc = config.data_subcarriers
        vsubc = config.virtual_subcarriers

        # ------------------------------------------------------------------------ #
        # Adaptive Transmitter Concept

        used_id_bits = config.used_id_bits = 8  #TODO: no constant in source code
        rep_id_bits = config.rep_id_bits = config.data_subcarriers / used_id_bits  #BPSK
        if config.data_subcarriers % used_id_bits <> 0:
            raise SystemError, "Data subcarriers need to be multiple of %d" % (
                used_id_bits)

        ## Control Part
        if options.debug:
            self._control = ctrl = static_tx_control(options)
            print "Statix TX Control used"
        else:
            self._control = ctrl = corba_tx_control(options)
            print "CORBA TX Control used"

        id_src = (ctrl, 0)
        mux_src = (ctrl, 1)
        map_src = self._map_src = (ctrl, 2)
        pa_src = (ctrl, 3)

        if options.log:
            id_src_f = gr.short_to_float()
            self.connect(id_src, id_src_f)
            log_to_file(self, id_src_f, "data/id_src_out.float")

            mux_src_f = gr.short_to_float()
            self.connect(mux_src, mux_src_f)
            log_to_file(self, mux_src_f, "data/mux_src_out.float")

            map_src_s = blocks.vector_to_stream(gr.sizeof_char,
                                                config.data_subcarriers)
            map_src_f = gr.char_to_float()
            self.connect(map_src, map_src_s, map_src_f)
            ##log_to_file(self, map_src_f, "data/map_src.float")

            ##log_to_file(self, pa_src, "data/pa_src_out.float")

        ## Workaround to avoid periodic structure
        seed(1)
        whitener_pn = [
            randint(0, 1) for i in range(used_id_bits * rep_id_bits)
        ]

        ## ID Encoder
        id_enc = self._id_encoder = repetition_encoder_sb(
            used_id_bits, rep_id_bits, whitener_pn)
        self.connect(id_src, id_enc)

        if options.log:
            id_enc_f = gr.char_to_float()
            self.connect(id_enc, id_enc_f)
            log_to_file(self, id_enc_f, "data/id_enc_out.float")

        ## Bitmap Update Trigger
        # TODO
        #bmaptrig_stream = concatenate([[1, 2],[0]*(config.frame_data_part-7)])
        bmaptrig_stream = concatenate([[1, 1],
                                       [0] * (config.frame_data_part - 2)])
        print "bmaptrig_stream = ", bmaptrig_stream
        btrig = self._bitmap_trigger = blocks.vector_source_b(
            bmaptrig_stream.tolist(), True)
        if options.log:
            log_to_file(self, btrig, "data/bitmap_trig.char")

        ## Bitmap Update Trigger for puncturing
        # TODO
        if not options.nopunct:
            #bmaptrig_stream_puncturing = concatenate([[1],[0]*(config.frame_data_part-2)])
            bmaptrig_stream_puncturing = concatenate(
                [[1], [0] * (config.frame_data_blocks / 2 - 1)])

            btrig_puncturing = self._bitmap_trigger_puncturing = blocks.vector_source_b(
                bmaptrig_stream_puncturing.tolist(), True)
            bmapsrc_stream_puncturing = concatenate([[1] * dsubc, [2] * dsubc])
            bsrc_puncturing = self._bitmap_src_puncturing = blocks.vector_source_b(
                bmapsrc_stream_puncturing.tolist(), True, dsubc)

        if options.log and options.coding and not options.nopunct:
            log_to_file(self, btrig_puncturing,
                        "data/bitmap_trig_puncturing.char")

        ## Frame Trigger
        # TODO
        ftrig_stream = concatenate([[1], [0] * (config.frame_data_part - 1)])
        ftrig = self._frame_trigger = blocks.vector_source_b(
            ftrig_stream.tolist(), True)

        ## Data Multiplexer
        # Input 0: control stream
        # Input 1: encoded ID stream
        # Inputs 2..n: data streams
        dmux = self._data_multiplexer = stream_controlled_mux_b()
        self.connect(mux_src, (dmux, 0))
        self.connect(id_enc, (dmux, 1))

        self._data_multiplexer_nextport = 2

        if options.log:
            dmux_f = gr.char_to_float()
            self.connect(dmux, dmux_f)
            log_to_file(self, dmux_f, "data/dmux_out.float")

        ## Modulator
        mod = self._modulator = generic_mapper_bcv(config.data_subcarriers,
                                                   options.coding)

        self.connect(dmux, (mod, 0))
        self.connect(map_src, (mod, 1))
        self.connect(btrig, (mod, 2))

        if options.log:
            log_to_file(self, mod, "data/mod_out.compl")
            modi = gr.complex_to_imag(config.data_subcarriers)
            modr = gr.complex_to_real(config.data_subcarriers)
            self.connect(mod, modi)
            self.connect(mod, modr)
            log_to_file(self, modi, "data/mod_imag_out.float")
            log_to_file(self, modr, "data/mod_real_out.float")

        ## Power allocator
        if options.debug:

            ## static
            pa = self._power_allocator = power_allocator(
                config.data_subcarriers)
            self.connect(mod, (pa, 0))
            self.connect(pa_src, (pa, 1))

        else:

            ## with CORBA control event channel
            ns_ip = ctrl.ns_ip
            ns_port = ctrl.ns_port
            evchan = ctrl.evchan
            pa = self._power_allocator = corba_power_allocator(dsubc, \
                evchan, ns_ip, ns_port, True)

            self.connect(mod, (pa, 0))
            self.connect(id_src, (pa, 1))
            self.connect(ftrig, (pa, 2))

        if options.log:
            log_to_file(self, pa, "data/pa_out.compl")

        ## Pilot subcarriers
        psubc = self._pilot_subcarrier_inserter = pilot_subcarrier_inserter()
        self.connect(pa, psubc)

        pilot_subc = config.training_data.shifted_pilot_tones
        print "pilot_subc", pilot_subc
        stc = stc_encoder(config.subcarriers, config.frame_data_blocks,
                          pilot_subc)

        self.connect(psubc, stc)

        if options.log:
            log_to_file(self, psubc, "data/psubc_out.compl")
            log_to_file(self, psubc_2, "data/psubc2_out.compl")
            log_to_file(self, pa, "data/pa.compl")
            log_to_file(self, (stc, 0), "data/stc_0.compl")
            log_to_file(self, (stc, 1), "data/stc_1.compl")

        ## Add virtual subcarriers
        if config.fft_length > config.subcarriers:
            vsubc = self._virtual_subcarrier_extender = \
                    vector_padding(config.subcarriers, config.fft_length)
            self.connect(stc, vsubc)
            vsubc_2 = self._virtual_subcarrier_extender_2 = \
                    vector_padding(config.subcarriers, config.fft_length)
            self.connect((stc, 1), vsubc_2)
        else:
            vsubc = self._virtual_subcarrier_extender = psubc
            vsubc_2 = self._virtual_subcarrier_extender_2 = psubc_2

        log_to_file(self, psubc, "data/psubc.compl")
        log_to_file(self, stc, "data/stc1.compl")
        log_to_file(self, (stc, 1), "data/stc2.compl")
        if options.log:
            log_to_file(self, vsubc, "data/vsubc_out.compl")
            log_to_file(self, vsubc_2, "data/vsubc2_out.compl")

