Exemplo n.º 1
0
def test_patheffect3():
    p1, = plt.plot([1, 3, 5, 4, 3], 'o-b', lw=4)
    p1.set_path_effects([path_effects.SimpleLineShadow(),
                         path_effects.Normal()])
    plt.title(
        r'testing$^{123}$',
        path_effects=[path_effects.withStroke(linewidth=1, foreground="r")])
    leg = plt.legend([p1], [r'Line 1$^2$'], fancybox=True, loc='upper left')
    leg.legendPatch.set_path_effects([path_effects.withSimplePatchShadow()])

    text = plt.text(2, 3, 'Drop test', color='white',
                    bbox={'boxstyle': 'circle,pad=0.1', 'color': 'red'})
    pe = [path_effects.Stroke(linewidth=3.75, foreground='k'),
          path_effects.withSimplePatchShadow((6, -3), shadow_rgbFace='blue')]
    text.set_path_effects(pe)
    text.get_bbox_patch().set_path_effects(pe)

    pe = [path_effects.PathPatchEffect(offset=(4, -4), hatch='xxxx',
                                       facecolor='gray'),
          path_effects.PathPatchEffect(edgecolor='white', facecolor='black',
                                       lw=1.1)]

    t = plt.gcf().text(0.02, 0.1, 'Hatch shadow', fontsize=75, weight=1000,
                       va='center')
    t.set_path_effects(pe)
Exemplo n.º 2
0
def main():
    fontsize = 18
    plt.plot(data)

    title = "This is figure title"
    x_label = "This is x axis label"
    y_label = "This is y axis label"

    title_text_obj = plt.title(title,
                               fontsize=fontsize,
                               verticalalignment='bottom')
    title_text_obj.set_path_effects([patheffects.withSimplePatchShadow()])

    # offset_xy -- set the 'angle' of the shadow
    # shadow_rgbFace == set the color of the shadow
    # patch_alpha == setup the transparency of the shadow

    offset_xy = (1, -1)
    rgbRed = (1.0, 0.0, 0.0)
    alpha = 0.8

    # customize shadow properties
    pe = patheffects.withSimplePatchShadow(shadow_rgbFace=rgbRed)

    # apply them to the xaxis anf yaxis labels
    xlabel_obj = plt.xlabel(x_label, fontsize=fontsize, alpha=0.5)
    xlabel_obj.set_path_effects([pe])
    #
    ylabel_obj = plt.ylabel(y_label, fontsize=fontsize, alpha=0.5)
    ylabel_obj.set_path_effects([pe])

    plt.show()
Exemplo n.º 3
0
def plotEfficientFrontier(returns,
                          tickers,
                          numofsim=200,
                          title='Simulated Efficient Frontier'):

    allocation = simAllocation(numofsim, tickers)
    port_returns = returns.dot(allocation)

    analytics = generateAnalytics(port_returns)

    rets = np.array(analytics.annual_return) / 100
    vols = np.array(analytics.annual_volatility) / 100
    sr = np.array(analytics.sharpe_ratio)

    # the charts
    fig8 = plt.figure(figsize=FIG_SIZE)
    plt.subplots_adjust(wspace=.5)
    plt.subplot()

    plt.scatter(vols, rets, c=sr, marker='o', cmap='coolwarm')
    plt.grid(True)
    plt.xlabel('annual volatility')
    plt.ylabel('annual return')
    plt.colorbar(label='Sharpe Ratio')

    title_text_obj = plt.title(title, fontsize=18, verticalalignment='bottom')
    title_text_obj.set_path_effects([patheffects.withSimplePatchShadow()])

    plt.show()
Exemplo n.º 4
0
def path_effect(text='Sick Fermat'):
    fig = plt.figure(figsize=(8, 4))
    t = fig.text(0.0, 0.0, text, fontsize=30)
    t = fig.text(0.1, 0.2, text, fontsize=30)
    t.set_path_effects([
        PathPatchEffect(offset=(4, -4), hatch='xxxx', facecolor='gray'),
        PathPatchEffect(edgecolor='white', linewidth=1.1, facecolor='black')
    ])
    t = fig.text(0.1, 0.5, text[::-1], fontsize=30, color='white')
    t.set_path_effects([
        patheffects.Stroke(linewidth=3, foreground='black'),
        patheffects.Normal()
    ])
    t = fig.text(0.1, 0.7, text[::-1], fontsize=30)
    t.set_path_effects([patheffects.withSimplePatchShadow()])

    text_color = to_rgba('black')
    lines = [[[0, 1], [0.2, 0.2]], [[0, 1], [0.5, 0.5]], [[0, 1], [0.7, 0.7]],
             [[0.1, 0.1], [0, 1]]]
    for line in lines:
        fig.lines.append(
            Line2D(line[0],
                   line[1],
                   transform=fig.transFigure,
                   figure=fig,
                   color=text_color,
                   linewidth=0.5))

    return fig
Exemplo n.º 5
0
def plotCorrelationMatrix(matrix, type=1, title=''):

    fig, ax = plt.subplots(figsize=FIG_SIZE)

    title_text_obj = ax.set_title(title,
                                  fontsize=18,
                                  verticalalignment='bottom')
    title_text_obj.set_path_effects([patheffects.withSimplePatchShadow()])

    if type == 1:
        sns.heatmap(matrix, annot=True, linewidths=.5)
    elif type == 2:
        sns.heatmap(matrix,
                    annot=True,
                    cmap="YlGnBu",
                    linewidths=0.3,
                    annot_kws={"size": 16})
    else:
        sns.heatmap(matrix,
                    annot=True,
                    cmap='coolwarm',
                    linewidths=0.3,
                    annot_kws={"size": 16})

    # Plot aesthetics
    plt.xticks(rotation=90)
    plt.yticks(rotation=0)
    b, t = plt.ylim()  # discover the values for bottom and top
    #     b += 0.5 # Add 0.5 to the bottom
    #     t -= 0.5 # Subtract 0.5 from the top
    plt.ylim(b, t)  # update the ylim(bottom, top) values

    plt.show()
Exemplo n.º 6
0
    def plot_heatmap(evaluators, store=True):
        mi_df = Evaluator.to_multi_index_frame(evaluators)
        detectors, datasets = mi_df.columns, mi_df.index

        fig, ax = plt.subplots(figsize=(len(detectors) + 2, len(datasets)))
        im = ax.imshow(mi_df, cmap=plt.get_cmap('YlOrRd'), vmin=0, vmax=1)
        plt.colorbar(im)

        # Show MultiIndex for ordinate
        Evaluator.insert_multi_index_yaxis(ax, mi_df)

        # Rotate the tick labels and set their alignment.
        ax.set_xticks(np.arange(len(detectors)))
        ax.set_xticklabels(detectors)
        plt.setp(ax.get_xticklabels(), rotation=45, ha='right', rotation_mode='anchor')

        # Loop over data dimensions and create text annotations.
        for i in range(len(detectors)):
            for j in range(len(datasets)):
                ax.text(i, j, f'{mi_df.iloc[j, i]:.2f}', ha='center', va='center', color='w',
                        path_effects=[path_effects.withSimplePatchShadow(
                            offset=(1, -1), shadow_rgbFace='b', alpha=0.9)])

        ax.set_title('AUROC over all datasets and detectors')
        # Prevent bug where x axis ticks are completely outside of bounds (matplotlib/issues/5456)
        if len(datasets) > 2:
            fig.tight_layout()
        if store:
            evaluators[0].store(fig, 'heatmap', no_counters=True, store_in_figures=True)
        return fig
Exemplo n.º 7
0
def plot_poly(axis, poly, shadow=True, **kw):
    if 'c' in kw:
        kw['color'] = kw['c']
        del kw['c']
    if shadow:
        kw['path_effects'] = [pfx.withSimplePatchShadow()]
    list(map(lambda p: axis.add_patch(PathPatch(pathify(p), **kw)), poly))
Exemplo n.º 8
0
 def plot_data(self, axis, x=[], shadow=True, **kw):
     x = self.data if not len(x) else x
     kw['markersize'] = kw['s'] if 's' in kw else 3
     kw['zorder'] = kw['zorder'] if 'zorder' in kw else 2
     if shadow:
         kw['path_effects'] = [pfx.withSimplePatchShadow()]
     axis.plot(self.data[:, 0], self.data[:, 1], 'o', **kw)
Exemplo n.º 9
0
def plotConf(df_confusion,titulo,savefile):
  plt.ioff()
  fig = plt.figure()
  plt.clf()
  ax = fig.add_subplot(111)
  ax.set_aspect(1)
  res = ax.imshow(np.array(df_confusion), cmap=plt.cm.jet, 
                  interpolation='nearest')

  width, height = np.array(df_confusion).shape

  for x in xrange(width):
      for y in xrange(height):
          ax.annotate(str(df_confusion[x][y]), xy=(y, x), 
                      horizontalalignment='center',
                      verticalalignment='center', color='white', 
                      fontweight='bold',
                      path_effects=[path_effects.withSimplePatchShadow(alpha=0.5)])

  plt.yticks( np.arange(height) )
  plt.xticks( np.arange(width) )
  plt.ylabel('Valor real')
  plt.xlabel('Valor predicho')
  cb = fig.colorbar(res)
  plt.title(titulo,fontsize=16)

  plt.savefig(savefile)
  return
Exemplo n.º 10
0
def heatmap(df):
  """http://stackoverflow.com/questions/20520246/create-heatmap-using-pandas-timeseries"""
  dflen = len(df.index)
  dflen2 = len(df.columns)
  # print dflen, dflen2
  fsize = (1.6 * dflen, .6 * dflen2)
  fig = plt.figure(figsize=fsize)
  ax = fig.add_subplot(111)
  # use dir(matplotlib.cm) to get a list of the installed colormaps
  # the "_r" means "reversed" and accounts for why zero values are plotted
  # as white
  cmap = CM.get_cmap('YlOrRd', 50)
  # http://matplotlib.org/examples/color/colormaps_reference.html
  ax.imshow(df, interpolation="nearest", cmap=cmap)

  # ax.invert_yaxis()
  # ax.xaxis.tick_top()

  v = df.columns.tolist()
  v2 = df.index.tolist()
  ax.set_xticks(np.arange(dflen) + 0., minor=False)
  ax.set_yticks(np.arange(dflen2) + 0., minor=False)
  ax.set_xticklabels(v)
  ax.set_yticklabels(v2)
  ax.grid(True)
  path_effects = [patheffects.withSimplePatchShadow(shadow_rgbFace=(1, 1, 1))]
  for i in range(dflen):
    for j in range(dflen2):
      ax.text(j, i, '{:.2f}'.format(df.iget_value(i, j)),
              size='medium', ha='center', va='center', path_effects=path_effects)
  plt.show()
Exemplo n.º 11
0
 def plot_coords(self, axis, v, shadow=True):
     color = cm.ScalarMappable(Normalize(v.min(), v.max()), cm.rainbow)
     kw = {'markersize' : 3}
     if shadow:
         kw['path_effects'] = [pfx.withSimplePatchShadow()]
     for c, (x, y) in zip(v, self.data):
         axis.plot(x, y, 'o', color=color.to_rgba(c), **kw)
Exemplo n.º 12
0
def test_patheffect3():

    ax3 = plt.subplot(111)
    p1, = ax3.plot([0, 1], [0, 1])
    ax3.set_title(r'testing$^{123}$',
                  path_effects=[withStroke(linewidth=1, foreground="r")])
    leg = ax3.legend([p1], [r'Line 1$^2$'], fancybox=True, loc=2)
    leg.legendPatch.set_path_effects([withSimplePatchShadow()])
Exemplo n.º 13
0
def test_patheffect3():

