def integBulkBc(rad, field, ri, ro, lambdai, lambdao, normed=False): """ This function evaluates the radial integral of the input array field in the boundary layer and in the bulk separately. :param rad: radius :type rad: numpy.ndarray :param field: the input radial profile :type field: numpy.ndarray :param ri: the inner core radius :type ri: float :param ro: the outer core radius :type ro: float :param lambdai: thickness of the inner boundary layer :type lambdai: float :param lambdao: thickness of the outer boundary layer :type lambdao: float :param normed: when set to True, the outputs are normalised by the volumes of the boundary layers and the fluid bulk, respectively. In that case, the outputs are volume-averaged quantities. :type normed: bool :returns: two floats that contains the boundary layer and the bulk integrations (integBc, integBulk) :rtype: list """ # Dissipation in the boundary layers field2 = field.copy() mask = (rad<=ro-lambdao) * (rad>=ri+lambdai) field2[mask] = 0. integBc = intcheb(field2, len(field2)-1, ri, ro) if normed: volBc1 = 4./3.*N.pi*(ro**3-(ro-lambdao)**3) volBc2 = 4./3.*N.pi*((ri+lambdai)**3-(ri)**3) volBc = volBc1+volBc2 integBc = integBc/volBc # Dissipation in the bulk field2 = field.copy() mask = (rad>ro-lambdao) field2[mask] = 0. mask = (rad<ri+lambdai) field2[mask] = 0. integBulk = intcheb(field2, len(field2)-1, ri, ro) if normed: volBulk = 4./3.*N.pi*((ro-lambdao)**3-(ri+lambdai)**3) integBulk = integBulk/volBulk return integBc, integBulk
def integBotTop(rad, field, ri, ro, lambdai, lambdao, normed=False): """ This function evaluates the radial integral of the input array field in the bottom and top boundary layers separately. :param rad: radius :type rad: numpy.ndarray :param field: the input radial profile :type field: numpy.ndarray :param ri: the inner core radius :type ri: float :param ro: the outer core radius :type ro: float :param lambdai: thickness of the inner boundary layer :type lambdai: float :param lambdao: thickness of the outer boundary layer :type lambdao: float :param normed: when set to True, the outputs are normalised by the volumes of the boundary layers. In that case, the outputs are volume-averaged quantities. :type normed: bool :returns: two floats that contains the bottom and top boundary layers integrations (integBot, integTop) :rtype: list """ field2 = field.copy() mask = (rad<=ro-lambdao) field2[mask] = 0. integTop = intcheb(field2, len(field2)-1, ri, ro) field2 = field.copy() mask = (rad>=ri+lambdai) field2[mask] = 0. integBot = intcheb(field2, len(field2)-1, ri, ro) if normed: volBc1 = 4./3.*N.pi*(ro**3-(ro-lambdao)**3) volBc2 = 4./3.*N.pi*((ri+lambdai)**3-(ri)**3) integTop /= volBc1 integBot /= volBc2 return integBot, integTop