        ## IFFT, no window, block shift
        ifft = self._ifft = fft_blocks.fft_vcc(config.fft_length, False, [],
                                               True)
        self.connect(vsubc, ifft)
        ifft_2 = self._ifft_2 = fft_blocks.fft_vcc(config.fft_length, False,
                                                   [], True)
        self.connect(vsubc_2, ifft_2)

        if options.log:
            log_to_file(self, ifft, "data/ifft_out.compl")
            log_to_file(self, ifft_2, "data/ifft2_out.compl")

        ## Pilot blocks (preambles)
        pblocks = self._pilot_block_inserter = pilot_block_inserter(1, False)
        self.connect(ifft, pblocks)
        pblocks_2 = self._pilot_block_inserter_2 = pilot_block_inserter(
            2, False)
        self.connect(ifft_2, pblocks_2)

        if options.log:
            log_to_file(self, pblocks, "data/pilot_block_ins_out.compl")
            log_to_file(self, pblocks_2, "data/pilot_block_ins2_out.compl")

        ## Cyclic Prefix
        cp = self._cyclic_prefixer = cyclic_prefixer(config.fft_length,
                                                     config.block_length)
        self.connect(pblocks, cp)
        cp_2 = self._cyclic_prefixer_2 = cyclic_prefixer(
            config.fft_length, config.block_length)
        self.connect(pblocks_2, cp_2)

        lastblock = cp
        lastblock_2 = cp_2

        if options.log:
            log_to_file(self, cp, "data/cp_out.compl")
            log_to_file(self, cp_2, "data/cp2_out.compl")

        if options.cheat:
            ## Artificial Channel
            # kept to compare with previous system
            achan_ir = concatenate([[1.0], [0.0] * (config.cp_length - 1)])
            achan = self._artificial_channel = gr.fir_filter_ccc(1, achan_ir)
            self.connect(lastblock, achan)
            lastblock = achan
            achan_2 = self._artificial_channel_2 = gr.fir_filter_ccc(
                1, achan_ir)
            self.connect(lastblock_2, achan_2)
            lastblock_2 = achan_2

        ## Digital Amplifier
        amp = self._amplifier = ofdm.multiply_const_ccf(1.0 / math.sqrt(2))
        self.connect(lastblock, amp)
        amp_2 = self._amplifier_2 = ofdm.multiply_const_ccf(1.0 / math.sqrt(2))
        self.connect(lastblock_2, amp_2)
        self.set_rms_amplitude(rms_amp)

        if options.log:
            log_to_file(self, amp, "data/amp_tx_out.compl")
            log_to_file(self, amp_2, "data/amp_tx2_out.compl")

        ## Setup Output
        self.connect(amp, (self, 0))
        self.connect(amp_2, (self, 1))

        # ------------------------------------------------------------------------ #

        # Display some information about the setup
        if config._verbose:
            self._print_verbage()
Exemplo n.º 32
0
  def __init__( self, options, log = False ):
    
    ## Read configuration
    config = station_configuration()
    
    fft_length    = config.fft_length
    cp_length     = config.cp_length
    block_header  = config.training_data
    data_subc     = config.data_subcarriers
    virtual_subc  = config.virtual_subcarriers
    total_subc    = config.subcarriers
    block_length  = config.block_length
    frame_length  = config.frame_length
    dc_null       = config.dc_null
    
    L             = block_header.mm_periodic_parts
    
    
    ## Set Input/Output signature
    gr.hier_block2.__init__( self, 
        "ofdm_inner_receiver",
        gr.io_signature(
            1, 1,
            gr.sizeof_gr_complex ),
        gr.io_signaturev(
            4, 4,
            [gr.sizeof_gr_complex * total_subc,    # OFDM blocks
            gr.sizeof_char,                       # Frame start
            gr.sizeof_float * total_subc,
            gr.sizeof_float] ) )      # Normalized |CTF|^2 
    
    
    ## Input and output ports
    self.input = rx_input = self
    
    out_ofdm_blocks = ( self, 0 )
    out_frame_start = ( self, 1 )
    out_disp_ctf    = ( self, 2 )
    out_disp_cfo    = ( self, 3 )
    
    
    ## pre-FFT processing
    if options.ideal is False and options.ideal2 is False:
        if options.old_receiver is False:
            ## Compute autocorrelations for S&C preamble
            ## and cyclic prefix
            
            self._sc_metric = sc_metric = autocorrelator( fft_length/2, fft_length/2 )
            self._gi_metric = gi_metric = autocorrelator( fft_length, cp_length )
            
            self.connect( rx_input, sc_metric )
            self.connect( rx_input, gi_metric )    
            
            ## Sync. Output contains OFDM blocks
            sync = ofdm.time_sync( fft_length, cp_length )
            self.connect( rx_input, ( sync, 0 ) )
            self.connect( sc_metric, ( sync, 1 ) )
            self.connect( gi_metric, ( sync, 2 ) )
            ofdm_blocks = ( sync, 0 )
            frame_start = ( sync, 1 )
            #log_to_file( self, ( sync, 1 ), "data/peak_detector.char" )
        else:
    
            #Testing old/new metric
            self.tm = schmidl.recursive_timing_metric(fft_length)
            self.connect( self.input, self.tm)
            #log_to_file( self, self.tm, "data/rec_sc_metric_ofdm.float" )
            
            timingmetric_shift = -2#int(-cp_length/4)# 0#-2 #int(-cp_length * 0.8)
            tmfilter = filter.fft_filter_fff(1, [1./cp_length]*cp_length)
            self.connect( self.tm, tmfilter )
            self.tm = tmfilter
        
            
            
            self._pd_thres = 0.3
            self._pd_lookahead = fft_length / 2 # empirically chosen
            peak_detector = ofdm.peak_detector_02_fb(self._pd_lookahead, self._pd_thres)
            self.connect(self.tm, peak_detector)
            #log_to_file( self, peak_detector, "data/rec_peak_detector.char" )
            
            
            frame_start = [0]*frame_length
            frame_start[0] = 1
            frame_start = self.frame_trigger_old = blocks.vector_source_b(frame_start,True)
            
            
            delayed_timesync = blocks.delay(gr.sizeof_char,
                                        (frame_length-1)*block_length + timingmetric_shift)
            self.connect( peak_detector, delayed_timesync )
            
            self.block_sampler = ofdm.vector_sampler(gr.sizeof_gr_complex,block_length*frame_length)
            self.discard_cp = ofdm.vector_mask(block_length,cp_length,fft_length,[])
            
            self.connect(self.input,self.block_sampler)
            self.connect(delayed_timesync,(self.block_sampler,1))
        
            # TODO: dynamic solution
            vt2s = blocks.vector_to_stream(gr.sizeof_gr_complex*block_length,
                                                    frame_length)
            self.connect(self.block_sampler,vt2s,self.discard_cp)
            #terminate_stream(self,ofdm_blocks)
            ofdm_blocks = self.discard_cp
#     else:
#       serial_to_parallel = blocks.stream_to_vector(gr.sizeof_gr_complex,block_length)
#       discard_cp = ofdm.vector_mask(block_length,cp_length,fft_length,[])
#       ofdm_blocks = discard_cp
#       self.connect( rx_input, serial_to_parallel, discard_cp )
#       frame_start = [0]*frame_length
#       frame_start[0] = 1
#       frame_start = blocks.vector_source_b(frame_start,True)
#       
#       print "Disabled time synchronization stage"
    
    ## Compute autocorrelations for S&C preamble
    ## and cyclic prefix
    
    #log_to_file( self, sc_metric, "data/sc_metric_ofdm.float" )
    #log_to_file(self, frame_start, "data/frame_start.compl")
    