    ax3 = plt.subplot(111)
    p1, = ax3.plot([0, 1], [0, 1])
    ax3.set_title(r'testing$^{123}$',
        path_effects=[withStroke(linewidth=1, foreground="r")])
    leg = ax3.legend([p1], [r'Line 1$^2$'], fancybox=True, loc=2)
    leg.legendPatch.set_path_effects([withSimplePatchShadow()])
Exemplo n.º 14
0
 def set_circle(self,x,y,r,c):
     self.x = x
     self.y = y
     self.circle = mpatches.Circle((x,y), r, fc=c, ec=(0.1, 0.1, 0.1))
     self.circle.set_linestyle('solid')
     self.circle.set_linewidth(2.0)
     try:
         self.circle.set_path_effects([path_effects.withSimplePatchShadow()])
     except:
         pass
Exemplo n.º 15
0
 def plot_triangle(self, axis, s, shadow=True, **kw):
     p = self.data[list(s)]
     if 'c' in kw:
         kw['color'] = kw['c']
         del kw['c']
     kw['color'] = 'black' if not 'color' in kw else kw['color']
     kw['alpha'] = 0.1 if not 'alpha' in kw else kw['alpha']
     kw['zorder'] = 0 if not 'zorder' in kw else kw['zorder']
     if shadow:
         kw['path_effects'] = [pfx.withSimplePatchShadow()]
     return axis.add_patch(Polygon(p, **kw))
Exemplo n.º 16
0
 def plot_vertex(self, axis, s, shadow=True, **kw):
     p = self.data[list(s)]
     if 'color' in kw:
         kw['c'] = kw['color']
         del kw['color']
     kw['c'] = 'black' if not 'c' in kw else kw['c']
     kw['alpha'] = 1 if not 'alpha' in kw else kw['alpha']
     kw['zorder'] = 2 if not 'zorder' in kw else kw['zorder']
     kw['markersize'] = 1 if not 'markersize' in kw else kw['markersize']
     if shadow:
         kw['path_effects'] = [pfx.withSimplePatchShadow()]
     return axis.plot(p[:,0], p[:,1], 'o', **kw)
Exemplo n.º 17
0
    def __init__(self,
                 ax,
                 x1,
                 x2,
                 y,
                 height,
                 gradient=True,
                 tip=0.0025,
                 color="k",
                 shadow=False,
                 **kwargs):

        super(GeneGlyph, self).__init__(ax)
        # Figure out the polygon vertices first
        orientation = 1 if x1 < x2 else -1
        level = 10
        tip = min(tip, abs(x1 - x2))
        # Frame
        p1 = (x1, y - height * 0.5)
        p2 = (x2 - orientation * tip, y - height * 0.5)
        p3 = (x2, y)
        p4 = (x2 - orientation * tip, y + height * 0.5)
        p5 = (x1, y + 0.5 * height)
        if "fc" not in kwargs:
            kwargs["fc"] = color
        if "ec" not in kwargs:
            kwargs["ec"] = color
        P = Polygon([p1, p2, p3, p4, p5], **kwargs)
        self.append(P)

        if gradient:
            zz = kwargs.get("zorder", 1)
            zz += 1
            # Patch (apply white mask)
            for cascade in np.arange(0, 0.5, 0.5 / level):
                p1 = (x1, y - height * cascade)
                p2 = (x2 - orientation * tip, y - height * cascade)
                p3 = (x2, y)
                p4 = (x2 - orientation * tip, y + height * cascade)
                p5 = (x1, y + height * cascade)
                self.append(
                    Polygon([p1, p2, p3, p4, p5],
                            fc="w",
                            lw=0,
                            alpha=0.2,
                            zorder=zz))

        if shadow:
            import matplotlib.patheffects as pe

            P.set_path_effects([pe.withSimplePatchShadow((1, -1), alpha=0.4)])

        self.add_patches()
Exemplo n.º 18
0
def dr_cmap(fx,ftg9):
    cm8 = pd.read_csv('dat\\cor_maps.csv',encoding='gbk') 
    df2 = mx_sum_main(fx)
    df2.to_csv("tmp\\mx_"+ftg9+'.csv',encode='utf8');
    for xss in cm8['name']:
        df2.plot(kind='bar',colormap=xss,rot=0,figsize=(20,5)
            ,path_effects=[path_effects.withSimplePatchShadow()]);
        plt.axhline(50, color='r');    
        plt.legend(ncol=3,loc=2)
        plt.tight_layout()
        
        fss="tmp\\m1cor_"+xss+"_"+ftg9+".png";plt.savefig(fss);
        plt.show();print(xss,",",fss)
Exemplo n.º 19
0
def test_patheffect3():
    p1, = plt.plot([1, 3, 5, 4, 3], "o-b", lw=4)
    p1.set_path_effects([path_effects.SimpleLineShadow(), path_effects.Normal()])
    plt.title(r"testing$^{123}$", path_effects=[path_effects.withStroke(linewidth=1, foreground="r")])
    leg = plt.legend([p1], [r"Line 1$^2$"], fancybox=True, loc=2)
    leg.legendPatch.set_path_effects([path_effects.withSimplePatchShadow()])

    text = plt.text(2, 3, "Drop test", color="white", bbox={"boxstyle": "circle,pad=0.1", "color": "red"})
    pe = [
        path_effects.Stroke(linewidth=3.75, foreground="k"),
        path_effects.withSimplePatchShadow((6, -3), shadow_rgbFace="blue"),
    ]
    text.set_path_effects(pe)
    text.get_bbox_patch().set_path_effects(pe)

    pe = [
        path_effects.PathPatchEffect(offset=(4, -4), hatch="xxxx", facecolor="gray"),
        path_effects.PathPatchEffect(edgecolor="white", facecolor="black", lw=1.1),
    ]

    t = plt.gcf().text(0.02, 0.1, "Hatch shadow", fontsize=75, weight=1000, va="center")
    t.set_path_effects(pe)
Exemplo n.º 20
0
def plotCorrelationMatrixWithCluster(matrix, title=''):

    fig = sns.clustermap(matrix,
                         row_cluster=True,
                         col_cluster=True,
                         figsize=(10, 10))

    title_text_obj = plt.title(title, fontsize=18, verticalalignment='bottom')
    title_text_obj.set_path_effects([patheffects.withSimplePatchShadow()])

    plt.setp(fig.ax_heatmap.xaxis.get_majorticklabels(), rotation=90)
    plt.setp(fig.ax_heatmap.yaxis.get_majorticklabels(), rotation=0)

    plt.show()
Exemplo n.º 21
0
def test_patheffect3():
    p1, = plt.plot([1, 3, 5, 4, 3], 'o-b', lw=4)
    p1.set_path_effects([path_effects.SimpleLineShadow(),
                         path_effects.Normal()])
    plt.title(r'testing$^{123}$',
        path_effects=[path_effects.withStroke(linewidth=1, foreground="r")])
    leg = plt.legend([p1], [r'Line 1$^2$'], fancybox=True, loc=2)
    leg.legendPatch.set_path_effects([path_effects.withSimplePatchShadow()])

    text = plt.text(2, 3, 'Drop test', color='white',
                    bbox={'boxstyle': 'circle,pad=0.1', 'color': 'red'})
    pe = [path_effects.Stroke(linewidth=3.75, foreground='k'),
          path_effects.withSimplePatchShadow((6, -3), shadow_rgbFace='blue')]
    text.set_path_effects(pe)
    text.get_bbox_patch().set_path_effects(pe)

    pe = [path_effects.PathPatchEffect(offset=(4, -4), hatch='xxxx',
                                       facecolor='gray'),
          path_effects.PathPatchEffect(edgecolor='white', facecolor='black',
                                       lw=1.1)]

    t = plt.gcf().text(0.02, 0.1, 'Hatch shadow', fontsize=75, weight=1000,
                       va='center')
    t.set_path_effects(pe)
Exemplo n.º 22
0
    def _place_labels(self, labels, colors):
        for label in self.labels:
            label.remove()
        del self.labels[:]

        self.rows = [[]]
        renderer = self.canvas.get_renderer()
        todata = self.ax.transData.inverted()
        xmargin, ymargin = todata.transform((self.margin, self.margin))
        x, y = xmargin, ymargin
        
        # Let the labels flow from left to right, wrapping around
        for label_index in range(len(labels)):
            s = labels[label_index]
            
            label = Text(x, y, s, verticalalignment='top',  
                         bbox=dict(facecolor=colors[label_index], edgecolor='w', pad=self.pad))
            
            # I could not see the dark text on some backgrounds
            label.set_path_effects([
                PathEffects.withSimplePatchShadow(offset=(1,-1), shadow_rgbFace=(1., 1.,0.5)),
                ])
            label = self.ax.add_artist(label)
            
            # Keep both a master list of labels, and a list of labelson each row
            self.labels.append(label)
            self.rows[-1].append(label)
            
            # I have to render the label once in order to determine its actual size
            label.draw(renderer)
            bbox = label.get_bbox_patch().get_window_extent(renderer).transformed(todata)
            if (x + bbox.width) > 1:
                x = xmargin
                y -= bbox.height
                label.set_position((x, y))
                self.rows.append([self.rows[-1].pop()])
            x +=  bbox.width
            
        # After some tinkering, I am centering the labels in the axis 
        bbox = self._get_labels_bbox()
        
        labels_center = bbox.corners().mean(0)
        view_center = self.ax.viewLim.corners().mean(0)
        for label in self.labels:
            x, y = label.get_position() + (view_center - labels_center)
            label.set_position((x, y))
def generate_combinations_img(class_names, class_names_bak, p_matrix, title, fname='overlaps_img'):
    a_size = len(p_matrix)

    diff = np.zeros([a_size, a_size])

    for i in xrange(a_size):
        for j in xrange(a_size):
            if i == j:
                pass
            else:
                _sum = p_matrix[i][i] + p_matrix[j][j]
                comb = p_matrix[i][j]
                diff[i][j] = float(comb)/float(_sum)

    fig = plt.figure(figsize=(16, 9))
    ax = fig.add_subplot(111)

    diffa = masked_array(diff, diff != 0)
    diffb = masked_array(diff, diff == 0)

    cax = ax.imshow(diffb, cmap=cm.winter, interpolation='None', origin='lower', aspect='auto')
    cba = plt.colorbar(cax, format='%.1f')

    caxb = ax.imshow(diffa, cmap=cm.Reds, interpolation='None', origin='lower', aspect='auto')

    plt.xticks(range(a_size))
    ax.set_xticklabels(class_names_bak)
    plt.xticks(rotation=80)

    plt.yticks(range(a_size))
    ax.set_yticklabels(class_names_bak)

    for i in xrange(a_size):
        for j in xrange(a_size):
            ax.text(j, i, '{0}/{1:.2f}'.format(p_matrix[i][j], diff[i][j]),
                    size='medium', ha='center', va='center',
                    path_effects=[patheffects.withSimplePatchShadow(shadow_rgbFace=(1, 1, 1))])

    plt.title(title)