def __init__(self, iplot=False, quiet=False): """ :param iplot: display the result when set to True (default False) :type iplot: bool :param quiet: less verbose when set to True (default is False) :type quiet: bool """ if os.path.exists('tInitAvg'): file = open('tInitAvg', 'r') tstart = float(file.readline()) file.close() logFiles = scanDir('log.*') tags = [] for lg in logFiles: nml = MagicSetup(quiet=True, nml=lg) if nml.start_time > tstart: if os.path.exists('bLayersR.%s' % nml.tag): tags.append(nml.tag) if len(tags) > 0: print(tags) else: tags = None MagicSetup.__init__(self, quiet=True, nml=logFiles[-1]) a = AvgField() self.nuss = a.nuss self.reynolds = a.reynolds else: logFiles = scanDir('log.*') MagicSetup.__init__(self, quiet=True, nml=logFiles[-1]) tags = None self.nuss = 1. self.reynolds = 1. par = MagicRadial(field='bLayersR', iplot=False, tags=tags) self.varS = N.sqrt(N.abs(par.varS)) self.ss = par.entropy if os.path.exists('tInitAvg'): logFiles = scanDir('log.*', tfix=1409827718.0) # Workaround for code mistake before this time tfix = 1409827718.0 tagsFix = [] for lg in logFiles: nml = MagicSetup(quiet=True, nml=lg) if nml.start_time > tstart: if os.path.exists('bLayersR.%s' % nml.tag): tagsFix.append(nml.tag) if len(tagsFix) > 0: print('Fix temp. tags', tagsFix) parFix = MagicRadial(field='bLayersR', iplot=False, tags=tagsFix) self.varS = N.sqrt(N.abs(parFix.varS)) self.ss = parFix.entropy self.tags = tagsFix self.uh = par.uh self.duh = par.duhdr self.rad = par.radius self.ro = self.rad[0] self.ri = self.rad[-1] self.reh = 4.*N.pi*intcheb(self.rad**2*self.uh, len(self.rad)-1, self.ri, self.ro)/(4./3.*N.pi*(self.ro**3-self.ri**3)) # Thermal dissipation boundary layer if hasattr(par, 'dissS'): self.dissS = par.dissS self.epsT = -4.*N.pi*intcheb(self.rad**2*self.dissS, len(self.rad)-1, self.ro, self.ri) self.epsTR = 4.*N.pi*self.rad**2*self.dissS ind = getMaxima(-abs(self.epsTR-self.epsT)) try: self.dissTopS = self.ro-self.rad[ind[0]] self.dissBotS = self.rad[ind[-1]]-self.ri self.dissEpsTbl, self.dissEpsTbulk = integBulkBc(self.rad, self.epsTR, self.ri, self.ro, self.dissBotS, self.dissTopS) except IndexError: self.dissTopS = self.ro self.dissBotS = self.ri self.dissEpsTbl, self.dissEpsTbulk = 0., 0. print('thDiss bl, bulk', self.dissEpsTbl/self.epsT, self.dissEpsTbulk/self.epsT) # First way of defining the thermal boundary layers: with var(S) #rThLayer = getMaxima(self.rad, self.varS) ind = argrelextrema(self.varS, N.greater)[0] if len(ind) != 0: self.bcTopVarS = self.ro-self.rad[ind[0]] self.bcBotVarS = self.rad[ind[-1]]-self.ri else: self.bcTopVarS = 1. self.bcBotVarS = 1. if hasattr(self, 'epsT'): self.varSEpsTbl, self.varSEpsTbulk = integBulkBc(self.rad, self.epsTR, self.ri, self.ro, self.bcBotVarS, self.bcTopVarS) print('var(S) bl, bulk', self.varSEpsTbl/self.epsT, self.varSEpsTbulk/self.epsT) # Second way of defining the thermal boundary layers: intersection of the slopes d1 = matder(len(self.rad)-1, self.ro, self.ri) self.ttm = 3.*intcheb(self.ss*self.rad**2, len(self.rad)-1, self.ri, self.ro) \ /(self.ro**3-self.ri**3) dsdr = N.dot(d1, self.ss) self.beta = dsdr[len(dsdr)/2] print('beta', self.beta) self.slopeTop = dsdr[2]*(self.rad-self.ro)+self.ss[0] self.slopeBot = dsdr[-1]*(self.rad-self.ri)+self.ss[-1] self.dtdrm = dsdr[len(self.ss)/2] self.slopeMid = self.dtdrm*(self.rad-(self.ri+self.ro)/2.)