#    log_to_file(self,ofdm_blocks,"data/ofdm_blocks_original.compl")
    
    if options.disable_time_sync or options.ideal or options.ideal2:
      if options.ideal is False and options.ideal2 is False:
          terminate_stream(self, ofdm_blocks)
          terminate_stream(self, frame_start)
      
      serial_to_parallel = blocks.stream_to_vector(gr.sizeof_gr_complex,block_length)
      discard_cp = ofdm.vector_mask_dc_null(block_length,cp_length,fft_length,dc_null, [])
      ofdm_blocks = discard_cp
      self.connect( rx_input, serial_to_parallel, discard_cp )
      
      frame_start = [0]*frame_length
      frame_start[0] = 1
      frame_start = blocks.vector_source_b(frame_start,True)
      
      print "Disabled time synchronization stage"
    
    print"\t\t\t\t\tframe_length = ",frame_length
    
    
    
    
    if options.ideal is False and options.ideal2 is False:
        ## Extract preamble, feed to Morelli & Mengali frequency offset estimator
        assert( block_header.mm_preamble_pos == 0 )
        morelli_foe = ofdm.mm_frequency_estimator( fft_length, L,1,0 )
        sampler_preamble = ofdm.vector_sampler( gr.sizeof_gr_complex * fft_length,
                                            1 )
        self.connect( ofdm_blocks, ( sampler_preamble, 0 ) )
        self.connect( frame_start, ( sampler_preamble, 1 ) )
        self.connect( sampler_preamble, morelli_foe )
        freq_offset = morelli_foe
    
    
        ## Adaptive LMS FIR filtering of frequency offset
        lms_fir = ofdm.lms_fir_ff( 20, 1e-3 ) # TODO: verify parameter choice
        self.connect( freq_offset, lms_fir )
        freq_offset = lms_fir
    
        #self.zmq_probe_freqoff = zeromq.pub_sink(gr.sizeof_float, 1, "tcp://*:5557")
        self.connect(lms_fir, blocks.keep_one_in_n(gr.sizeof_float,20) ,out_disp_cfo)
    else:
        self.connect(blocks.vector_source_f ([1]) ,out_disp_cfo)
    
        #log_to_file(self, lms_fir, "data/lms_fir.float")
    
    if options.disable_freq_sync or options.ideal or options.ideal2:
      if options.ideal is False and options.ideal2 is False:
          terminate_stream(self, freq_offset)
          freq_offset = blocks.vector_source_f([0.0],True)
      print "Disabled frequency synchronization stage"
    
    if options.ideal is False and options.ideal2 is False:
        ## Correct frequency shift, feed-forward structure
        frequency_shift = ofdm.frequency_shift_vcc( fft_length, -1.0/fft_length,
                                                    cp_length )
        self.connect( ofdm_blocks, ( frequency_shift, 0 ) )
        self.connect( freq_offset, ( frequency_shift, 1 ) )
        self.connect( frame_start, ( frequency_shift, 2 ) )
        ofdm_blocks = frequency_shift
    
    
    
    
    ## FFT
    fft = fft_blocks.fft_vcc( fft_length, True, [], True )
    self.connect( ofdm_blocks, fft )
    ofdm_blocks = fft
    #log_to_file( self, fft, "data/compen.float" )
    
    
    
    ## Remove virtual subcarriers
    if fft_length > data_subc:
      subcarrier_mask = ofdm.vector_mask_dc_null( fft_length, virtual_subc/2,
                                           total_subc, dc_null, [] )
      self.connect( ofdm_blocks, subcarrier_mask )
      ofdm_blocks = subcarrier_mask
      #log_to_file(self, ofdm_blocks, "data/vec_mask.compl")
       ## Least Squares estimator for channel transfer function (CTF)
    
    
      if options.logcir:
          log_to_file( self, ofdm_blocks, "data/OFDM_Blocks.compl" )
          
          inv_preamble_fd = numpy.array( block_header.pilotsym_fd[ 
            block_header.channel_estimation_pilot[0] ] )
          inv_preamble_fd = numpy.concatenate([inv_preamble_fd[:total_subc/2],inv_preamble_fd[total_subc/2+dc_null:]])
          #print "Channel estimation pilot: ", inv_preamble_fd
          inv_preamble_fd = 1. / inv_preamble_fd
          LS_channel_estimator0 = ofdm.multiply_const_vcc( list( inv_preamble_fd ) )
          self.connect( ofdm_blocks, LS_channel_estimator0, gr.null_sink(gr.sizeof_gr_complex*total_subc))
          log_to_file( self, LS_channel_estimator0, "data/OFDM_Blocks_eq.compl" )
          
    ## post-FFT processing
      
    
    
    ## extract channel estimation preamble from frame
    if options.ideal is False and options.ideal2 is False:
        chest_pre_trigger = blocks.delay( gr.sizeof_char, 1)
        sampled_chest_preamble = ofdm.vector_sampler( gr.sizeof_gr_complex * total_subc, 1)
        self.connect( frame_start,       chest_pre_trigger )
        self.connect( chest_pre_trigger, ( sampled_chest_preamble, 1 ) )
        self.connect( ofdm_blocks,       ( sampled_chest_preamble, 0 ) )
    

    
        ## Least Squares estimator for channel transfer function (CTF)
        inv_preamble_fd = numpy.array( block_header.pilotsym_fd[ 
                                                            block_header.channel_estimation_pilot[0] ] )
        inv_preamble_fd = numpy.concatenate([inv_preamble_fd[:total_subc/2],inv_preamble_fd[total_subc/2+dc_null:]])    
        #print "Channel estimation pilot: ", inv_preamble_fd
        inv_preamble_fd = 1. / inv_preamble_fd
    
        LS_channel_estimator = ofdm.multiply_const_vcc( list( inv_preamble_fd ) )
        self.connect( sampled_chest_preamble, LS_channel_estimator )
        estimated_CTF = LS_channel_estimator
    
        if options.logcir:
             log_to_file( self, sampled_chest_preamble, "data/PREAM.compl" )
     
    
        if not options.disable_ctf_enhancer:
      
      
            if options.logcir:
                ifft1 = fft_blocks.fft_vcc(total_subc,False,[],True)
                self.connect( estimated_CTF, ifft1,gr.null_sink(gr.sizeof_gr_complex*total_subc))
                summ1 = ofdm.vector_sum_vcc(total_subc)
                c2m =gr.complex_to_mag(total_subc)
                self.connect( estimated_CTF,summ1 ,gr.null_sink(gr.sizeof_gr_complex))
                self.connect( estimated_CTF, c2m,gr.null_sink(gr.sizeof_float*total_subc))
                log_to_file( self, ifft1, "data/CIR1.compl" )
                log_to_file( self, summ1, "data/CTFsumm1.compl" )
                log_to_file( self, estimated_CTF, "data/CTF1.compl" )
                log_to_file( self, c2m, "data/CTFmag1.float" )
        