    # bar = fig.colorbar(cax, format='%.1f')
    plt.rc('text', usetex=True)
    cba.set_label('$\\frac{a_{i,j}}{a_{i,i}+a_{j,j}}$', fontsize=25, rotation=0, labelpad=40)
    plt.savefig(folder+'/'+fname, bbox_inches='tight', transparent=False)
    plt.close()
Exemplo n.º 24
0
def plotTimeSeries(series, title='', xlabel='', ylabel='', tickermap=''):
    ax = series.plot(figsize=FIG_SIZE, fontsize=12, linewidth=3, linestyle='-')
    ax.set_xlabel(xlabel, fontsize=16)
    ax.set_ylabel(ylabel, fontsize=16)

    title_text_obj = ax.set_title(title,
                                  fontsize=18,
                                  verticalalignment='bottom')
    title_text_obj.set_path_effects([patheffects.withSimplePatchShadow()])
    # pe = patheffects.withSimplePatchShadow(offset = (1, -1), shadow_rgbFace = (1,0,0), calpha = 0.8)

    names = series.columns
    if tickermap:
        names = names.map(tickermap)

    ax.legend(names, fontsize=16)
    plt.show()
Exemplo n.º 25
0
def compareDistribution(series, tickers, title='', tickermap={}):
    fig, ax = plt.subplots(figsize=FIG_SIZE)

    title_text_obj = ax.set_title(title,
                                  fontsize=18,
                                  verticalalignment='bottom')
    title_text_obj.set_path_effects([patheffects.withSimplePatchShadow()])

    for ticker in tickers:
        sns.distplot(series[ticker])

    names = series.columns
    if tickermap:
        names = names.map(tickermap)

    ax.legend(names, fontsize=12)
    ax.set_xlabel('Returns Distribution', fontsize=14)
    ax.set_ylabel('Frequency', fontsize=14)
    plt.show()
Exemplo n.º 26
0
def plotCountry(m, ax, id, path='gadm0'):
    country, lonlat = merged[id]

    r = shapefile.Reader(r"%s/%s_adm0" % (path, country))
    shapes = r.shapes()
    records = r.records()

    for record, shape in zip(records, shapes):
        lons, lats = zip(*shape.points)
        data = np.array(m(lons, lats)).T

        if len(shape.parts) == 1:
            segs = [
                data,
            ]
        else:
            segs = []
            for i in range(1, len(shape.parts)):
                index = shape.parts[i - 1]
                index2 = shape.parts[i]
                segs.append(data[index:index2])
            segs.append(data[index2:])

        lines = LineCollection(segs, antialiaseds=(1, ))
        lines.set_facecolors('lightgreen')
        lines.set_edgecolors('k')
        lines.set_linewidth(0.1)
        lines.set_alpha(0.5)
        ax.add_collection(lines)

    # Add country centroid
    lon, lat = lonlat
    xpt, ypt = m(lon, lat)
    txt = ax.annotate(id, (xpt, ypt),
                      color='r',
                      size='medium',
                      ha='center',
                      va='center',
                      path_effects=[
                          PathEffects.withStroke(linewidth=3, foreground="w"),
                          PathEffects.withSimplePatchShadow()
                      ])
Exemplo n.º 27
0
Arquivo: glyph.py Projeto: fw1121/jcvi
    def __init__(self, ax, x1, x2, y, height, gradient=True, tip=.0025, \
                 color="k", shadow=False, **kwargs):

        super(GeneGlyph, self).__init__(ax)
        # Figure out the polygon vertices first
        orientation = 1 if x1 < x2 else -1
        level = 10
        tip = min(tip, abs(x1 - x2))
        # Frame
        p1 = (x1, y - height * .5)
        p2 = (x2 - orientation * tip, y - height * .5)
        p3 = (x2, y)
        p4 = (x2 - orientation * tip, y + height * .5)
        p5 = (x1, y + .5*height)
        if "fc" not in kwargs:
            kwargs["fc"] = color
        if "ec" not in kwargs:
            kwargs["ec"] = color
        P = Polygon([p1, p2, p3, p4, p5], **kwargs)
        self.append(P)

        if gradient:
            zz = kwargs.get("zorder", 1)
            zz += 1
            # Patch (apply white mask)
            for cascade in np.arange(0, .5, .5 / level):
                p1 = (x1, y - height * cascade)
                p2 = (x2 - orientation * tip, y - height * cascade)
                p3 = (x2, y)
                p4 = (x2 - orientation * tip, y + height * cascade)
                p5 = (x1, y + height * cascade)
                self.append(Polygon([p1, p2, p3, p4, p5], fc='w', \
                        lw=0, alpha=.2, zorder=zz))

        if shadow:
            import matplotlib.patheffects as pe
            P.set_path_effects([pe.withSimplePatchShadow((1, -1), \
                                alpha=.4, patch_alpha=1)])

        self.add_patches()
Exemplo n.º 28
0
def plotReturnDistribution(returns, ticker, binsize=35, title=''):

    fig, ax = plt.subplots(figsize=FIG_SIZE)

    ax.hist(returns[ticker],
            bins=binsize,
            color='steelblue',
            density=True,
            alpha=0.5,
            histtype='stepfilled',
            edgecolor='red')

    title_text_obj = ax.set_title(title,
                                  fontsize=18,
                                  verticalalignment='bottom')
    title_text_obj.set_path_effects([patheffects.withSimplePatchShadow()])

    sigma, mu = returns[ticker].std(), returns[ticker].mean(
    )  # mean and standard deviation
    s = np.random.normal(mu, sigma, 1000)

    count, bins, ignored = ax.hist(s, binsize, density=True, alpha=0.1)
    ax.plot(bins,
            1 / (sigma * np.sqrt(2 * np.pi)) * np.exp(-(bins - mu)**2 /
                                                      (2 * sigma**2)),
            linewidth=1.5,
            color='r')

    ax.annotate('Skewness: {}\n\nKurtosis: {}'.format(
        round(returns[ticker].skew(), 2), round(returns[ticker].kurtosis(),
                                                2)),
                xy=(10, 20),
                xycoords='axes points',
                xytext=(20, 360),
                fontsize=14)

    ax.set_xlabel('Values')
    ax.set_ylabel('Frequency')

    plt.show()
Exemplo n.º 29
0
Arquivo: viz.py Projeto: jfilter/tmip
def plot_correlations(features_df,
                      author_comments=0,
                      ax=None,
                      is_filtered=False):
    if ax is None:
        fig, ax = plt.subplots(1, 1, figsize=(14, 12))
    else:
        fig = ax.get_figure()
    labels = list(features_df.columns)
    corr = features_df[features_df['author_comments'] > author_comments].corr()
    cax = ax.matshow(corr, vmin=-1, vmax=1, cmap=plt.get_cmap("jet"))
    cbar = plt.colorbar(cax, ax=ax, fraction=0.046, pad=0.04)
    ax.set_xticklabels([' '] + labels, rotation=45, ha='left')
    ax.set_yticklabels([' '] + labels)
    ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
    ax.yaxis.set_major_locator(ticker.MultipleLocator(1))
    if is_filtered:
        ax.set_title(
            rf'Filtered Comment Correlations ($comments_{{author}} \geq {author_comments}$)',
            y=1.15)
    else:
        ax.set_title(
            rf'Comment Correlations ($comments_{{author}} \geq {author_comments}$)',
            y=1.15)

    for i in range(corr.shape[0]):
        for j in range(corr.shape[1]):
            ax.text(i,
                    j,
                    f'{corr.iloc[j, i]:.2f}',
                    ha="center",
                    va="center",
                    color="b",
                    path_effects=[
                        path_effects.withSimplePatchShadow(offset=(1, -1),
                                                           shadow_rgbFace="w",
                                                           alpha=0.9)
                    ])
    return fig, ax
Exemplo n.º 30
0
def heatmap(df):
    """http://stackoverflow.com/questions/20520246/create-heatmap-using-pandas-timeseries"""
    dflen = len(df.index)
    dflen2 = len(df.columns)
    # print dflen, dflen2
    fsize = (1.6 * dflen, .6 * dflen2)
    fig = plt.figure(figsize=fsize)
    ax = fig.add_subplot(111)
    # use dir(matplotlib.cm) to get a list of the installed colormaps
    # the "_r" means "reversed" and accounts for why zero values are plotted
    # as white
    cmap = CM.get_cmap('YlOrRd', 50)
    # http://matplotlib.org/examples/color/colormaps_reference.html
    ax.imshow(df, interpolation="nearest", cmap=cmap)

    # ax.invert_yaxis()
    # ax.xaxis.tick_top()

    v = df.columns.tolist()
    v2 = df.index.tolist()
    ax.set_xticks(np.arange(dflen) + 0., minor=False)
    ax.set_yticks(np.arange(dflen2) + 0., minor=False)
    ax.set_xticklabels(v)
    ax.set_yticklabels(v2)
    ax.grid(True)
    path_effects = [
        patheffects.withSimplePatchShadow(shadow_rgbFace=(1, 1, 1))
    ]
    for i in range(dflen):
        for j in range(dflen2):
            ax.text(j,
                    i,
                    '{:.2f}'.format(df.iget_value(i, j)),
                    size='medium',
                    ha='center',
                    va='center',
                    path_effects=path_effects)
    plt.show()
Exemplo n.º 31
0
def test_patheffect3():

    ax3 = plt.subplot(111)
    p1, = ax3.plot([0, 1], [0, 1])
    leg = ax3.legend([p1], ["Line 1"], fancybox=True, loc=2)
    leg.legendPatch.set_path_effects([withSimplePatchShadow()])
Exemplo n.º 32
0
def make_plot(channel, time, drawLabels=True):
    #get the log file
    directory = "logs/" + channel + '/' + time
    filename = 'rate.csv'
    file_path = os.path.relpath(directory + '/' + filename)

    with open(file_path, 'r') as rate:
        rates = map(lambda x: x.strip(), list(rate))

    start_hour = int(rates[0].split('=')[1].split('_')[0])
    start_min = int(rates[0].split('=')[1].split('_')[1])

    #Load data
    rates = rates[1:]
    events = []
    to_delete = []
    for rate in rates:
        if len(rate.split('*')) >= 3:
            events.append((int(rate.split('*')[1]), rate.split(',', 1)[1]))
            to_delete.append(rate)
    rates = [x for x in rates if x not in to_delete]
    old_len = len(rates)
    rates = remove_trailing_zeroes(rates)
    num_removed = old_len - len(rates)

    mins = map(
        lambda x: int(
            filter(lambda x: x in string.printable, x).split(',')[0]), rates)
    ##### XXX
    l = len(mins)
    mins = []
    for i in range(l):
        mins.append(i)


##### XXX
    y_data = map(lambda x: float(x.split(',')[1]), rates)
    show_viewers = False
    try:
        y_data2 = map(lambda x: int(x.split(',')[2]), rates)
        show_viewers = True
    except IndexError:
        print rates
        pass

    dur = mins[-1] + 1  #in minutes

    #interval = 15
    interval = get_xinterval(dur)
    padding_mins = start_min % interval
    carry = start_min / interval

    x_data = range(carry * interval,
                   start_min + dur + min(num_removed, padding_mins))
    x = np.array(x_data)
    y = np.random.randint(1, size=padding_mins)  #pad it with all 0's
    y = np.append(y, np.array(y_data))
    y = np.append(y, np.random.randint(1, size=min(
        num_removed, padding_mins)))  #potentially add zeroes to the end
    if show_viewers:
        y2 = np.random.randint(1, size=padding_mins)  #pad it with all 0's
        y2 = np.append(y2, np.array(y_data2))
        y2 = np.append(
            y2, np.random.randint(
                1, size=min(num_removed,
                            padding_mins)))  #potentially add zeroes to the end
    #print len(x)
    #print len(y)
    #print len(y2)
    times = time.split('-')  #2014-08-23-04AM

    try:
        year = int(times[0])
        mo = int(times[1])
        day = int(times[2])
        hour = start_hour
        minute = start_min
        minute = 0  #?????????????????????????????????????????????????????????????
        start_time = datetime.datetime(year, mo, day, hour, minute, 0)
    except ValueError:  #debugging.
        print "THIS SHOULD NEVER HAPPEN! Email me [email protected] right away!"
        start_time = datetime.datetime(2014, 8, 11, start_hour, start_min)

    #Removes leading zeroes from all the "words" in s.
    #"00138 hello 01AM" -> "138 hello 1AM"
    def removeLeadingZeroes(s):
        return " ".join(map(lambda x: x.lstrip('0'), s.split(" ")))

    def formatTime(x, pos):
        #timestamp = (start_time - datetime.datetime(1970, 1, 1)).total_seconds() + x*60
        #now_time = datetime.datetime.fromtimestamp(timestamp) #does not convert time zones. Need time zones.
        now_time = datetime.timedelta(hours=float(x) / 60) + start_time
        if dur > 2160:  #Aug 5, 8AM
            return removeLeadingZeroes(now_time.strftime("%b %d, %I %p"))
        elif interval >= 60:  #8AM
            return removeLeadingZeroes(now_time.strftime("%I %p"))
        else:  #7:45 AM
            return removeLeadingZeroes(now_time.strftime("%I:%M %p"))

    print "Drawing rate over time graph..."