+self.ss[len(self.ss)/2] #self.bcTopSlope = -(self.ttm-self.ss[0])/dsdr[2] self.bcTopSlope = (self.ss[len(self.ss)/2]-self.ss[0])/(self.dtdrm-dsdr[2]) #self.bcBotSlope = (self.ttm-self.ss[-1])/(dsdr[-1]) self.bcBotSlope = -(self.ss[len(self.ss)/2]-self.ss[-1])/(self.dtdrm-dsdr[-1]) # 2nd round with a more accurate slope bSlope = dsdr[self.rad <= self.ri+self.bcBotSlope/4.].mean() tSlope = dsdr[self.rad >= self.ro-self.bcTopSlope/4.].mean() self.slopeBot = bSlope*(self.rad-self.ri)+self.ss[-1] self.slopeTop = tSlope*(self.rad-self.ro)+self.ss[0] #self.bcTopSlope = -(self.ttm-self.ss[0])/tSlope self.bcTopSlope = (self.ss[len(self.ss)/2]-self.ss[0])/(self.dtdrm-tSlope) #self.bcBotSlope = (self.ttm-self.ss[-1])/bSlope self.bcBotSlope = -(self.ss[len(self.ss)/2]-self.ss[-1])/(self.dtdrm-bSlope) if hasattr(self, 'epsT'): self.slopeEpsTbl, self.slopeEpsTbulk = integBulkBc(self.rad, self.epsTR, self.ri, self.ro, self.bcBotSlope, self.bcTopSlope) print('slopes bl, bulk', self.slopeEpsTbl/self.epsT, self.slopeEpsTbulk/self.epsT) pow = MagicRadial(field='powerR', iplot=False, tags=tags) self.vi = pow.viscDiss self.buo = pow.buoPower self.epsV = -intcheb(self.vi, len(self.rad)-1, self.ro, self.ri) ind = getMaxima(-abs(self.vi-self.epsV)) if len(ind) > 2: for i in ind: if self.vi[i-1]-self.epsV > 0 and self.vi[i+1]-self.epsV < 0: self.dissTopV = self.ro-self.rad[i] elif self.vi[i-1]-self.epsV < 0 and self.vi[i+1]-self.epsV > 0: self.dissBotV = self.rad[i]-self.ri else: self.dissTopV = self.ro-self.rad[ind[0]] self.dissBotV = self.rad[ind[-1]]-self.ri self.dissEpsVbl, self.dissEpsVbulk = integBulkBc(self.rad, self.vi, self.ri, self.ro, self.dissBotV, self.dissTopV) print('visc Diss bl, bulk', self.dissEpsVbl/self.epsV, self.dissEpsVbulk/self.epsV) # First way of defining the viscous boundary layers: with duhdr #rViscousLayer = getMaxima(self.rad, self.duh) if self.kbotv == 1 and self.ktopv == 1: ind = argrelextrema(self.duh, N.greater)[0] if len(ind) == 0: self.bcTopduh = 1. self.bcBotduh = 1. else: if ind[0] < 4: self.bcTopduh = self.ro-self.rad[ind[1]] else: self.bcTopduh = self.ro-self.rad[ind[0]] if len(self.rad)-ind[-1] < 4: self.bcBotduh = self.rad[ind[-2]]-self.ri else: self.bcBotduh = self.rad[ind[-1]]-self.ri self.slopeTopU = 0. self.slopeBotU = 0. self.uhTopSlope = 0. self.uhBotSlope = 0. self.slopeEpsUbl = 0. self.slopeEpsUbulk = 0. self.uhBot = 0. self.uhTop = 0. else: ind = argrelextrema(self.uh, N.greater)[0] if len(ind) == 1: ind = argrelextrema(self.uh, N.greater_equal)[0] if len(ind) == 0: self.bcTopduh = 1. self.bcBotduh = 1. else: if ind[0] < 4: self.bcTopduh = self.ro-self.rad[ind[1]] else: self.bcTopduh = self.ro-self.rad[ind[0]] if len(self.rad)-ind[-1] < 4: self.bcBotduh = self.rad[ind[-2]]-self.ri else: self.bcBotduh = self.rad[ind[-1]]-self.ri self.uhTop = self.uh[self.rad==self.ro-self.bcTopduh][0] self.uhBot = self.uh[self.rad==self.ri+self.bcBotduh][0] self.bcBotduh, self.bcTopduh, self.uhBot, self.uhTop = \ getAccuratePeaks(self.rad, self.uh, self.uhTop, \ self.uhBot, self.ri, self.ro) duhdr = N.dot(d1, self.uh) #1st round mask = (self.rad>=self.ro-self.bcTopduh/4)*(self.rad<self.ro) slopeT = duhdr[mask].mean() mask = (self.rad<=self.ri+self.bcBotduh/4)*(self.rad>self.ri) slopeB = duhdr[mask].mean() self.slopeTopU = slopeT*(self.rad-self.ro)+self.uh[0] self.slopeBotU = slopeB*(self.rad-self.ri)+self.uh[-1] self.uhTopSlope = -self.uhTop/slopeT self.uhBotSlope = self.uhBot/slopeB #2nd round mask = (self.rad>=self.ro-self.uhTopSlope/4.)*(self.rad<self.ro) slopeT = duhdr[mask].mean() mask = (self.rad<=self.ri+self.uhBotSlope/4)*(self.rad>self.ri) slopeB = duhdr[mask].mean() self.uhTopSlope = -self.uhTop/slopeT self.uhBotSlope = self.uhBot/slopeB self.slopeEpsUbl, self.slopeEpsUbulk = integBulkBc(self.rad, self.vi, self.ri, self.ro, self.uhBotSlope, self.uhTopSlope) self.uhEpsVbl, self.uhEpsVbulk = integBulkBc(self.rad, self.vi, self.ri, self.ro, self.bcBotduh, self.bcTopduh) print('uh bl, bulk', self.uhEpsVbl/self.epsV, self.uhEpsVbulk/self.epsV) # Convective Rol in the thermal boundary Layer par = MagicRadial(field='parR', iplot=False, tags=tags) kin = MagicRadial(field='eKinR', iplot=False, tags=tags) ekinNas = kin.ekin_pol+kin.ekin_tor-kin.ekin_pol_axi-kin.ekin_tor_axi ReR = N.sqrt(2.*abs(ekinNas)/par.radius**2/(4.*N.pi)) RolC = ReR*par.ek/par.dlVc self.dl = par.dlVc y = RolC[par.radius >= self.ro-self.bcTopSlope] x = par.radius[par.radius >= self.ro-self.bcTopSlope] self.rolTop = simps(3.*y*x**2, x)/(self.ro**3-(self.ro-self.bcTopSlope)**3) self.rolbl, self.rolbulk = integBulkBc(self.rad, 4.*N.pi*RolC*self.rad**2, self.ri, self.ro, self.bcBotSlope, self.bcTopSlope, normed=True) self.rebl, self.rebulk = integBulkBc(self.rad, 4.*N.pi*ReR*self.rad**2, self.ri, self.ro, self.bcBotduh, self.bcTopduh, normed=True) self.lengthbl, self.lengthbulk = integBulkBc(self.rad, par.dlVc, self.ri, self.ro, self.bcBotSlope, self.bcTopSlope, normed=True) self.rehbl, self.rehbulk = integBulkBc(self.rad, self.uh*4.*N.pi*self.rad**2, self.ri, self.ro, self.bcBotduh, self.bcTopduh, normed=True) y = RolC[par.radius <= self.ri+self.bcBotSlope] x = par.radius[par.radius <= self.ri+self.bcBotSlope] self.rolBot = simps(3.*y*x**2, x)/((self.ri+self.bcBotSlope)**3-self.ri**3) print('reynols bc, reynolds bulk', self.rebl, self.rebulk) print('reh bc, reh bulk', self.rehbl, self.rehbulk) print('rolbc, rolbulk, roltop, rolbot', self.rolbl, self.rolbulk, self.rolBot, self.rolTop) par.dlVc[0] = 0. par.dlVc[-1] = 0. self.lBot, self.lTop = integBotTop(self.rad, 4.*N.pi*self.rad**2*par.dlVc, self.ri, self.ro, self.bcBotSlope, self.bcTopSlope, normed=True) uhbm, utbm = integBotTop(self.rad, 4.*N.pi*self.uh, self.ri, self.ro, self.bcBotSlope, self.bcTopSlope, normed=True) if iplot: self.plot() if not quiet: print(self)