            ## MSE enhancer
            ctf_mse_enhancer = ofdm.CTF_MSE_enhancer( total_subc, cp_length + cp_length)
            self.connect( estimated_CTF, ctf_mse_enhancer )
#      log_to_file( self, ctf_mse_enhancer, "data/ctf_mse_enhancer_original.compl")
      #ifft3 = fft_blocks.fft_vcc(total_subc,False,[],True)
      #null_noise = ofdm.noise_nulling(total_subc, cp_length + cp_length)
      #ctf_mse_enhancer = fft_blocks.fft_vcc(total_subc,True,[],True)
      #ctf_mse_enhancer = ofdm.vector_mask( fft_length, virtual_subc/2,
                                          # total_subc, [] )
      #self.connect( estimated_CTF, ifft3,null_noise,ctf_mse_enhancer )
        
            estimated_CTF = ctf_mse_enhancer 
            print "Disabled CTF MSE enhancer"

        if options.logcir:
             ifft2 = fft_blocks.fft_vcc(total_subc,False,[],True)
             self.connect( estimated_CTF, ifft2,gr.null_sink(gr.sizeof_gr_complex*total_subc))
             summ2 = ofdm.vector_sum_vcc(total_subc)
             c2m2 =gr.complex_to_mag(total_subc)
             self.connect( estimated_CTF,summ2 ,gr.null_sink(gr.sizeof_gr_complex))
             self.connect( estimated_CTF, c2m2,gr.null_sink(gr.sizeof_float*total_subc))
             log_to_file( self, ifft2, "data/CIR2.compl" )
             log_to_file( self, summ2, "data/CTFsumm2.compl" )
             log_to_file( self, estimated_CTF, "data/CTF2.compl" )
             log_to_file( self, c2m2, "data/CTFmag2.float" )
         
    ## Postprocess the CTF estimate
    ## CTF -> inverse CTF (for equalizer)
    ## CTF -> norm |.|^2 (for CTF display)
        ctf_postprocess = ofdm.postprocess_CTF_estimate( total_subc )
        self.connect( estimated_CTF, ctf_postprocess )
        inv_estimated_CTF = ( ctf_postprocess, 0 )
        disp_CTF = ( ctf_postprocess, 1 )
    
#     if options.disable_equalization or options.ideal:
#       terminate_stream(self, inv_estimated_CTF)
#       inv_estimated_CTF_vec = blocks.vector_source_c([1.0/fft_length*math.sqrt(total_subc)]*total_subc,True,total_subc)
#       inv_estimated_CTF_str = blocks.vector_to_stream(gr.sizeof_gr_complex, total_subc)
#       self.inv_estimated_CTF_mul = ofdm.multiply_const_ccf( 1.0/config.rms_amplitude )
#       #inv_estimated_CTF_mul.set_k(1.0/config.rms_amplitude)
#       inv_estimated_CTF = blocks.stream_to_vector(gr.sizeof_gr_complex, total_subc)
#       self.connect( inv_estimated_CTF_vec, inv_estimated_CTF_str, self.inv_estimated_CTF_mul, inv_estimated_CTF)
#       print "Disabled equalization stage"
    '''
    ## LMS Phase tracking
    ## Track residual frequency offset and sampling clock frequency offset

    nondata_blocks = []
    for i in range(config.frame_length):
      if i in config.training_data.pilotsym_pos:
        nondata_blocks.append(i)
        
    print"\t\t\t\t\tnondata_blocks=",nondata_blocks
    pilot_subc = block_header.pilot_tones
    pilot_subcarriers = block_header.pilot_subc_sym
    print "PILOT SUBCARRIERS: ", pilot_subcarriers
        
    phase_tracking = ofdm.lms_phase_tracking_03( total_subc, pilot_subc,
                                               nondata_blocks, pilot_subcarriers,0 )
    self.connect( ofdm_blocks, ( phase_tracking, 0 ) )
    self.connect( inv_estimated_CTF, ( phase_tracking, 1 ) )
    self.connect( frame_start, ( phase_tracking, 2 ) ) ##
    
    if options.scatter_plot_before_phase_tracking:
      self.before_phase_tracking = equalizer
      
    
    if options.disable_phase_tracking or options.ideal:
      terminate_stream(self, phase_tracking)
      print "Disabled phase tracking stage"
    else:
      ofdm_blocks = phase_tracking
    '''
    ## Channel Equalizer
    if options.disable_equalization or options.ideal or options.ideal2:
        print "Disabled equalization stage"
        if options.ideal is False and options.ideal2 is False:
            terminate_stream(self, inv_estimated_CTF)
    else:
        equalizer = ofdm.channel_equalizer( total_subc )
        self.connect( ofdm_blocks,       ( equalizer, 0 ) )
        self.connect( inv_estimated_CTF, ( equalizer, 1 ) )
        self.connect( frame_start,       ( equalizer, 2 ) )
        ofdm_blocks = equalizer
    #log_to_file(self, equalizer,"data/equalizer_siso.compl")
    
    
    #log_to_file(self, ofdm_blocks, "data/equalizer.compl")

    ## LMS Phase tracking
    ## Track residual frequency offset and sampling clock frequency offset
    if options.ideal is False and options.ideal2 is False:
        nondata_blocks = []
        for i in range(config.frame_length):
          if i in config.training_data.pilotsym_pos:
            nondata_blocks.append(i)
            
        print"\t\t\t\t\tnondata_blocks=",nondata_blocks
        pilot_subc = block_header.pilot_tones
        pilot_subcarriers = block_header.pilot_subc_sym
        print "PILOT SUBCARRIERS: ", pilot_subcarriers
         
        phase_tracking2 = ofdm.lms_phase_tracking_dc_null( total_subc, pilot_subc,
                                                   nondata_blocks, pilot_subcarriers, dc_null  )
        self.connect( ofdm_blocks, ( phase_tracking2, 0 ) )
        self.connect( frame_start, ( phase_tracking2, 1 ) ) ##
        
    if options.disable_phase_tracking or options.ideal or options.ideal2:
        if options.ideal is False and options.ideal2 is False:
            terminate_stream(self, phase_tracking2)
        print "Disabled phase tracking stage"
    else:
        ofdm_blocks = phase_tracking2
    
    if options.scatter_plot_before_phase_tracking:
      self.before_phase_tracking = equalizer


    ## Output connections

    self.connect( ofdm_blocks, out_ofdm_blocks )
    self.connect( frame_start, out_frame_start )
    if options.ideal is False and options.ideal2 is False:
        self.connect( disp_CTF, out_disp_ctf )
    else:
        self.connect( blocks.vector_source_f([1.0]*total_subc),blocks.stream_to_vector(gr.sizeof_float,total_subc), out_disp_ctf )

    if log:
      log_to_file( self, sc_metric, "data/sc_metric.float" )
      log_to_file( self, gi_metric, "data/gi_metric.float" )
      log_to_file( self, morelli_foe, "data/morelli_foe.float" )
      log_to_file( self, lms_fir, "data/lms_fir.float" )
      log_to_file( self, sampler_preamble, "data/preamble.compl" )
      log_to_file( self, sync, "data/sync.compl" )
      log_to_file( self, frequency_shift, "data/frequency_shift.compl" )
      log_to_file( self, fft, "data/fft.compl")
      log_to_file( self, fft, "data/fft.float", mag=True )
      
      if vars().has_key( 'subcarrier_mask' ):
        log_to_file( self, subcarrier_mask, "data/subcarrier_mask.compl" )
      
      log_to_file( self, ofdm_blocks, "data/ofdm_blocks_out.compl" )
      log_to_file( self, frame_start, "data/frame_start.float", 
                   char_to_float=True )
      
      log_to_file( self, sampled_chest_preamble, 
                   "data/sampled_chest_preamble.compl" )
      log_to_file( self, LS_channel_estimator, 
                   "data/ls_channel_estimator.compl" )
      log_to_file( self, LS_channel_estimator, 
                   "data/ls_channel_estimator.float", mag=True )
      
      if "ctf_mse_enhancer" in locals(): 
        log_to_file( self, ctf_mse_enhancer, "data/ctf_mse_enhancer.compl" )
        log_to_file( self, ctf_mse_enhancer, "data/ctf_mse_enhancer.float", 
                     mag=True )
      
      log_to_file( self, (ctf_postprocess,0), "data/inc_estimated_ctf.compl" )
      log_to_file( self, (ctf_postprocess,1), "data/disp_ctf.float" )
      
      log_to_file( self, equalizer, "data/equalizer.compl" )
      log_to_file( self, equalizer, "data/equalizer.float", mag=True )
      
      log_to_file( self, phase_tracking, "data/phase_tracking.compl" )
Exemplo n.º 33
0
  def __init__( self, options, log = False ):
    