    #START GRAPHING
    #plt.figure(num=None, figsize=(36, 16), dpi=80)
    plt.figure(num=None, figsize=(27, 12), dpi=80)

    #fig, ax = plt.subplots()
    ax = plt.axes()
    ax.xaxis.grid(True)
    ax.xaxis.set_major_formatter(FuncFormatter(formatTime))
    ax.yaxis.grid(True)
    ax.grid(True)

    r = 45
    if dur >= 2160:
        r = 270
    plt.xticks(np.arange(min(x), max(x) + 1, interval), rotation=r)
    months = [
        '', 'January', 'February', 'March', 'April', 'May', 'June', 'July',
        'August', 'September', 'October', 'November', 'December'
    ]
    try:
        i = int(times[1])
        mon = months[i]
        ye = int(times[2])
        da = int(times[0])
        plt.title("%s - %s %d, %d\n" % (channel, mon, ye, da))
    except (ValueError, IndexError):
        plt.title(channel + '\n')

    settingsDict = getSettings()
    local_timezone = None
    try:
        local_timezone = settingsDict['timezone']
    except KeyError as e:
        print "Setting missing:", e
        raise
    except ValueError as e:
        print "Malformed setting:", e
        raise

    if local_timezone.lower().strip() == 'none' or local_timezone.lower(
    ).strip() == 'auto':
        local_timezone = datetime.datetime.now(
            tzlocal()).tzname()  #Eastern Daylight Time
    else:
        local_timezone = local_timezone.strip()

    split = local_timezone.split(" ")
    if len(split) > 1:
        local_timezone = "".join([word[0] for word in split])
    avg_mpm = np.mean(y)
    plt.xlabel('\nTimes in ' + local_timezone)
    plt.ylabel('\nMessages per minute (Avg=%0.2f)\n' % avg_mpm, color='blue')
    for tl in ax.get_yticklabels():
        tl.set_color('blue')
    plt.plot(x, y, linewidth=2, color='#4422AA')

    if show_viewers:
        ax2color = 'green'
        ax2 = ax.twinx()
        ax2.plot(x, y2, linewidth=4, color=ax2color)
        ax2.fill_between(x, 0, y2, color=ax2color, alpha=0.1)
        ax2.set_frame_on(True)
        ax2.patch.set_visible(False)
        ax2.yaxis.set_ticks_position('right')
        ax2.yaxis.set_label_position('right')
        avg_viewercount = np.mean(y2)
        ax2.set_ylabel('Viewercount (Avg=%0.1f)\n\n' % avg_viewercount,
                       color=ax2color,
                       labelpad=50,
                       rotation=270)
        m = 1.16 * max(y)
        m2 = 1.16 * max(y2)
        ax.set_yticks(np.arange(0, m, get_yinterval(max(y))))
        ax2.set_yticks(np.arange(0, m2, get_yinterval(max(y2))))
        ax.set_ylim(0, m)
        ax2.set_ylim(0, m2)
        for tl in ax2.get_yticklabels():
            tl.set_color(ax2color)

    ax.fill_between(x, 0, y, color='#5577DD')
    font = {'size': 25}
    rc('font', **font)

    ticklist = ax2.get_yticks()
    height_diff = ticklist[1] - ticklist[0]
    height_offset = ticklist[1]
    init_offset = height_offset
    ha = 'center'
    for event in events:
        if drawLabels:
            plt.axvline(x=event[0] + padding_mins + carry * interval,
                        color='red',
                        linewidth=2,
                        label=event[1])
            s = event[1].replace('\\n', '\n')
            down = ax2.yaxis.get_view_interval()[1] - height_offset
            plt.text(
                event[0] + padding_mins + carry * interval,
                down,
                s,
                color='red',
                verticalalignment='top',
                horizontalalignment=ha,
                fontsize=25,
                rotation=0,  #rotation=270,
                path_effects=[PathEffects.withSimplePatchShadow(linewidth=2)])
            #path_effects=[PathEffects.withStroke(linewidth=1,foreground="black")])
            height_offset = (
                height_offset +
                height_diff) if height_offset == init_offset else init_offset
            #height_offset = height_diff - height_offset
    #S E L L O U T
    plt.text(0.01,
             0.99,
             'github.com/popcorncolonel/chat_stats',
             color='#666666',
             verticalalignment='top',
             horizontalalignment='left',
             fontsize=25,
             rotation=0,
             transform=ax.transAxes)
    plt.text(0.99,
             0.99,
             'http://twitch.tv/' + channel,
             color='#666666',
             verticalalignment='top',
             horizontalalignment='right',
             fontsize=25,
             rotation=0,
             transform=ax.transAxes)
    #plt.text(-0.05, -0.170, 'http://github.com/popcorncolonel/chat_stats', color='grey', verticalalignment='top',
    #        horizontalalignment='left', fontsize=25, rotation=0, transform=ax.transAxes)
    #plt.text(1.05, -0.170, 'http://www.twitch.tv/'+channel, color='grey', verticalalignment='top',
    #        horizontalalignment='right', fontsize=25, rotation=0, transform=ax.transAxes)

    #plt.show() #for running locally rather than saving the figure

    directory = "images/" + channel + '/' + time
    if not os.path.exists(directory):
        os.makedirs(directory)
    plt.savefig(directory + '/rate.png', bbox_inches='tight')
    print "Rate graph completed!"
Exemplo n.º 33
0
import matplotlib.pyplot as plt
import matplotlib.patheffects as path_effects

fig = plt.figure(figsize=(5, 1.5))
text = fig.text(0.5,
                0.5, 'Hello path effects world!\nThis is the normal '
                'path effect.\nPretty dull, huh?',
                ha='center',
                va='center',
                size=20)
text.set_path_effects([path_effects.Normal()])
plt.show()

text = plt.text(0.5,
                0.5,
                'Hello path effects world!',
                path_effects=[path_effects.withSimplePatchShadow()])

plt.plot([0, 3, 2, 5],
         linewidth=5,
         color='blue',
         path_effects=[path_effects.SimpleLineShadow(),
                       path_effects.Normal()])
plt.show()
Exemplo n.º 34
0
        path_effects=[PathEffects.withStroke(linewidth=3, foreground="w")])
    txt.arrow_patch.set_path_effects([
        PathEffects.Stroke(linewidth=5, foreground="w"),
        PathEffects.Normal()
    ])

    pe = [PathEffects.withStroke(linewidth=3, foreground="w")]
    ax1.grid(True, linestyle="-", path_effects=pe)

    ax2 = plt.subplot(132)
    arr = np.arange(25).reshape((5, 5))
    ax2.imshow(arr)
    cntr = ax2.contour(arr, colors="k")

    plt.setp(
        cntr.collections,
        path_effects=[PathEffects.withStroke(linewidth=3, foreground="w")])

    clbls = ax2.clabel(cntr, fmt="%2.0f", use_clabeltext=True)
    plt.setp(
        clbls,
        path_effects=[PathEffects.withStroke(linewidth=3, foreground="w")])

    # shadow as a path effect
    ax3 = plt.subplot(133)
    p1, = ax3.plot([0, 1], [0, 1])
    leg = ax3.legend([p1], ["Line 1"], fancybox=True, loc=2)
    leg.legendPatch.set_path_effects([PathEffects.withSimplePatchShadow()])

    plt.show()
x = np.linspace(0.5, 3.5, 100)
y = np.sin(x)

fontsize = 23

# plot a sin(x) func
plt.plot(x, y, ls="--", lw=2)

# set text contents
title = "$y=\sin({x})$"
xaxis_label = "$x\_axis$"
yaxis_label = "$y\_axis$"

# get text instance
title_text_obj = plt.title(title, fontsize=fontsize, va="bottom")
xaxis_label_text_obj = plt.xlabel(xaxis_label,
                                  fontsize=fontsize - 3,
                                  alpha=1.0)
yaxis_label_text_obj = plt.ylabel(yaxis_label,
                                  fontsize=fontsize - 3,
                                  alpha=1.0)

# set shadow
title_text_obj.set_path_effects([pes.withSimplePatchShadow()])
pe = pes.withSimplePatchShadow(offset=(1, -1), shadow_rgbFace="r", alpha=.3)
xaxis_label_text_obj.set_path_effects([pe])
yaxis_label_text_obj.set_path_effects([pe])

plt.show()
Exemplo n.º 36
0
def Spectrum(pol, long, darkmode, png, foregrounds, masks, nside):
    params = {
        'savefig.dpi':
        300,  # save figures to 300 dpi
        'xtick.top':
        False,
        'ytick.right':
        True,  #Set to false
        'axes.spines.top':
        True,  #Set to false
        'axes.spines.bottom':
        True,
        'axes.spines.left':
        True,
        'axes.spines.right':
        True,  #Set to false@
        'axes.grid.axis':
        'y',
        'axes.grid':
        False,
        'ytick.major.size':
        10,
        'ytick.minor.size':
        5,
        'xtick.major.size':
        10,
        'xtick.minor.size':
        5,
        'ytick.major.width':
        1.5,
        'ytick.minor.width':
        1.5,
        'xtick.major.width':
        1.5,
        'xtick.minor.width':
        1.5,
        'axes.linewidth':
        1.5,
        'axes.prop_cycle':
        cycler(color=[
            '#636EFA', '#EF553B', '#00CC96', '#AB63FA', '#FFA15A', '#19D3F3',
            '#FF6692', '#B6E880', '#FF97FF', '#FECB52'
        ])
        #'ytick.major.size'   : 6,
        #'ytick.minor.size'   : 3,
        #'xtick.major.size'   : 6,
        #'xtick.minor.size'   : 3,
    }
    blue, red, green, purple, orange, teal, lightred, lightgreen, pink, yellow = (
        "C0",
        "C1",
        "C2",
        "C3",
        "C4",
        "C5",
        "C6",
        "C7",
        "C8",
        "C9",
    )
    black = 'k'
    if darkmode:
        rcParams['text.color'] = 'white'  # axes background color
        rcParams['axes.facecolor'] = 'white'  # axes background color
        rcParams['axes.edgecolor'] = 'white'  # axes edge color
        rcParams['axes.labelcolor'] = 'white'
        rcParams['xtick.color'] = 'white'  # color of the tick labels
        rcParams['ytick.color'] = 'white'  # color of the tick labels
        rcParams['grid.color'] = 'white'  # grid color
        rcParams[
            'legend.facecolor'] = 'inherit'  # legend background color (when 'inherit' uses axes.facecolor)
        rcParams[
            'legend.edgecolor'] = 'white'  # legend edge color (when 'inherit' uses axes.edgecolor)
        black = 'white'
    rcParams.update(params)

    # ---- Figure parameters ----
    if pol:
        ymin, ymax = (1e-3, 2e2)
        if long:
            xmin, xmax = (1, 3000)
            ymax15, ymax2 = (ymax + 100, 1e7)
        else:
            xmin, xmax = (10, 1000)
    else:
        ymin, ymax = (0.05, 7e2)
        if long:
            xmin, xmax = (0.3, 4000)
            ymax15, ymax2 = (ymax + 500, 1e7)
        else:
            xmin, xmax = (10, 1000)

    if long:

        # Figure
        ratio = 5
        w, h = (16, 8)
        fig, (ax2,
              ax) = plt.subplots(2,
                                 1,
                                 sharex=True,
                                 figsize=(w, h),
                                 gridspec_kw={'height_ratios': [1, ratio]})
        aspect_ratio = w / h * 1.25  # Correct for ratio
        rotdir = -1

        ax2.spines['bottom'].set_visible(False)
        ax.spines['top'].set_visible(False)
        ax2.tick_params(labelbottom=False)
        ax2.xaxis.set_ticks_position('none')

