Exemplo n.º 1
0
def main():
	usage = """run_kalmanfilter.py [input_avi_file] [optic_flow_path] [output_avi_file] [threshold]

HydraGL. State space model using an extended Kalman filter to track Hydra in video

Dependencies:
-Vispy*
-Numpy
-PyCuda**
-DistMesh 
-HDF
-OpenCV2
-matplotlib

Notes:
*  Uses OpenGL rendering. If using remotely, you'll need to set up a VirtualGL server
** If have a CUDA compatible graphics card

Example: 
./run_kalmanfilter.py ./video/johntest_brightcontrast_short.avi ... 
 ./video/johntest_brightcontrast_short/flow ./video/output.avi -s 15

For help:
./run_kalmanfilter.py -h 

Ben Lansdell
02/16/2016
"""

	parser = argparse.ArgumentParser()
	parser.add_argument('fn_in', default='./video/johntest_brightcontrast_short.avi', 
		help='input video file, any format readable by OpenCV', nargs = '?')
	parser.add_argument('flow_in', default='./video/johntest_brightcontrast_short/flow', 
		help='input optic flow path', nargs = '?')
	parser.add_argument('fn_out', default='./video/johntest_brightcontrast_short_output.avi', 
		help='avi output video file', nargs='?')
	parser.add_argument('-n', '--name', default='johntest_brightcontrast_short', 
		help='name for saving run images', nargs='?')
	parser.add_argument('-t', '--threshold', default=9,
		help='threshold intensity below which is background', type = int)
	parser.add_argument('-s', '--gridsize', default=22,
		help='edge length for mesh (smaller is finer; unstable much further below 18)', type = int)
	parser.add_argument('-c', '--cuda', default=True,
		help='whether or not to do analysis on CUDA', type = bool)
	args = parser.parse_args()

	if len(sys.argv) == 1:
		print("No command line arguments provided, using defaults")
	
	capture = VideoStream(args.fn_in, args.threshold)

	frame = capture.current_frame()
	mask, ctrs, fd = capture.backsub()
	distmesh = DistMesh(frame, h0 = args.gridsize)
	distmesh.createMesh(ctrs, fd, frame, plot = True)
	
	#Load flow data from directory
	flowstream = FlowStream(args.flow_in)
	ret_flow, flowframe = flowstream.peek()

	if ret_flow:
		kf = IteratedMSKalmanFilter(distmesh, frame, flowframe, cuda = args.cuda, sparse = True, multi = True)
	else:
		print 'Cannot read flow stream'
		return 

	#kf.compute(capture.gray_frame(), flowframe)
	nI = 3
	count = 0
	while(capture.isOpened()):
		count += 1
		print 'Frame %d' % count 
		ret, frame, grayframe, mask = capture.read()
		ret_flow, flowframe = flowstream.read()
		if ret is False or ret_flow is False:
			break
		#for i in range(nI):
		#	print 'Iteration %d' % i 
		#	raw_input("Finished. Press Enter to continue")
		#	kf.compute(grayframe, flowframe)
		kf.compute(grayframe, flowframe, mask, imageoutput = 'screenshots/' + args.name + '_frame_' + str(count))
	capture.release()
	output.release()
	cv2.destroyAllWindows()
	raw_input("Finished. Press ENTER to exit")
Exemplo n.º 2
0
video, flow = test_data(680, 680)
#video, flow = test_data_texture(680, 680)
#video, flow = test_data_image()
flowframe = flow[:,:,:,0]
frame = video[:,:,0]

#Make mesh
distmesh = DistMesh(frame, h0 = gridsize)
mask, ctrs, h = findObjectThreshold(frame, threshold = threshold)
distmesh.createMesh(ctrs, h, frame, plot=False)

nx = 680
start = nx//3
end = 2*nx//3

kf = IteratedMSKalmanFilter(distmesh, frame, flowframe, cuda)

#Now perturb the positions a bit...
kf.state.X = kf.state.X*1.2
kf.state.refresh()

rend = kf.state.renderer
cuda = kf.state.renderer.cudagl 
kf.state.render()
state = kf.state 
nx = nx 
deltaX = -2

nF = video.shape[2]
nI = 10
count = 0
Exemplo n.º 3
0
#- ave per update jacobain time
#- ave per update hessian time

data = np.zeros((len(gridsizes), 11))

for idx, gridsize in enumerate(gridsizes):
	#idx = 1; gridsize = 40
	print 'Running KF for gridsize =', gridsize
	flowframe = flow[:,:,:,0]
	frame = video[:,:,0]
	
	distmesh = DistMesh(frame, h0 = gridsize)
	mask, ctrs, h = findObjectThreshold(frame, threshold = threshold)
	distmesh.createMesh(ctrs, h, frame, plot=False)
	
	kf = IteratedMSKalmanFilter(distmesh, frame, flowframe, cuda, multi = True)
	kf.state.render()
	
	count = 0
	for i in range(3):
		count += 1
		print 'Frame %d' % count 
		frame = video[:,:,i]
		mask = (frame > 0).astype(np.uint8)
		flowframe = flow[:,:,:,i]
		time.sleep(1)
		kf.compute(frame, flowframe, mask)


	#Extract stats
	meshpts = stats.meshpts 
Exemplo n.º 4
0
(mask, ctrs, fd) = findObjectThreshold(tracking_mask, threshold = threshold)

#distmesh = DistMesh(refframe, h0 = gridsize)
#distmesh.createMesh(ctrs, fd, refframe, plot = True)
#Save this distmesh and reload it for quicker testing
#distmesh.save(dm_out)

distmesh = DistMesh(refframe, h0 = gridsize)
distmesh.load(dm_out)

refpositions = distmesh.p
#Create dummy input for flow frame
flowframe = np.zeros((nx, nx, 2))

#Create Kalman Filter object to store mesh and make use of plotting functions
kf = IteratedMSKalmanFilter(distmesh, refframe, flowframe, cuda = cuda)
N = kf.size()/4
totalframes = 0

for vidx in range(nV):

	#Load MFSF data
	a = loadmat(mfsf_matfiles[vidx])
	params = a['parmsOF']
	u = a['u']
	v = a['v']
	if vidx > 0:
		#Skip to this frame and create mesh 
		capture = TIFFStream(vid_path_in + fn_ins[vidx], threshold)
		nx = capture.nx
		nF = capture.nframes
Exemplo n.º 5
0
#Make mesh
distmesh = DistMesh(frame, h0 = gridsize)
mask, ctrs, h = findObjectThreshold(frame, threshold = threshold)
distmesh.createMesh(ctrs, h, frame, plot=False)

nx = 680
start = nx//3
end = 2*nx//3

#kf = KalmanFilter(distmesh, frame, flowframe, cuda)
#kf = IteratedKalmanFilter(distmesh, frame, flowframe, cuda)
#kf = IteratedKalmanFilter(distmesh, frame, flowframe, cuda, sparse = False)
#kf = KalmanFilterMorph(distmesh, frame, cuda)

kf = IteratedMSKalmanFilter(distmesh, frame, flowframe, cuda, multi = True)
#kf = MSKalmanFilter(distmesh, frame, flowframe, cuda)

rend = kf.state.renderer
cuda = kf.state.renderer.cudagl 
kf.state.render()
state = kf.state 
nx = nx 
deltaX = -2

#Test creation of multi-perturbations

nF = video.shape[2]
nI = 10
count = 0