    ## Read configuration
    config = station_configuration()
    
    fft_length    = config.fft_length
    cp_length     = config.cp_length
    block_header  = config.training_data
    data_subc     = config.data_subcarriers
    virtual_subc  = config.virtual_subcarriers
    total_subc    = config.subcarriers
    block_length  = config.block_length
    frame_length  = config.frame_length
    
    L             = block_header.mm_periodic_parts
    
    frame_data_blocks    = options.data_blocks
    
    
    ## Set Input/Output signature
    gr.hier_block2.__init__( self, 
        "ofdm_inner_receiver",
        gr.io_signature(
            1, 1,
            gr.sizeof_gr_complex ),
        gr.io_signature4(
            4, 4,
            gr.sizeof_gr_complex * total_subc,    # OFDM blocks
            gr.sizeof_char,                       # Frame start
            gr.sizeof_float * total_subc,         # Normalized |CTF|^2
            gr.sizeof_float * total_subc ) )      # Normalized |CTF|^2
    
    
    ## Input and output ports
    self.input  = rx_input = (self,0)

    
    out_ofdm_blocks = ( self, 0 )
    out_frame_start = ( self, 1 )
    out_disp_ctf    = ( self, 2 )
    out_disp_ctf2    = ( self, 3 )
    
    ## pre-FFT processing
    
    
    ## Compute autocorrelations for S&C preamble
    ## and cyclic prefix
    sc_metric = autocorrelator( fft_length/2, fft_length/2 )
    gi_metric = autocorrelator( fft_length, cp_length )
    
    self.connect( rx_input, sc_metric )
    self.connect( rx_input, gi_metric )
    
    ## Sync. Output contains OFDM blocks
    sync = ofdm.time_sync( fft_length, cp_length )
    self.connect( rx_input, ( sync, 0 ) )
    self.connect( sc_metric, ( sync, 1 ) )
    self.connect( gi_metric, ( sync, 2 ) )
    ofdm_blocks = ( sync, 0 )
    frame_start = ( sync, 1 )
    
    if options.disable_time_sync or options.ideal:
      terminate_stream(self, ofdm_blocks)
      terminate_stream(self, frame_start)
      
      serial_to_parallel = blocks.stream_to_vector(gr.sizeof_gr_complex,block_length)
      discard_cp = ofdm.vector_mask(block_length,cp_length,fft_length,[])
      ofdm_blocks = discard_cp
      self.connect( rx_input, serial_to_parallel, discard_cp )
      
      frame_start = [0]*frame_length
      frame_start[0] = 1
      frame_start = blocks.vector_source_b(frame_start,True)
      
      print "Disabled time synchronization stage"
    
    
    
    ## Extract preamble, feed to Morelli & Mengali frequency offset estimator
    assert( block_header.mm_preamble_pos == 0 )
    morelli_foe = ofdm.mm_frequency_estimator( fft_length, L )
    sampler_preamble = ofdm.vector_sampler( gr.sizeof_gr_complex * fft_length,
                                            1 )
    self.connect( ofdm_blocks, ( sampler_preamble, 0 ) )
    self.connect( frame_start, ( sampler_preamble, 1 ) )
    self.connect( sampler_preamble, morelli_foe )
    freq_offset = morelli_foe
    
    
    
    ## Adaptive LMS FIR filtering of frequency offset
    lms_fir = ofdm.lms_fir_ff( 20, 1e-3 ) # TODO: verify parameter choice
    self.connect( freq_offset, lms_fir )
    freq_offset = lms_fir
    log_to_file(self, lms_fir, "data/foe_21.float")
    
#    log_to_file(self, lms_fir, "data/lms_fir.float")
#    log_to_file(self, lms_fir2, "data/lms_fir2.float")
    
    if options.disable_freq_sync or options.ideal:
       terminate_stream(self, freq_offset)
       freq_offset = blocks.vector_source_f([0.0],True)
       print "Disabled frequency synchronization stage"
    
    ## Correct frequency shift, feed-forward structure
    frequency_shift = ofdm.frequency_shift_vcc( fft_length, -1.0/fft_length,
                                                cp_length )
    self.connect( ofdm_blocks, ( frequency_shift, 0 ) )
    self.connect( freq_offset, ( frequency_shift, 1 ) )
    self.connect( frame_start, ( frequency_shift, 2 ) )
    ofdm_blocks = frequency_shift
    
    
    ## FFT
    fft = fft_blocks.fft_vcc( fft_length, True, [], True )
    self.connect( ofdm_blocks, fft )
    ofdm_blocks = fft
    
    ## Remove virtual subcarriers
    if fft_length > data_subc:
      subcarrier_mask = ofdm.vector_mask( fft_length, virtual_subc/2,
                                           total_subc, [] )
      self.connect( ofdm_blocks, subcarrier_mask )
      ofdm_blocks = subcarrier_mask
      
       ## Least Squares estimator for channel transfer function (CTF)
    
    
      # if options.logcir:
          # log_to_file( self, ofdm_blocks, "data/OFDM_Blocks.compl" )
          
          # inv_preamble_fd = numpy.array( block_header.pilotsym_fd[ 
            # block_header.channel_estimation_pilot[0] ] )
          # print "Channel estimation pilot: ", inv_preamble_fd
          # inv_preamble_fd = 1. / inv_preamble_fd
          # LS_channel_estimator0 = ofdm.multiply_const_vcc( list( inv_preamble_fd ) )
          # self.connect( ofdm_blocks, LS_channel_estimator0, blocks.null_sink(gr.sizeof_gr_complex*total_subc))
          # log_to_file( self, LS_channel_estimator0, "data/OFDM_Blocks_eq.compl" )
          
    ## post-FFT processing
      
    
    
    ## extract channel estimation preamble from frame
    
    if options.est_preamble==1:
        chest_pre_trigger = blocks.delay( gr.sizeof_char, 
                                      1 )
        sampled_chest_preamble = \
          ofdm.vector_sampler( gr.sizeof_gr_complex * total_subc, 1 )
        self.connect( frame_start,       chest_pre_trigger )
        self.connect( chest_pre_trigger, ( sampled_chest_preamble, 1 ) )
        self.connect( ofdm_blocks,       ( sampled_chest_preamble, 0 ) )
        
        
        ## Least Squares estimator for channel transfer function (CTF)
        
        # Taking inverse for estimating h11 (h12)
        inv_preamble_fd_1 = numpy.array( block_header.pilotsym_fd_1[ 
            block_header.channel_estimation_pilot[0] ] )
        print "inv_preamble_fd_1: ",inv_preamble_fd_1
        inv_preamble_fd_1 = inv_preamble_fd_1[0::2]
        #print "inv_preamble_fd_1 ", inv_preamble_fd_1
        