        # ---- Adding broken axis lines ----
        d = .005  # how big to make the diagonal lines in axes coordinates
        kwargs = dict(transform=ax2.transAxes, color=black, clip_on=False)
        ax2.plot((-d, +d), (-d * ratio, +d * ratio),
                 **kwargs)  # top-left diagonal
        ax2.plot((1 - d, 1 + d), (-d * ratio, +d * ratio),
                 **kwargs)  # top-right diagonal
        kwargs.update(transform=ax.transAxes)  # switch to the bottom axes
        ax.plot((-d, +d), (1 - d, 1 + d), **kwargs)  # bottom-left diagonal
        ax.plot((1 - d, 1 + d), (1 - d, 1 + d),
                **kwargs)  # bottom-right diagonal

        # textsize
        freqtext = 16
        fgtext = 18

    else:
        ymax2 = ymax
        ymax15 = ymax
        w, h = (12, 8)
        fig, ax = plt.subplots(1, 1, figsize=(w, h))
        aspect_ratio = w / h
        rotdir = 1
        #ax.set_aspect('equal', adjustable='box')

        freqtext = 20
        fgtext = 20

    # Spectrum parameters
    field = 1 if pol else 0
    nu = np.logspace(np.log10(0.1), np.log10(5000), 1000)
    npix = hp.nside2npix(nside)
    # Read masks
    m = np.ones((len(masks), npix))
    for i, mask in enumerate(masks):
        # Read and ud_grade mask
        if mask:
            m_temp = hp.read_map(mask, field=0, dtype=None, verbose=False)
            if hp.npix2nside(len(m_temp)) != nside:
                m[i] = hp.ud_grade(m_temp, nside)
                m[i, m[i, :] > 0.5] = 1  # Set all mask values to integer
                m[i, m[i, :] < 0.5] = 0  # Set all mask values to integer
            else:
                m[i] = m_temp

    # Get indices of smallest mask
    idx = m[np.argmax(np.sum(m, axis=1)), :] > 0.5
    skyfracs = np.sum(m, axis=1) / npix * 100
    print(f"Using sky fractions {skyfracs}%")
    # Looping over foregrounds and calculating spectra
    i = 0
    add_error = True
    for fg in foregrounds.keys():
        if not fg == "Sum fg.":
            if fg.startswith("CO"):  # get closest thing to ref freq
                foregrounds[fg]["params"][-2], _ = find_nearest(
                    nu, foregrounds[fg]["params"][-2])

            foregrounds[fg]["spectrum"] = getspec(
                nu * 1e9,
                fg,
                foregrounds[fg]["params"],
                foregrounds[fg]["function"],
                field,
                nside,
                npix,
                idx,
                m,
            )
            """
            if fg.startswith("CO"):#unit conversion fudge factor
                foregrounds[fg]["spectrum"
            ] = foregrounds[fg]["spectrum"]*75
            """
            if add_error and foregrounds[fg]["spectrum"].shape[
                    0] > 1 and not fg.startswith("CO"):
                thresh = 0.1
                alpha = 0.5
                foregrounds[fg]["spectrum"][
                    0] = foregrounds[fg]["spectrum"][0] * (1 - np.exp(-(
                        abs(foregrounds[fg]["spectrum"][0] / thresh)**alpha)))
                foregrounds[fg]["spectrum"][
                    1] = foregrounds[fg]["spectrum"][1] / (1 - np.exp(-(
                        abs(foregrounds[fg]["spectrum"][1] / thresh)**alpha)))

        if foregrounds[fg]["sum"]:
            if i == 0:
                if foregrounds[fg]["spectrum"].shape[0] == 1:
                    # special case where first summed is 1d
                    foregrounds["Sum fg."]["spectrum"] = np.concatenate(
                        (foregrounds[fg]["spectrum"],
                         foregrounds[fg]["spectrum"])).copy()
                else:
                    foregrounds["Sum fg."]["spectrum"] = foregrounds[fg][
                        "spectrum"].copy()
            else:
                foregrounds["Sum fg."]["spectrum"] += foregrounds[fg][
                    "spectrum"]
            i += 1

    # ---- Plotting foregrounds and labels ----
    j = 0
    for label, fg in foregrounds.items():  # Plot all fgs except sumf
        if fg["gradient"]:
            k = 0
            gradient_fill(
                nu,
                fg["spectrum"][k],
                fill_color=fg["color"],
                ax=ax,
                alpha=0.5,
                linewidth=0.0,
            )
        else:
            if label == "Sum fg.":
                ax.loglog(nu,
                          fg["spectrum"][0],
                          linestyle=fg["linestyle"],
                          linewidth=2,
                          color=fg["color"])
                if long:
                    ax2.loglog(nu,
                               fg["spectrum"][0],
                               linestyle=fg["linestyle"],
                               linewidth=2,
                               color=fg["color"])
                k = 0
                try:
                    ax.loglog(nu,
                              fg["spectrum"][1],
                              linestyle=fg["linestyle"],
                              linewidth=2,
                              color=fg["color"])
                    if long:
                        ax2.loglog(nu,
                                   fg["spectrum"][1],
                                   linestyle=fg["linestyle"],
                                   linewidth=2,
                                   color=fg["color"])
                    k = 1
                except:
                    pass
            elif label.startswith("CO"):
                lfreq = nu[np.argmax(fg["spectrum"][0])]
                if fg["spectrum"].shape[0] > 1:
                    ax.loglog([lfreq, lfreq],
                              [max(fg["spectrum"][0]),
                               max(fg["spectrum"][1])],
                              linestyle=fg["linestyle"],
                              linewidth=4,
                              color=fg["color"],
                              zorder=1000)
                    k = 1
                else:
                    k = 0
                    ax.bar(
                        lfreq,
                        fg["spectrum"][0],
                        color=black,
                    )
            else:
                if fg["spectrum"].shape[0] == 1:
                    ax.loglog(nu,
                              fg["spectrum"][0],
                              linestyle=fg["linestyle"],
                              linewidth=4,
                              color=fg["color"])
                    if long:
                        ax2.loglog(nu,
                                   fg["spectrum"][0],
                                   linestyle=fg["linestyle"],
                                   linewidth=4,
                                   color=fg["color"])
                    k = 0
                else:
                    #gradient_fill(nu, fg["spectrum"][0], fill_color=fg["color"], ax=ax, alpha=0.5, linewidth=0.0,)

                    ax.loglog(nu,
                              np.mean(fg["spectrum"], axis=0),
                              linestyle=fg["linestyle"],
                              linewidth=4,
                              color=fg["color"])
                    ax.fill_between(nu,
                                    fg["spectrum"][0],
                                    fg["spectrum"][1],
                                    color=fg["color"],
                                    alpha=0.5)

                    if long:
                        ax2.loglog(nu,
                                   np.mean(fg["spectrum"], axis=0),
                                   linestyle=fg["linestyle"],
                                   linewidth=4,
                                   color=fg["color"])
                        ax2.fill_between(nu,
                                         fg["spectrum"][0],
                                         fg["spectrum"][1],
                                         color=fg["color"],
                                         alpha=0.5)
                    k = 1

        if label == "Thermal Dust" and fg["spectrum"].shape[0] > 1:
            if long:
                _, fsky_idx = find_nearest(nu, 900)
            else:
                _, fsky_idx = find_nearest(nu, 700)
            ax.annotate(
                r"$f_{sky}=$" + "{:d}%".format(int(skyfracs[1])),
                xy=(nu[fsky_idx], fg["spectrum"][1][fsky_idx]),
                ha="center",
                va="bottom",
                fontsize=fgtext,
                color="grey",
                xytext=(0, 5),
                textcoords="offset pixels",
            )
            ax.annotate(
                r"$f_{sky}=$" + "{:d}%".format(int(skyfracs[0])),
                xy=(nu[fsky_idx], fg["spectrum"][0][fsky_idx]),
                ha="center",
                va="top",
                fontsize=fgtext,
                color="grey",
                xytext=(0, -15),
                textcoords="offset pixels",
            )

        if label.startswith("CO"):
            ax.text(lfreq,
                    np.max(fg["spectrum"][k]) * 0.5,
                    label,
                    color=fg["color"],
                    alpha=0.7,
                    ha='right',
                    va='center',
                    rotation=90,
                    fontsize=fgtext,
                    path_effects=[
                        path_effects.withSimplePatchShadow(alpha=0.8,
                                                           offset=(1, -1))
                    ],
                    zorder=1000)
        else:
            x0, idx1 = find_nearest(nu, fg["position"])
            x1, idx2 = find_nearest(nu, fg["position"] * 1.2)
            y0 = fg["spectrum"][k][idx1]
            y1 = fg["spectrum"][k][idx2]
            datascaling = np.log(xmin / xmax) / np.log(ymin / ymax)
            rotator = (datascaling / aspect_ratio)
            alpha = np.arctan(np.log(y1 / y0) / np.log(x1 / x0) * rotator)
            rotation = np.rad2deg(alpha)  #*rotator
            ax.annotate(
                label,
                xy=(x0, y0),
                xytext=(0, 7),
                textcoords="offset pixels",
                rotation=rotation,
                rotation_mode='anchor',
                fontsize=fgtext,
                color=fg["color"],
                path_effects=[
                    path_effects.withSimplePatchShadow(alpha=0.8,
                                                       offset=(1, -1)),
                ],
            )  # horizontalalignment="center")

    # ---- Data band ranges ----
    if long:
        yscaletext = 0.75
        yscaletextup = 1.2
    else:
        yscaletextup = 1.03
        yscaletext = 0.90

    # TODO add these as args?
    haslam = True
    chipass = True
    spass = True
    cbass = True
    quijote = False
    wmap = True
    planck = True
    dirbe = True

