def create_sliceinfo_w(images_fn,
                       labels_fn,
                       regint_fn,
                       kernels,
                       i,
                       slice_no=None):
    # figure out the biggest slice
    if slice_no == None:
        slice_no = find_biggest_slice(path + labels_fn[i])
    print("Creating Weighted Slice Info... {}/{}: Slice {}".format(
        i + 1, len(images_fn), slice_no))

    # get the slice, label, and associated orientations
    slice_im, slice_im_or = get_nifti_slice(path + images_fn[i], slice_no)
    slice_lb, slice_lb_or = get_nifti_slice(path + labels_fn[i], slice_no)
    slice_ro, slice_ro_or = get_nifti_slice(path + regint_fn[i], slice_no)

    # if crop, we crop the image down
    if crop:
        crop_x, crop_y = crop
        start_x = slice_im.shape[0] / 2 - crop_x / 2
        end_x = start_x + crop_x
        start_y = slice_im.shape[1] / 2 - crop_y / 2
        end_y = start_y + crop_y

        slice_im = slice_im[start_x:end_x, start_y:end_y]
        slice_lb = slice_lb[start_x:end_x, start_y:end_y]
        slice_ro = slice_ro[start_x:end_x, start_y:end_y]

    # figure out the principal patches
    pc_payload = (slice_im, slice_lb)
    patches_m_pc, patches_n_pc, vals_m, vals_n = create_pc_patches_w(
        *pc_payload)

    # compute gabor features for the patches
    feats_m = []
    feats_n = []
    intens_m = []
    intens_n = []
    for patch in patches_m_pc:
        feats_m.append(compute_feats(patch, kernels))
        intens_m.append(compute_intens(patch))
    for patch in patches_n_pc:
        feats_n.append(compute_feats(patch, kernels))
        intens_n.append(compute_intens(patch))

    # package it into a SliceInfo object
    si_payload = (images_fn[i], slice_no, slice_im, slice_im_or, slice_lb,
                  slice_lb_or, slice_ro, slice_ro_or, patches_m_pc,
                  patches_n_pc, feats_m, feats_n, intens_m, intens_n, vals_m,
                  vals_n)

    return SliceInfo(*si_payload)
def create_sliceinfo_w(images_fn, labels_fn, regint_fn, kernels, i, slice_no=None):
    # figure out the biggest slice
    if slice_no == None:    
        slice_no = find_biggest_slice(path + labels_fn[i])
    print("Creating Weighted Slice Info... {}/{}: Slice {}".format(i+1, len(images_fn), slice_no))
    
    # get the slice, label, and associated orientations
    slice_im, slice_im_or = get_nifti_slice(path + images_fn[i], slice_no)
    slice_lb, slice_lb_or = get_nifti_slice(path + labels_fn[i], slice_no)
    slice_ro, slice_ro_or = get_nifti_slice(path + regint_fn[i], slice_no)
    
    # if crop, we crop the image down
    if crop:    
        crop_x, crop_y = crop
        start_x = slice_im.shape[0] / 2 - crop_x / 2
        end_x = start_x + crop_x
        start_y = slice_im.shape[1] / 2 - crop_y / 2
        end_y = start_y + crop_y
    
        slice_im = slice_im[start_x:end_x, start_y:end_y]
        slice_lb = slice_lb[start_x:end_x, start_y:end_y]
        slice_ro = slice_ro[start_x:end_x, start_y:end_y]
            
    # figure out the principal patches
    pc_payload = (slice_im, slice_lb)
    patches_m_pc, patches_n_pc, vals_m, vals_n = create_pc_patches_w(*pc_payload)
    
    # compute gabor features for the patches
    feats_m = []
    feats_n = []
    intens_m = []
    intens_n = []
    for patch in patches_m_pc:
        feats_m.append(compute_feats(patch, kernels))
        intens_m.append(compute_intens(patch))
    for patch in patches_n_pc:
        feats_n.append(compute_feats(patch, kernels))
        intens_n.append(compute_intens(patch))
    
    # package it into a SliceInfo object
    si_payload = (images_fn[i], slice_no, 
                  slice_im, slice_im_or,
                  slice_lb, slice_lb_or,
                  slice_ro, slice_ro_or,
                  patches_m_pc, patches_n_pc,
                  feats_m, feats_n,
                  intens_m, intens_n,
                  vals_m, vals_n) 
                  
    return SliceInfo(*si_payload)
Exemplo n.º 3
0
def classify_patch_group(fn_rf, fn_kern, fn_patch_info):
    t0 = time()
    RF = dill.load(open(fn_rf, 'rb')) # unpack the RF classifier
    kernels = dill.load(open(fn_kern, 'rb')) # unpack the kernels
    patch_info = dill.load(open(fn_patch_info, 'rb')) # unpack the patch info
    
    a, b, c = patch_info[0] # get the bounds of the set
    patches_a = patch_info[1] # grab the set to classify
    patches_r = patch_info[2] # grab the set to compare with (atlas mask)
    
    
    results = []
    
    for i, patch in enumerate(patches_a): # go through each patch
        if np.all(patches_r[i]): # if the patch is entirely masked
            feat = compute_feats(patch, kernels).flatten().reshape(1, -1)
            intens = np.array(compute_intens(patch)).flatten().reshape(1, -1)
            feat = np.concatenate((feat, intens), axis=1)            
            prediction = RF.predict(feat)
            #print("Classifying patch {}/{}: {}".format(i, len(patches), prediction))
            results.append(np.full(patch.shape, prediction))
        else: # the associated ROI patch is totally zero
            results.append(np.zeros(patch.shape))
    dt = time() - t0
    print("Classified group {}-{}/{} in {:.2f} time".format(a, b, c, dt))
    return results
def classify_patch_group(fn_rf, fn_kern, fn_patch_info):
    t0 = time()
    RF = dill.load(open(fn_rf, "rb"))  # unpack the RF classifier
    kernels = dill.load(open(fn_kern, "rb"))  # unpack the kernels
    patch_info = dill.load(open(fn_patch_info, "rb"))  # unpack the patch info

    a, b, c = patch_info[0]  # get the bounds of the set
    patches_a = patch_info[1]  # grab the set to classify
    patches_r = patch_info[2]  # grab the set to compare with (atlas mask)

    results = []

    for i, patch in enumerate(patches_a):  # go through each patch
        if np.all(patches_r[i]):  # if the patch is entirely masked
            feat = compute_feats(patch, kernels).flatten().reshape(1, -1)
            intens = np.array(compute_intens(patch)).flatten().reshape(1, -1)
            feat = np.concatenate((feat, intens), axis=1)
            prediction = RF.predict(feat)
            # print("Classifying patch {}/{}: {}".format(i, len(patches), prediction))
            results.append(np.full(patch.shape, prediction))
        else:  # the associated ROI patch is totally zero
            results.append(np.zeros(patch.shape))
    dt = time() - t0
    print("Classified group {}-{}/{} in {:.2f} time".format(a, b, c, dt))
    return results