        # Taking inverse for estimating h21 (h22)
        inv_preamble_fd_2 = numpy.array( block_header.pilotsym_fd_2[ 
            block_header.channel_estimation_pilot[0] ] )
        print "inv_preamble_fd_2: ",inv_preamble_fd_2
        inv_preamble_fd_2 = inv_preamble_fd_2[1::2]
        #print "inv_preamble_fd_2 ", inv_preamble_fd_2
        
        print "inv_preamble_fd_1: ",inv_preamble_fd_1
        print "inv_preamble_fd_2: ",inv_preamble_fd_2
        
        
        inv_preamble_fd_1 = 1. / inv_preamble_fd_1
        inv_preamble_fd_2 = 1. / inv_preamble_fd_2
        
        dd = []
        for i in range (total_subc/2):
            dd.extend([i*2])
            
        skip_block_1 = ofdm.int_skip(total_subc,2,0)
        skip_block_2 = ofdm.int_skip(total_subc,2,1)
    #    inta_estim_1 = ofdm.interpolator(total_subc,2,dd)
    #    inta_estim_2 = ofdm.interpolator(total_subc,2,dd)
        
        LS_channel_estimator_1 = ofdm.multiply_const_vcc( list( inv_preamble_fd_1 ) )
        LS_channel_estimator_2 = ofdm.multiply_const_vcc( list( inv_preamble_fd_2 ) )
        self.connect( sampled_chest_preamble,skip_block_1, LS_channel_estimator_1)#,inta_estim_1 )
        self.connect( sampled_chest_preamble,skip_block_2, LS_channel_estimator_2)#,inta_estim_2 )
        
        estimated_CTF_1 = LS_channel_estimator_1                  # h0
        estimated_CTF_2 = LS_channel_estimator_2                  # h1              # h3
            
        
        if not options.disable_ctf_enhancer:
          
          # if options.logcir:
            # ifft1 = fft_blocks.fft_vcc(total_subc,False,[],True)
            # self.connect( estimated_CTF, ifft1,blocks.null_sink(gr.sizeof_gr_complex*total_subc))
            # summ1 = ofdm.vector_sum_vcc(total_subc)
            # c2m =gr.complex_to_mag(total_subc)
            # self.connect( estimated_CTF,summ1 ,blocks.null_sink(gr.sizeof_gr_complex))
            # self.connect( estimated_CTF, c2m,blocks.null_sink(gr.sizeof_float*total_subc))
            # log_to_file( self, ifft1, "data/CIR1.compl" )
            # log_to_file( self, summ1, "data/CTFsumm1.compl" )
            # log_to_file( self, estimated_CTF, "data/CTF1.compl" )
            # log_to_file( self, c2m, "data/CTFmag1.float" )
            
          ## MSE enhancer
          ctf_mse_enhancer_1 = ofdm.CTF_MSE_enhancer( total_subc, cp_length + cp_length)
          ctf_mse_enhancer_2 = ofdm.CTF_MSE_enhancer( total_subc, cp_length + cp_length)
          self.connect( estimated_CTF_1, ctf_mse_enhancer_1 )
          self.connect( estimated_CTF_2, ctf_mse_enhancer_2 )
          
            
          estimated_CTF_1 = ctf_mse_enhancer_1
          estimated_CTF_2 = ctf_mse_enhancer_2
          
          print "Disabled CTF MSE enhancer"
        
        ctf_postprocess_1 = ofdm.postprocess_CTF_estimate( total_subc/2 )
        self.connect( estimated_CTF_1, ( ctf_postprocess_1, 0 ) )
        ctf_postprocess_2 = ofdm.postprocess_CTF_estimate( total_subc/2 )
        self.connect( estimated_CTF_2, ( ctf_postprocess_2, 0 ) )
               
        inv_CTF_1 = ( ctf_postprocess_1, 0 )
        disp_CTF_1 = ( ctf_postprocess_1, 1 )
        inv_CTF_2 = ( ctf_postprocess_2, 0 )
        disp_CTF_2 = ( ctf_postprocess_2, 1 )  
    
        disp_CTF_RX0 = blocks.add_ff(total_subc/2)
        
        self.connect ( disp_CTF_1, (disp_CTF_RX0, 0) )
        self.connect ( disp_CTF_2, (disp_CTF_RX0, 1) )
    
    
        terminate_stream(self,disp_CTF_RX0)
        terminate_stream(self,inv_CTF_2)
        
        disp_CTF_RX0 = blocks.null_source(gr.sizeof_float*total_subc)
        disp_CTF_RX1 = blocks.null_source(gr.sizeof_float*total_subc)
        ## Channel Equalizer
        
        #log_to_file(self, ofdm_blocks, "data/vec_mask.compl")
        #log_to_file(self, ofdm_blocks2, "data/vec_mask2.compl")
        
        nondata_blocks = []
        for i in range(config.frame_length):
          if i in config.training_data.pilotsym_pos:
            nondata_blocks.append(i)
            
        pilot_subc = block_header.pilot_tones
        pilot_subcarriers = block_header.pilot_subc_sym
        print "PILOT SUBCARRIERS: ", pilot_subcarriers
        
        phase_tracking = ofdm.lms_phase_tracking_03( total_subc, pilot_subc,
                                                   nondata_blocks,pilot_subcarriers,0 )
       
        
        ##phase_tracking = ofdm.lms_phase_tracking_02( total_subc, pilot_subc,
         ##                                          nondata_blocks )
        ##phase_tracking2 = ofdm.lms_phase_tracking_02( total_subc, pilot_subc,
         ##                                           nondata_blocks )
        
    #    self.connect( ofdm_blocks,          ( phase_tracking, 0 ) )
    #    self.connect( ofdm_blocks2,          ( phase_tracking, 1 ))
    #    self.connect( inv_CTF_1,            ( phase_tracking, 2 ) )
    #    self.connect( inv_CTF_3,            ( phase_tracking, 3 ) )
    #    self.connect( frame_start,            ( phase_tracking, 4 ) )
    #    self.connect( frame_start2,            ( phase_tracking, 5) )
    #    
    #    self.connect( ofdm_blocks2,          ( phase_tracking2, 0 ) )
    #    self.connect( ofdm_blocks,          ( phase_tracking2, 1 ))
    #    self.connect( inv_CTF_3,            ( phase_tracking2, 2 ) )
    #    self.connect( inv_CTF_1,            ( phase_tracking2, 3 ) )
    #    self.connect( frame_start2,            ( phase_tracking2, 4 ) )
    #    self.connect( frame_start,            ( phase_tracking2, 5 ) )
        
        self.connect( ofdm_blocks,          ( phase_tracking, 0 ) )
        self.connect( inv_CTF_1,            ( phase_tracking, 1 ) )
        self.connect( frame_start,            ( phase_tracking, 2 ) )
        
        #self.connect(phase_tracking,blocks.null_sink(gr.sizeof_gr_complex*total_subc))
        
        ofdm_blocks = phase_tracking
       
          
        '''equalizer = ofdm.channel_equalizer_mimo_2( total_subc )
        self.connect(  ofdm_blocks,         ( equalizer, 0 ) )
        self.connect(  ofdm_blocks2,        ( equalizer, 1 ) )
        self.connect( inv_CTF_1,            ( equalizer, 2 ) )
        self.connect( inv_CTF_2,            ( equalizer, 3 ) )
        self.connect( inv_CTF_3,            ( equalizer, 4 ) )
        self.connect( inv_CTF_4,            ( equalizer, 5 ) )
        self.connect( frame_start,          ( equalizer, 6 ) )
        self.connect( frame_start2,         ( equalizer, 7 ) )
        ofdm_blocks = equalizer'''
          
    
        equalizer = ofdm.channel_equalizer_mimo_2( total_subc )    
        self.connect(  ofdm_blocks,          ( equalizer, 0 ) )
        self.connect( estimated_CTF_1,            ( equalizer, 1 ) )
        self.connect( estimated_CTF_2,            ( equalizer, 2 ) )
        self.connect( frame_start,          ( equalizer, 3 ) )
        #ofdm_blocks = equalizer
    