    databands = {
        "Haslam": {
            "0.408\nHaslam": {
                "pol": False,
                "show": haslam,
                "position": [.408, ymin * yscaletextup],
                "range": [.406, .410],
                "color": purple,
            }
        },
        "S-PASS": {
            "2.303\nS-PASS": {
                "pol": True,
                "show": spass,
                "position": [2.35, ymax2 * yscaletext],
                "range": [2.1, 2.4],
                "color": green,
            }
        },
        "C-BASS": {
            "5.0\nC-BASS": {
                "pol": True,
                "show": spass,
                "position": [5., ymax2 * yscaletext],
                "range": [4., 6.],
                "color": blue,
            }
        },
        "CHI-PASS": {
            "1.394\nCHI-PASS": {
                "pol": False,
                "show": chipass,
                "position": [1.3945, ymin * yscaletextup],
                "range": [1.3945 - 0.064 / 2, 1.3945 + 0.064 / 2],
                "color": lightred,
            }
        },
        "QUIJOTE": {
            "11\nQUIJOTE": {
                "pol": True,
                "show": quijote,
                "position": [11, ymax2 * yscaletext],
                "range": [10., 12.],
                "color": orange,
            },
            "13": {
                "pol": True,
                "show": quijote,
                "position": [13, ymax2 * yscaletext],
                "range": [12., 14.],
                "color": orange,
            },
            "17": {
                "pol": True,
                "show": quijote,
                "position": [17, ymax2 * yscaletext],
                "range": [16., 18.],
                "color": orange,
            },
            "19": {
                "pol": True,
                "show": quijote,
                "position": [20, ymax2 * yscaletext],
                "range": [18., 21.],
                "color": orange,
            },
            "31": {
                "pol": True,
                "show": quijote,
                "position": [31, ymax2 * yscaletext],
                "range": [26., 36.],
                "color": orange,
            },
            "41": {
                "pol": True,
                "show": quijote,
                "position": [42, ymax2 * yscaletext],
                "range": [35., 47.],
                "color": orange,
            }
        },
        "Planck": {
            "30": {
                "pol": True,
                "show": planck,
                "position": [27, ymax2 * yscaletext],
                "range": [23.9, 34.5],
                "color": orange,
            },  # Planck 30
            "44": {
                "pol": True,
                "show": planck,
                "position": [40, ymax2 * yscaletext],
                "range": [39, 50],
                "color": orange,
            },  # Planck 44
            "70": {
                "pol": True,
                "show": planck,
                "position": [60, ymax2 * yscaletext],
                "range": [60, 78],
                "color": orange,
            },  # Planck 70
            "100\nPlanck": {
                "pol": True,
                "show": planck,
                "position": [90, ymax2 * yscaletext],
                "range": [82, 120],
                "color": orange,
            },  # Planck 100
            "143": {
                "pol": True,
                "show": planck,
                "position": [130, ymax2 * yscaletext],
                "range": [125, 170],
                "color": orange,
            },  # Planck 143
            "217": {
                "pol": True,
                "show": planck,
                "position": [195, ymax2 * yscaletext],
                "range": [180, 265],
                "color": orange,
            },  # Planck 217
            "353": {
                "pol": True,
                "show": planck,
                "position": [320, ymax2 * yscaletext],
                "range": [300, 430],
                "color": orange,
            },  # Planck 353
            "545": {
                "pol": False,
                "show": planck,
                "position": [490, ymax2 * yscaletext],
                "range": [450, 650],
                "color": orange,
            },  # Planck 545
            "857": {
                "pol": False,
                "show": planck,
                "position": [730, ymax2 * yscaletext],
                "range": [700, 1020],
                "color": orange,
            }
        },  # Planck 857
        "DIRBE": {
            "DIRBE\n1250": {
                "pol": False,
                "show": dirbe,
                "position": [1000, ymin * yscaletextup],
                "range": [1000, 1540],
                "color": red,
            },  # DIRBE 1250
            "2140": {
                "pol": False,
                "show": dirbe,
                "position": [1750, ymin * yscaletextup],
                "range": [1780, 2500],
                "color": red,
            },  # DIRBE 2140
            "3000": {
                "pol": False,
                "show": dirbe,
                "position": [2500, ymin * yscaletextup],
                "range": [2600, 3500],
                "color": red,
            }
        },  # DIRBE 3000
        "WMAP": {
            "K": {
                "pol": True,
                "show": wmap,
                "position": [21.8, ymin * yscaletextup],
                "range": [21, 25.5],
                "color": teal,
            },
            "WMAP\nKa": {
                "pol": True,
                "show": wmap,
                "position": [31.5, ymin * yscaletextup],
                "range": [30, 37],
                "color": teal,
            },
            "Q": {
                "pol": True,
                "show": wmap,
                "position": [39., ymin * yscaletextup],
                "range": [38, 45],
                "color": teal,
            },
            "V": {
                "pol": True,
                "show": wmap,
                "position": [58., ymin * yscaletextup],
                "range": [54, 68],
                "color": teal,
            },
            "W": {
                "pol": True,
                "show": wmap,
                "position": [90., ymin * yscaletextup],
                "range": [84, 106],
                "color": teal,
            }
        },
    }

    # Set databands from dictonary
    for experiment, bands in databands.items():
        for label, band in bands.items():
            if band["show"]:
                if pol and not band["pol"]:
                    continue  # Skip non-polarization bands
                if band["position"][0] >= xmax or band["position"][0] <= xmin:
                    continue  # Skip databands outside range
                va = "bottom" if experiment in [
                    "WMAP", "CHI-PASS", "DIRBE", "Haslam"
                ] else "top"  # VA for WMAP on bottom
                ha = "left" if experiment in [
                    "Planck",
                    "WMAP",
                    "DIRBE",
                ] else "center"
                ax.axvspan(*band["range"],
                           color=band["color"],
                           alpha=0.3,
                           zorder=0,
                           label=experiment)
                if long:
                    ax2.axvspan(*band["range"],
                                color=band["color"],
                                alpha=0.3,
                                zorder=0,
                                label=experiment)
                    if experiment in ["WMAP", "CHI-PASS", "DIRBE", "Haslam"]:
                        ax.text(*band["position"],
                                label,
                                color=band["color"],
                                va=va,
                                ha=ha,
                                size=freqtext,
                                path_effects=[
                                    path_effects.withSimplePatchShadow(
                                        alpha=0.8, offset=(1, -1))
                                ])
                    else:
                        ax2.text(*band["position"],
                                 label,
                                 color=band["color"],
                                 va=va,
                                 ha=ha,
                                 size=freqtext,
                                 path_effects=[
                                     path_effects.withSimplePatchShadow(
                                         alpha=0.8, offset=(1, -1))
                                 ])
                else:
                    ax.text(*band["position"],
                            label,
                            color=band["color"],
                            va=va,
                            ha=ha,
                            size=freqtext,
                            path_effects=[
                                path_effects.withSimplePatchShadow(alpha=0.8,
                                                                   offset=(1,
                                                                           -1))
                            ])

    # ---- Axis stuff ----
    lsize = 20

    # Dumb tick fix
    ticks = []
    ticks_ = [1, 3, 10, 30, 100, 300, 1000, 3000]
    for i, tick in enumerate(ticks_):
        if tick >= xmin and tick <= xmax:
            ticks.append(tick)

    ax.set(xscale='log',
           yscale='log',
           ylim=(ymin, ymax),
           xlim=(xmin, xmax),
           xticks=ticks,
           xticklabels=ticks)
    ax.xaxis.set_major_formatter(ticker.ScalarFormatter(useMathText=True))
    ax.tick_params(axis='both', which='major', labelsize=lsize, direction='in')
    ax.tick_params(which="both", direction="in")
    if long:
        ax2.set(xscale='log',
                yscale='log',
                ylim=(ymax15, ymax2),
                xlim=(xmin, xmax),
                yticks=[
                    1e4,
                    1e6,
                ],
                xticks=ticks,
                xticklabels=ticks)
        ax2.tick_params(axis='both',
                        which='major',
                        labelsize=lsize,
                        direction='in')
        ax2.tick_params(which="both", direction="in")

    # Axis labels
    plt.ylabel(r"RMS brightness temperature [$\mu$K]", fontsize=lsize)
    plt.xlabel(r"Frequency [GHz]", fontsize=lsize)

    #ax.legend(loc=6,prop={'size': 20}, frameon=False)

    # ---- Plotting ----
    plt.tight_layout(h_pad=0.3)
    filename = "spectrum"
    filename += "_pol" if pol else ""
    filename += "_long" if long else ""
    filename += "_darkmode" if darkmode else ""
    filename += ".png" if png else ".pdf"
    print("Plotting {}".format(filename))
    plt.savefig(filename,
                bbox_inches='tight',
                pad_inches=0.02,
                transparent=True)
Exemplo n.º 37
0
def make_plot(channel, time, drawLabels=True):
    # get the log file
    directory = "logs/" + channel + "/" + time
    filename = "rate.csv"
    file_path = os.path.relpath(directory + "/" + filename)

    with open(file_path, "r") as rate:
        rates = map(lambda x: x.strip(), list(rate))

    start_hour = int(rates[0].split("=")[1].split("_")[0])
    start_min = int(rates[0].split("=")[1].split("_")[1])

    # Load data
    rates = rates[1:]
    events = []
    to_delete = []
    for rate in rates:
        if len(rate.split("*")) >= 3:
            events.append((int(rate.split("*")[1]), rate.split(",", 1)[1]))
            to_delete.append(rate)
    rates = [x for x in rates if x not in to_delete]
    old_len = len(rates)
    rates = remove_trailing_zeroes(rates)
    num_removed = old_len - len(rates)

    mins = map(lambda x: int(filter(lambda x: x in string.printable, x).split(",")[0]), rates)
    ##### XXX
    l = len(mins)
    mins = []
    for i in range(l):
        mins.append(i)
    ##### XXX
    y_data = map(lambda x: float(x.split(",")[1]), rates)
    show_viewers = False
    try:
        y_data2 = map(lambda x: int(x.split(",")[2]), rates)
        show_viewers = True
    except IndexError:
        print rates
        pass

    dur = mins[-1] + 1  # in minutes

    # interval = 15
    interval = get_xinterval(dur)
    padding_mins = start_min % interval
    carry = start_min / interval

    x_data = range(carry * interval, start_min + dur + min(num_removed, padding_mins))
    x = np.array(x_data)
    y = np.random.randint(1, size=padding_mins)  # pad it with all 0's
    y = np.append(y, np.array(y_data))
    y = np.append(y, np.random.randint(1, size=min(num_removed, padding_mins)))  # potentially add zeroes to the end
    if show_viewers:
        y2 = np.random.randint(1, size=padding_mins)  # pad it with all 0's
        y2 = np.append(y2, np.array(y_data2))
        y2 = np.append(
            y2, np.random.randint(1, size=min(num_removed, padding_mins))
        )  # potentially add zeroes to the end
    # print len(x)
    # print len(y)
    # print len(y2)
    times = time.split("-")  # 2014-08-23-04AM

    try:
        year = int(times[0])
        mo = int(times[1])
        day = int(times[2])
        hour = start_hour
        minute = start_min
        minute = 0  # ?????????????????????????????????????????????????????????????
        start_time = datetime.datetime(year, mo, day, hour, minute, 0)
    except ValueError:  # debugging.
        print "THIS SHOULD NEVER HAPPEN! Email me [email protected] right away!"
        start_time = datetime.datetime(2014, 8, 11, start_hour, start_min)

    # Removes leading zeroes from all the "words" in s.
    # "00138 hello 01AM" -> "138 hello 1AM"
    def removeLeadingZeroes(s):
        return " ".join(map(lambda x: x.lstrip("0"), s.split(" ")))

    def formatTime(x, pos):
        # timestamp = (start_time - datetime.datetime(1970, 1, 1)).total_seconds() + x*60
        # now_time = datetime.datetime.fromtimestamp(timestamp) #does not convert time zones. Need time zones.
        now_time = datetime.timedelta(hours=float(x) / 60) + start_time
        if dur > 2160:  # Aug 5, 8AM
            return removeLeadingZeroes(now_time.strftime("%b %d, %I %p"))
        elif interval >= 60:  # 8AM
            return removeLeadingZeroes(now_time.strftime("%I %p"))
        else:  # 7:45 AM
            return removeLeadingZeroes(now_time.strftime("%I:%M %p"))

    print "Drawing rate over time graph..."

    # START GRAPHING
    # plt.figure(num=None, figsize=(36, 16), dpi=80)
    plt.figure(num=None, figsize=(27, 12), dpi=80)

    # fig, ax = plt.subplots()
    ax = plt.axes()
    ax.xaxis.grid(True)
    ax.xaxis.set_major_formatter(FuncFormatter(formatTime))
    ax.yaxis.grid(True)
    ax.grid(True)

    r = 45
    if dur >= 2160:
        r = 270
    plt.xticks(np.arange(min(x), max(x) + 1, interval), rotation=r)
    months = [
        "",
        "January",
        "February",
        "March",
        "April",
        "May",
        "June",
        "July",
        "August",
        "September",
        "October",
        "November",
        "December",
    ]
    try:
        i = int(times[1])
        mon = months[i]
        ye = int(times[2])
        da = int(times[0])
        plt.title("%s - %s %d, %d\n" % (channel, mon, ye, da))
    except (ValueError, IndexError):
        plt.title(channel + "\n")

    settingsDict = getSettings()
    local_timezone = None
    try:
        local_timezone = settingsDict["timezone"]
    except KeyError as e:
        print "Setting missing:", e
        raise
    except ValueError as e:
        print "Malformed setting:", e
        raise

    if local_timezone.lower().strip() == "none" or local_timezone.lower().strip() == "auto":
        local_timezone = datetime.datetime.now(tzlocal()).tzname()  # Eastern Daylight Time
    else:
        local_timezone = local_timezone.strip()

    split = local_timezone.split(" ")
    if len(split) > 1:
        local_timezone = "".join([word[0] for word in split])
    avg_mpm = np.mean(y)
    plt.xlabel("\nTimes in " + local_timezone)
    plt.ylabel("\nMessages per minute (Avg=%0.2f)\n" % avg_mpm, color="blue")
    for tl in ax.get_yticklabels():
        tl.set_color("blue")
    plt.plot(x, y, linewidth=2, color="#4422AA")

    if show_viewers:
        ax2color = "green"
        ax2 = ax.twinx()
        ax2.plot(x, y2, linewidth=4, color=ax2color)
        ax2.fill_between(x, 0, y2, color=ax2color, alpha=0.1)
        ax2.set_frame_on(True)
        ax2.patch.set_visible(False)
        ax2.yaxis.set_ticks_position("right")
        ax2.yaxis.set_label_position("right")
        avg_viewercount = np.mean(y2)
        ax2.set_ylabel("Viewercount (Avg=%0.1f)\n\n" % avg_viewercount, color=ax2color, labelpad=50, rotation=270)
        m = 1.16 * max(y)
        m2 = 1.16 * max(y2)
        ax.set_yticks(np.arange(0, m, get_yinterval(max(y))))
        ax2.set_yticks(np.arange(0, m2, get_yinterval(max(y2))))
        ax.set_ylim(0, m)
        ax2.set_ylim(0, m2)
        for tl in ax2.get_yticklabels():
            tl.set_color(ax2color)

    ax.fill_between(x, 0, y, color="#5577DD")
    font = {"size": 25}
    rc("font", **font)

    ticklist = ax2.get_yticks()
    height_diff = ticklist[1] - ticklist[0]
    height_offset = ticklist[1]
    init_offset = height_offset
    ha = "center"
    for event in events:
        if drawLabels:
            plt.axvline(x=event[0] + padding_mins + carry * interval, color="red", linewidth=2, label=event[1])
            s = event[1].replace("\\n", "\n")
            down = ax2.yaxis.get_view_interval()[1] - height_offset
            plt.text(
                event[0] + padding_mins + carry * interval,
                down,
                s,
                color="red",
                verticalalignment="top",
                horizontalalignment=ha,
                fontsize=25,
                rotation=0,  # rotation=270,
                path_effects=[PathEffects.withSimplePatchShadow(linewidth=2)],
            )
            # path_effects=[PathEffects.withStroke(linewidth=1,foreground="black")])
            height_offset = (height_offset + height_diff) if height_offset == init_offset else init_offset
            # height_offset = height_diff - height_offset
    # S E L L O U T
    plt.text(
        0.01,
        0.99,
        "github.com/popcorncolonel/chat_stats",
        color="#666666",
        verticalalignment="top",
        horizontalalignment="left",
        fontsize=25,
        rotation=0,
        transform=ax.transAxes,
    )
    plt.text(
        0.99,
        0.99,
        "http://twitch.tv/" + channel,
        color="#666666",
        verticalalignment="top",
        horizontalalignment="right",
        fontsize=25,
        rotation=0,
        transform=ax.transAxes,
    )
    # plt.text(-0.05, -0.170, 'http://github.com/popcorncolonel/chat_stats', color='grey', verticalalignment='top',
    #        horizontalalignment='left', fontsize=25, rotation=0, transform=ax.transAxes)
    # plt.text(1.05, -0.170, 'http://www.twitch.tv/'+channel, color='grey', verticalalignment='top',
    #        horizontalalignment='right', fontsize=25, rotation=0, transform=ax.transAxes)

    # plt.show() #for running locally rather than saving the figure

    directory = "images/" + channel + "/" + time
    if not os.path.exists(directory):
        os.makedirs(directory)
    plt.savefig(directory + "/rate.png", bbox_inches="tight")
    print "Rate graph completed!"
Exemplo n.º 38
0
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Jan 28 19:54:58 2019

@author: xsxsz
"""

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patheffects as patheffects

data=np.random.randn(10)
fontsize=18
plt.plot(data)
title_obj=plt.title('title')
x_obj=plt.xlabel('X',alpha=0.8)
y_obj=plt.ylabel('Y',alpha=0.8)
title_obj.set_path_effects([patheffects.withSimplePatchShadow()])
offset_xy=(1,-1)
rgbRed=(1.0,0.0,0.0)
pe=patheffects.withSimplePatchShadow(offset=offset_xy,shadow_rgbFace=rgbRed)
x_obj.set_path_effects([pe])
y_obj.set_path_effects([pe])
Exemplo n.º 39
0
def draw_network2(graph, layout_info, ax, as_directed=None, hacknoedge=False,
                  hacknode=False, verbose=None, **kwargs):
    """
    fancy way to draw networkx graphs without directly using networkx

    # python -m ibeis.annotmatch_funcs review_tagged_joins --dpath ~/latex/crall-candidacy-2015/ --save figures4/mergecase.png --figsize=15,15 --clipwhite --diskshow
    # python -m dtool --tf DependencyCache.make_graph --show
    """
    import plottool as pt

    patch_dict = {
        'patch_frame_dict': {},
        'node_patch_dict': {},
        'edge_patch_dict': {},
        'arrow_patch_list': {},
    }

    text_pseudo_objects = []

    font_prop = pt.parse_fontkw(**kwargs)
    #print('font_prop = %r' % (font_prop,))
    #print('font_prop.get_name() = %r' % (font_prop.get_name() ,))

    # print('layout_info = %r' % (layout_info,))
    node_pos = layout_info['node']['pos']
    node_size = layout_info['node']['size']
    splines = layout_info['graph']['splines']
    # edge_startpoints = layout_info['edge']['start_pt']

    if as_directed is None:
        as_directed = graph.is_directed()

    # Draw nodes
    for node, nattrs in graph.nodes(data=True):
        # shape = nattrs.get('shape', 'circle')
        if nattrs is None:
            nattrs = {}
        label = nattrs.get('label', None)
        alpha = nattrs.get('alpha', 1.0)
        node_color = nattrs.get('color', pt.NEUTRAL_BLUE)
        if node_color is None:
            node_color = pt.NEUTRAL_BLUE
        xy = node_pos[node]
        using_image = kwargs.get('use_image', True) and 'image' in nattrs
        if using_image:
            if hacknode:
                alpha_ = 0.7
            else:
                alpha_ = 0.0
        else:
            alpha_ = alpha

        node_color = fix_hex_color(node_color)
        #intcolor = int(node_color.replace('#', '0x'), 16)
        node_color = node_color[0:3]
        patch_kw = dict(alpha=alpha_, color=node_color)
        node_shape = nattrs.get('shape', 'ellipse')
        if node_shape == 'circle':
            # divide by 2 seems to work for agraph
            radius = min(_get_node_size(graph, node, node_size)) / 2.0
            patch = mpl.patches.Circle(xy, radius=radius, **patch_kw)
        elif node_shape == 'ellipse':
            # divide by 2 seems to work for agraph
            width, height = np.array(_get_node_size(graph, node, node_size))
            patch = mpl.patches.Ellipse(xy, width, height, **patch_kw)
        elif node_shape in ['none', 'box', 'rect', 'rectangle', 'rhombus']:
            width, height = _get_node_size(graph, node, node_size)
            angle = 45 if node_shape == 'rhombus' else 0
            xy_bl = (xy[0] - width // 2, xy[1] - height // 2)

            # rounded = angle == 0
            rounded = 'rounded' in graph.node.get(node, {}).get('style', '')
            isdiag = 'diagonals' in graph.node.get(node, {}).get('style', '')

            if rounded:
                from matplotlib import patches
                rpad = 20
                xy_bl = np.array(xy_bl) + rpad
                width -= rpad
                height -= rpad
                boxstyle = patches.BoxStyle.Round(pad=rpad)
                patch = mpl.patches.FancyBboxPatch(
                    xy_bl, width, height, boxstyle=boxstyle, **patch_kw)
            else:
                bbox = list(xy_bl) + [width, height]
                if isdiag:
                    center_xy  = vt.bbox_center(bbox)
                    _xy =  np.array(center_xy)
                    newverts_ = [
                        _xy + [         0, -height / 2],
                        _xy + [-width / 2,           0],
                        _xy + [         0,  height / 2],
                        _xy + [ width / 2,           0],
                    ]
                    patch = mpl.patches.Polygon(newverts_, **patch_kw)
                else:
                    patch = mpl.patches.Rectangle(
                        xy_bl, width, height, angle=angle,
                        **patch_kw)
            patch.center = xy
        #if style == 'rounded'
        #elif node_shape in ['roundbox']:
        elif node_shape == 'stack':
            width, height = _get_node_size(graph, node, node_size)
            xy_bl = (xy[0] - width // 2, xy[1] - height // 2)
            patch = pt.cartoon_stacked_rects(xy_bl, width, height, **patch_kw)
            patch.xy = xy
        else:
            raise NotImplementedError('Unknown node_shape=%r' % (node_shape,))

        if True:
            # Add a frame around the node
            framewidth = nattrs.get('framewidth', 0)
            if framewidth > 0:
                framecolor = nattrs.get('framecolor', node_color)
                framecolor = fix_hex_color(framecolor)

                #print('framecolor = %r' % (framecolor,))
                alpha = 1.0
                if framecolor is None:
                    framecolor = pt.BLACK
                    alpha = 0.0
                if framewidth is True:
                    figsize = ut.get_argval('--figsize', type_=list, default=None)
                    if figsize is not None:
                        # HACK
                        graphsize = max(figsize)
                        framewidth = graphsize / 4
                    else:
                        framewidth = 3.0
                lw = framewidth
                frame = pt.make_bbox(bbox, bbox_color=framecolor, ax=ax, lw=lw, alpha=alpha)
                patch_dict['patch_frame_dict'][node] = frame

        #patch_dict[node] = patch
        x, y = xy
        text = str(node)
        if label is not None:
            #text += ': ' + str(label)
            text = label
        if kwargs.get('node_labels', hacknode or not using_image):
            text_args = ((x, y, text), dict(ax=ax, ha='center', va='center',
                                            fontproperties=font_prop))
            text_pseudo_objects.append(text_args)
        patch_dict['node_patch_dict'][node] = (patch)

    def get_default_edge_data(graph, edge):
        data = graph.get_edge_data(*edge)
        if data is None:
            if len(edge) == 3 and edge[2] is not None:
                data = graph.get_edge_data(edge[0], edge[1], int(edge[2]))
            else:
                data = graph.get_edge_data(edge[0], edge[1])
        if data is None:
            data = {}
        return data

    ###
    # Draw Edges
    # NEW WAY OF DRAWING EDGEES
    edge_pos = layout_info['edge'].get('ctrl_pts', None)
    if edge_pos is not None:
        for edge, pts in edge_pos.items():

            data = get_default_edge_data(graph, edge)

            if data.get('style', None) == 'invis':
                continue

            alpha = data.get('alpha', None)

            defaultcolor = pt.BLACK[0:3]
            if alpha is None:
                if data.get('implicit', False):
                    alpha = .5
                    defaultcolor = pt.GREEN[0:3]
                else:
                    alpha = 1.0
            color = data.get('color', defaultcolor)
            if color is None:
                color = defaultcolor
            color = fix_hex_color(color)
            color = color[0:3]

            #layout_info['edge']['ctrl_pts'][edge]
            #layout_info['edge']['start_pt'][edge]

            offset = 0 if graph.is_directed() else 0
            #color = data.get('color', color)[0:3]
            start_point = pts[offset]
            other_points = pts[offset + 1:].tolist()  # [0:3]
            verts = [start_point] + other_points