        #ofdm_blocks2 = equalizer2
        
    
        ofdm_blocks = equalizer
        
        #log_to_file(self, equalizer,"data/equalizer.compl")
        log_to_file(self, ofdm_blocks,"data/equalizer.compl")
        log_to_file(self, estimated_CTF_1,"data/estimated_CTF_1.compl")
        log_to_file(self, estimated_CTF_2,"data/estimated_CTF_2.compl")
        
        
        
        
        
        
        ## LMS Phase tracking
        ## Track residual frequency offset and sampling clock frequency offset
        '''
        nondata_blocks = []
        for i in range(config.frame_length):
          if i in config.training_data.pilotsym_pos:
            nondata_blocks.append(i)
            
        pilot_subc = block_header.pilot_tones
            
        phase_tracking = ofdm.lms_phase_tracking_02( total_subc, pilot_subc,
                                                   nondata_blocks )
        self.connect( equalizer, ( phase_tracking, 0 ) )
        self.connect( frame_start, ( phase_tracking, 1 ) )
        
        phase_tracking2 = ofdm.lms_phase_tracking_02( total_subc, pilot_subc,
                                                    nondata_blocks )
        self.connect( equalizer2, ( phase_tracking2, 0 ) )
        self.connect( frame_start2, ( phase_tracking2, 1 ) )
        
        # if options.scatter_plot_before_phase_tracking:
          # self.before_phase_tracking = equalizer
          
        
        if options.disable_phase_tracking or options.ideal:
          terminate_stream(self, phase_tracking)
          terminate_stream(self, phase_tracking2)
          print "Disabled phase tracking stage"
        else:
          ofdm_blocks = phase_tracking
          ofdm_blocks2 = phase_tracking2
          
        log_to_file(self,phase_tracking, "data/phase_tracking.compl")
        '''
          
        '''combine = blocks.add_cc(config.subcarriers)
        self.connect(ofdm_blocks, (combine,0))
        self.connect(ofdm_blocks2, (combine,1))
        ofdm_blocks = combine'''
    ##    div = gr.multiply_cc(config.subcarriers)
    ##    const = blocks.vector_source_c([[0.5+0]*config.subcarriers],True)
    ##    self.connect(ofdm_blocks,div)
    ##    self.connect(const,(div,1))
    ##    ofdm_blocks=div
    #    log_to_file(self,combine,"data/combine.compl")
        ## Output connections
        
        self.connect( ofdm_blocks, out_ofdm_blocks )
        self.connect( frame_start, out_frame_start )
        self.connect( disp_CTF_RX0, out_disp_ctf )
        self.connect( disp_CTF_RX1, out_disp_ctf2 )
        
    else: # (2 preambles for channel estimation)
        chest_pre_trigger_1 = blocks.delay( gr.sizeof_char, 
                                      1 )
        
        chest_pre_trigger_2 = blocks.delay( gr.sizeof_char, 
                                      2 )
        sampled_chest_preamble_1 = \
          ofdm.vector_sampler( gr.sizeof_gr_complex * total_subc, 1 )
          
        sampled_chest_preamble_2 = \
          ofdm.vector_sampler( gr.sizeof_gr_complex * total_subc, 1 ) 
           
        self.connect( frame_start,       chest_pre_trigger_1 )
        self.connect( chest_pre_trigger_1, ( sampled_chest_preamble_1, 1 ) )
        self.connect( ofdm_blocks,       ( sampled_chest_preamble_1, 0 ) )
        
        self.connect( frame_start,       chest_pre_trigger_2 )
        self.connect( chest_pre_trigger_2, ( sampled_chest_preamble_2, 1 ) )
        self.connect( ofdm_blocks,       ( sampled_chest_preamble_2, 0 ) )
        
        
        ## Least Squares estimator for channel transfer function (CTF)
        
        # Taking inverse for estimating h11 (h12)
        inv_preamble_fd_1 = numpy.array( block_header.pilotsym_fd_1[ 
            block_header.channel_estimation_pilot[0] ] )
        print "inv_preamble_fd_1: ",inv_preamble_fd_1
        #inv_preamble_fd_1 = inv_preamble_fd_1[0::2]
        #print "inv_preamble_fd_1 ", inv_preamble_fd_1
        
        # Taking inverse for estimating h21 (h22)
        inv_preamble_fd_2 = numpy.array( block_header.pilotsym_fd_2[ 
            block_header.channel_estimation_pilot[0]+1 ] )
        print "inv_preamble_fd_2: ",inv_preamble_fd_2
        #inv_preamble_fd_2 = inv_preamble_fd_2[1::2]
        #print "inv_preamble_fd_2 ", inv_preamble_fd_2
        
        print "inv_preamble_fd_1: ",inv_preamble_fd_1
        print "inv_preamble_fd_2: ",inv_preamble_fd_2
        
        
        inv_preamble_fd_1 = 1. / inv_preamble_fd_1
        inv_preamble_fd_2 = 1. / inv_preamble_fd_2
        
        #dd = []
        #for i in range (total_subc/2):
          #  dd.extend([i*2])
            
        skip_block_1 = ofdm.int_skip(total_subc,2,0)
        skip_block_11 = ofdm.int_skip(total_subc,2,0)
        skip_block_2 = ofdm.int_skip(total_subc,2,1)
    #    inta_estim_1 = ofdm.interpolator(total_subc,2,dd)
    #    inta_estim_2 = ofdm.interpolator(total_subc,2,dd)
        
        LS_channel_estimator_1 = ofdm.multiply_const_vcc( list( inv_preamble_fd_1 ) )
        LS_channel_estimator_2 = ofdm.multiply_const_vcc( list( inv_preamble_fd_2 ) )
        self.connect( sampled_chest_preamble_1, LS_channel_estimator_1)#,inta_estim_1 )
        self.connect( sampled_chest_preamble_2, LS_channel_estimator_2)#,inta_estim_2 )
        
        estimated_CTF_1 = LS_channel_estimator_1                  # h0
        estimated_CTF_2 = LS_channel_estimator_2                  # h1              # h3
            
        
        if not options.disable_ctf_enhancer:
          
          # if options.logcir:
            # ifft1 = fft_blocks.fft_vcc(total_subc,False,[],True)
            # self.connect( estimated_CTF, ifft1,blocks.null_sink(gr.sizeof_gr_complex*total_subc))
            # summ1 = ofdm.vector_sum_vcc(total_subc)
            # c2m =gr.complex_to_mag(total_subc)
            # self.connect( estimated_CTF,summ1 ,blocks.null_sink(gr.sizeof_gr_complex))
            # self.connect( estimated_CTF, c2m,blocks.null_sink(gr.sizeof_float*total_subc))
            # log_to_file( self, ifft1, "data/CIR1.compl" )
            # log_to_file( self, summ1, "data/CTFsumm1.compl" )
            # log_to_file( self, estimated_CTF, "data/CTF1.compl" )
            # log_to_file( self, c2m, "data/CTFmag1.float" )
            
          ## MSE enhancer
          ctf_mse_enhancer_1 = ofdm.CTF_MSE_enhancer( total_subc, cp_length + cp_length)
          ctf_mse_enhancer_2 = ofdm.CTF_MSE_enhancer( total_subc, cp_length + cp_length)
          self.connect( estimated_CTF_1, ctf_mse_enhancer_1 )
          self.connect( estimated_CTF_2, ctf_mse_enhancer_2 )
          
            
          estimated_CTF_1 = ctf_mse_enhancer_1
          estimated_CTF_2 = ctf_mse_enhancer_2
          
          print "Disabled CTF MSE enhancer"
        
        ctf_postprocess_1 = ofdm.postprocess_CTF_estimate( total_subc )
        self.connect( estimated_CTF_1, ( ctf_postprocess_1, 0 ) )
        ctf_postprocess_2 = ofdm.postprocess_CTF_estimate( total_subc )
        self.connect( estimated_CTF_2, ( ctf_postprocess_2, 0 ) )
               
        inv_CTF_1 = ( ctf_postprocess_1, 0 )
        disp_CTF_1 = ( ctf_postprocess_1, 1 )
        inv_CTF_2 = ( ctf_postprocess_2, 0 )
        disp_CTF_2 = ( ctf_postprocess_2, 1 )  
    
        #disp_CTF_RX0 = blocks.add_ff(total_subc)
        
        #self.connect ( disp_CTF_1, (disp_CTF_RX0, 0) )
        #self.connect ( disp_CTF_2, (disp_CTF_RX0, 1) )
    
    
        #terminate_stream(self,disp_CTF_RX0)
        terminate_stream(self,inv_CTF_2)
        
        disp_CTF_RX0 = disp_CTF_1
        disp_CTF_RX1 = disp_CTF_2
        ## Channel Equalizer
        
        #log_to_file(self, ofdm_blocks, "data/vec_mask.compl")
        #log_to_file(self, ofdm_blocks2, "data/vec_mask2.compl")
        
        nondata_blocks = []
        for i in range(config.frame_length):
          if i in config.training_data.pilotsym_pos:
            nondata_blocks.append(i)
            
        pilot_subc = block_header.pilot_tones
        pilot_subcarriers = block_header.pilot_subc_sym
        print "PILOT SUBCARRIERS: ", pilot_subcarriers
        
        phase_tracking = ofdm.lms_phase_tracking_03( total_subc, pilot_subc,
                                                   nondata_blocks,pilot_subcarriers,0 )
       
        
        ##phase_tracking = ofdm.lms_phase_tracking_02( total_subc, pilot_subc,
         ##                                          nondata_blocks )
        ##phase_tracking2 = ofdm.lms_phase_tracking_02( total_subc, pilot_subc,
         ##                                           nondata_blocks )
        
    #    self.connect( ofdm_blocks,          ( phase_tracking, 0 ) )
    #    self.connect( ofdm_blocks2,          ( phase_tracking, 1 ))
    #    self.connect( inv_CTF_1,            ( phase_tracking, 2 ) )
    #    self.connect( inv_CTF_3,            ( phase_tracking, 3 ) )
    #    self.connect( frame_start,            ( phase_tracking, 4 ) )
    #    self.connect( frame_start2,            ( phase_tracking, 5) )
    #    
    #    self.connect( ofdm_blocks2,          ( phase_tracking2, 0 ) )
    #    self.connect( ofdm_blocks,          ( phase_tracking2, 1 ))
    #    self.connect( inv_CTF_3,            ( phase_tracking2, 2 ) )
    #    self.connect( inv_CTF_1,            ( phase_tracking2, 3 ) )
    #    self.connect( frame_start2,            ( phase_tracking2, 4 ) )
    #    self.connect( frame_start,            ( phase_tracking2, 5 ) )
        
        self.connect( ofdm_blocks,          ( phase_tracking, 0 ) )
        self.connect( inv_CTF_1,    skip_block_11,   ( phase_tracking, 1 ) )
        self.connect( frame_start,            ( phase_tracking, 2 ) )
        
        #self.connect(phase_tracking,blocks.null_sink(gr.sizeof_gr_complex*total_subc))
        
        if options.disable_phase_tracking or options.ideal:
          terminate_stream(self, phase_tracking)
          print "Disabled phase tracking stage"
        else:
          ofdm_blocks = phase_tracking
          
       
          
        '''equalizer = ofdm.channel_equalizer_mimo_2( total_subc )
        self.connect(  ofdm_blocks,         ( equalizer, 0 ) )
        self.connect(  ofdm_blocks2,        ( equalizer, 1 ) )
        self.connect( inv_CTF_1,            ( equalizer, 2 ) )
        self.connect( inv_CTF_2,            ( equalizer, 3 ) )
        self.connect( inv_CTF_3,            ( equalizer, 4 ) )
        self.connect( inv_CTF_4,            ( equalizer, 5 ) )
        self.connect( frame_start,          ( equalizer, 6 ) )
        self.connect( frame_start2,         ( equalizer, 7 ) )
        ofdm_blocks = equalizer'''
          
    
        equalizer = ofdm.channel_equalizer_mimo_2( total_subc )    
        self.connect(  ofdm_blocks,          ( equalizer, 0 ) )
        self.connect( estimated_CTF_1,     skip_block_1,       ( equalizer, 1 ) )
        self.connect( estimated_CTF_2,    skip_block_2,        ( equalizer, 2 ) )
        self.connect( frame_start,          ( equalizer, 3 ) )
        #ofdm_blocks = equalizer
    
        #ofdm_blocks2 = equalizer2
        
    
        ofdm_blocks = equalizer
        
        #log_to_file(self, equalizer,"data/equalizer.compl")
        log_to_file(self, ofdm_blocks,"data/equalizer.compl")
        log_to_file(self, estimated_CTF_1,"data/estimated_CTF_1.compl")
        log_to_file(self, estimated_CTF_2,"data/estimated_CTF_2.compl")
        
        
        
        
        
        
        ## LMS Phase tracking
        ## Track residual frequency offset and sampling clock frequency offset
        '''
        nondata_blocks = []
        for i in range(config.frame_length):
          if i in config.training_data.pilotsym_pos:
            nondata_blocks.append(i)
            
        pilot_subc = block_header.pilot_tones
            
        phase_tracking = ofdm.lms_phase_tracking_02( total_subc, pilot_subc,
                                                   nondata_blocks )
        self.connect( equalizer, ( phase_tracking, 0 ) )
        self.connect( frame_start, ( phase_tracking, 1 ) )
        
        phase_tracking2 = ofdm.lms_phase_tracking_02( total_subc, pilot_subc,
                                                    nondata_blocks )
        self.connect( equalizer2, ( phase_tracking2, 0 ) )
        self.connect( frame_start2, ( phase_tracking2, 1 ) )
        
        # if options.scatter_plot_before_phase_tracking:
          # self.before_phase_tracking = equalizer
          
        
        if options.disable_phase_tracking or options.ideal:
          terminate_stream(self, phase_tracking)
          terminate_stream(self, phase_tracking2)
          print "Disabled phase tracking stage"
        else:
          ofdm_blocks = phase_tracking
          ofdm_blocks2 = phase_tracking2
          
        log_to_file(self,phase_tracking, "data/phase_tracking.compl")
        '''
          
        '''combine = blocks.add_cc(config.subcarriers)
        self.connect(ofdm_blocks, (combine,0))
        self.connect(ofdm_blocks2, (combine,1))
        ofdm_blocks = combine'''
    ##    div = gr.multiply_cc(config.subcarriers)
    ##    const = blocks.vector_source_c([[0.5+0]*config.subcarriers],True)
    ##    self.connect(ofdm_blocks,div)
    ##    self.connect(const,(div,1))
    ##    ofdm_blocks=div
    #    log_to_file(self,combine,"data/combine.compl")
        ## Output connections
        
        self.connect( ofdm_blocks, out_ofdm_blocks )
        self.connect( frame_start, out_frame_start )
        self.connect( disp_CTF_RX0, out_disp_ctf )
        self.connect( disp_CTF_RX1, out_disp_ctf2 )