            MOVETO = mpl.path.Path.MOVETO
            LINETO = mpl.path.Path.LINETO

            if splines in ['line', 'polyline', 'ortho']:
                CODE = LINETO
            elif splines == 'curved':
                #CODE = mpl.path.Path.CURVE3
                # CODE = mpl.path.Path.CURVE3
                CODE = mpl.path.Path.CURVE4
            elif splines == 'spline':
                CODE = mpl.path.Path.CURVE4
            else:
                raise AssertionError('splines = %r' % (splines,))

            astart_code = MOVETO
            astart_code = MOVETO

            verts = [start_point] + other_points
            codes = [astart_code] + [CODE] * len(other_points)

            end_pt = layout_info['edge']['end_pt'][edge]

            # HACK THE ENDPOINTS TO TOUCH THE BOUNDING BOXES
            if end_pt is not None:
                verts += [end_pt]
                codes += [LINETO]

            path = mpl.path.Path(verts, codes)

            figsize = ut.get_argval('--figsize', type_=list, default=None)
            if figsize is not None:
                # HACK
                graphsize = max(figsize)
                lw = graphsize / 8
                width =  graphsize / 15
                width = ut.get_argval('--arrow-width', default=width)
                lw = ut.get_argval('--line-width', default=lw)
                #print('width = %r' % (width,))
            else:
                width = .5
                lw = 1.0
                try:
                    # Compute arrow width using estimated graph size
                    if node_size is not None and node_pos is not None:
                        xys = np.array(ut.take(node_pos, node_pos.keys())).T
                        whs = np.array(ut.take(node_size, node_pos.keys())).T
                        bboxes = vt.bbox_from_xywh(xys, whs, [.5, .5])
                        extents = vt.extent_from_bbox(bboxes)
                        tl_pts = np.array([extents[0], extents[2]]).T
                        br_pts = np.array([extents[1], extents[3]]).T
                        pts = np.vstack([tl_pts, br_pts])
                        extent = vt.get_pointset_extents(pts)
                        graph_w, graph_h = vt.bbox_from_extent(extent)[2:4]
                        graph_dim = np.sqrt(graph_w ** 2 + graph_h ** 2)
                        width = graph_dim * .0005
                except Exception:
                    pass

            if not as_directed and end_pt is not None:
                pass

            lw = data.get('lw', lw)
            linestyle = 'solid'
            linestyle = data.get('linestyle', linestyle)
            hatch = data.get('hatch', '')

            #effects = data.get('stroke', None)
            from matplotlib import patheffects
            path_effects = []

            #effects_css = data.get('path_effects', None)
            #if effects_css is not None:
            #    print('effects_css = %r' % (effects_css,))
            #    # Read data similar to Qt Style Sheets / CSS
            #    from tinycss.css21 import CSS21Parser
            #    css = effects_css
            #    #css = 'stroke{ linewith: 3; foreground: r; } shadow{}'
            #    stylesheet = CSS21Parser().parse_stylesheet(css)
            #    if stylesheet.errors:
            #        print('[pt.nx] css errors')
            #        print(stylesheet.errors)
            #    path_effects = []
            #    for rule in stylesheet.rules:
            #        if rule.selector.as_css() == 'stroke':
            #            selector = patheffects.withStroke
            #        elif rule.selector.as_css() == 'shadow':
            #            selector = patheffects.withSimplePatchShadow
            #        effectkw = {}
            #        for decl in rule.declarations:
            #            if len(decl.value) != 1:
            #                raise AssertionError(
            #                    'I dont know css %r' % (decl,))
            #            strval = decl.value[0].as_css()
            #            key = decl.name
            #            val = ut.smart_cast2(strval)
            #            effectkw[key] = val
            #        effect = selector(**effectkw)
            #        path_effects += [effect]

            ## http://matplotlib.org/1.2.1/examples/api/clippath_demo.html
            if data.get('shadow', None):
                # offset=(2, -2, shadow_rgbFace='g'))
                shadowkw = data.get('shadow', None)
                path_effects += [patheffects.withSimplePatchShadow(**shadowkw)]

            stroke_info = data.get('stroke', None)
            if stroke_info not in [None, False]:
                if stroke_info is True:
                    strokekw = {}
                elif isinstance(stroke_info, dict):
                    strokekw = stroke_info.copy()
                else:
                    #linewidth=3, foreground='r'
                    assert False
                if strokekw is not None:
                    # Hack to increase lw
                    strokekw['linewidth'] = lw + strokekw.get('linewidth', 3)
                    path_effects += [patheffects.withStroke(**strokekw)]

            #for vert, code in path.iter_segments():
            #    print('code = %r' % (code,))
            #    print('vert = %r' % (vert,))
            #    if code == MOVETO:
            #        pass

            #for verts, code in path.cleaned().iter_segments():
            #    print('code = %r' % (code,))
            #    print('verts = %r' % (verts,))
            #    pass

            patch = mpl.patches.PathPatch(path, facecolor='none', lw=lw,
                                          path_effects=path_effects,
                                          edgecolor=color,
                                          #facecolor=color,
                                          linestyle=linestyle,
                                          alpha=alpha,
                                          joinstyle='bevel',
                                          hatch=hatch)

            if as_directed:
                if end_pt is not None:
                    dxy = (np.array(end_pt) - other_points[-1])
                    dxy = (dxy / np.sqrt(np.sum(dxy ** 2))) * .1
                    dx, dy = dxy
                    rx, ry = end_pt[0], end_pt[1]
                    patch1 = mpl.patches.FancyArrow(rx, ry, dx, dy, width=width,
                                                    length_includes_head=True,
                                                    color=color,
                                                    head_starts_at_zero=False)
                else:
                    dxy = (np.array(other_points[-1]) - other_points[-2])
                    dxy = (dxy / np.sqrt(np.sum(dxy ** 2))) * .1
                    dx, dy = dxy
                    rx, ry = other_points[-1][0], other_points[-1][1]
                    patch1 = mpl.patches.FancyArrow(rx, ry, dx, dy, width=width,
                                                    length_includes_head=True,
                                                    color=color,
                                                    head_starts_at_zero=True)
                #ax.add_patch(patch1)
                patch_dict['arrow_patch_list'][edge] = (patch1)

            taillabel = layout_info['edge']['taillabel'][edge]
            #ha = 'left'
            #ha = 'right'
            ha = 'center'
            va = 'center'
            labelcolor = color  # TODO allow for different colors

            labelcolor = data.get('labelcolor', color)
            labelcolor = fix_hex_color(labelcolor)
            labelcolor = labelcolor[0:3]

            if taillabel:
                taillabel_pos = layout_info['edge']['tail_lp'][edge]
                ax.annotate(taillabel, xy=taillabel_pos, xycoords='data',
                            color=labelcolor,
                            va=va, ha=ha, fontproperties=font_prop)
            headlabel = layout_info['edge']['headlabel'][edge]
            if headlabel:
                headlabel_pos = layout_info['edge']['head_lp'][edge]
                ax.annotate(headlabel, xy=headlabel_pos, xycoords='data',
                            color=labelcolor,
                            va=va, ha=ha, fontproperties=font_prop)
            label = layout_info['edge']['label'][edge]
            if label:
                label_pos = layout_info['edge']['lp'][edge]
                ax.annotate(label, xy=label_pos, xycoords='data',
                            color=labelcolor,
                            va=va, ha=ha, fontproperties=font_prop)
            patch_dict['edge_patch_dict'][edge] = patch
            #ax.add_patch(patch)

    if verbose:
        print('Adding %r node patches ' % (len(patch_dict['node_patch_dict'],)))
        print('Adding %r edge patches ' % (len(patch_dict['edge_patch_dict'],)))

    for frame in patch_dict['patch_frame_dict'].values():
        ax.add_patch(frame)

    for patch1 in patch_dict['arrow_patch_list'].values():
        ax.add_patch(patch1)

    use_collections = False
    if use_collections:
        edge_coll = mpl.collections.PatchCollection(patch_dict['edge_patch_dict'].values())
        node_coll = mpl.collections.PatchCollection(patch_dict['node_patch_dict'].values())
        #coll.set_facecolor(fcolor)
        #coll.set_alpha(alpha)
        #coll.set_linewidth(lw)
        #coll.set_edgecolor(color)
        #coll.set_transform(ax.transData)
        ax.add_collection(node_coll)
        ax.add_collection(edge_coll)
    else:
        for patch in patch_dict['node_patch_dict'].values():
            if isinstance(patch, mpl.collections.PatchCollection):
                ax.add_collection(patch)
            else:
                ax.add_patch(patch)
        if not hacknoedge:
            for patch in patch_dict['edge_patch_dict'].values():
                ax.add_patch(patch)

    for text_args in text_pseudo_objects:
        pt.ax_absolute_text(*text_args[0], **text_args[1])
    return patch_dict
Exemplo n.º 40
0
    txt.arrow_patch.set_path_effects([
        PathEffects.Stroke(linewidth=5, foreground="w"),
        PathEffects.Normal()])

    ax1.grid(True, linestyle="-")

    pe = [PathEffects.withStroke(linewidth=3,
                                 foreground="w")]
    for l in ax1.get_xgridlines() + ax1.get_ygridlines():
        l.set_path_effects(pe)

    ax2 = plt.subplot(132)
    arr = np.arange(25).reshape((5,5))
    ax2.imshow(arr)
    cntr = ax2.contour(arr, colors="k")

    plt.setp(cntr.collections, path_effects=[
        PathEffects.withStroke(linewidth=3, foreground="w")])

    clbls = ax2.clabel(cntr, fmt="%2.0f", use_clabeltext=True)
    plt.setp(clbls, path_effects=[
        PathEffects.withStroke(linewidth=3, foreground="w")])

    # shadow as a path effect
    ax3 = plt.subplot(133)
    p1, = ax3.plot([0, 1], [0, 1])
    leg = ax3.legend([p1], ["Line 1"], fancybox=True, loc=2)
    leg.legendPatch.set_path_effects([PathEffects.withSimplePatchShadow()])

    plt.show()
Exemplo n.º 41
0
# now plot the same data with our offset transform;
# use the zorder to make sure we are below the line
ax.plot(x, y, lw=3, color='gray',
  transform=shadow_transform,
  zorder=0.5*line.get_zorder())



t = ax.text(0.02, 0.5, 'Hatch shadow', fontsize=75, weight=1000, va='center')
t.set_path_effects([path_effects.PathPatchEffect(offset=(4, -4), hatch='xxxx',
                                                  facecolor='gray'),
                    path_effects.PathPatchEffect(edgecolor='white', linewidth=1.1,
                                                 facecolor='black')])
plt.show()

import matplotlib.pyplot as plt
import matplotlib.patheffects as path_effects

fig=plt.figure()
ax = fig.add_axes([0,0,1,1])
line = ax.plot([0,2,3])
line[0].set_path_effects([path_effects.Stroke(linewidth=3, foreground='black'),
                       path_effects.Normal()])

text = plt.text(0.5, 0.5, 'Hello DIR effects world!',
                path_effects=[path_effects.withSimplePatchShadow()])

plt.plot([0, 3, 2, 5], linewidth=5, color='blue',
         path_effects=[path_effects.SimpleLineShadow(),
                       path_effects.Normal()])
plt.show()
def plot3d_gen(changes, csv_data, log_data, folder, se, rot=0, flag3D=0, count=''):
    xdic = dict()
    ydic = dict()
    zdic = dict()
    for k in sorted(csv_data):
        t_x = csv_data[k][changes[0]]
        t_y = csv_data[k][changes[1]]

        try:
            xdic[t_x].append(t_x)
        except KeyError:
            xdic[t_x] = [t_x]
        try:
            ydic[t_y].append(t_y)
        except KeyError:
            ydic[t_y] = [t_y]

        for t, data in log_data[k].items():
            try:
                zdic[t][(t_x, t_y)] = data
            except KeyError:
                zdic[t] = {(t_x, t_y): data}
    x = [xdic[i] for i in sorted(xdic)]
    y = [ydic[i] for i in sorted(ydic)]
    x = np.array(x).T
    y = np.array(y)
    z_ = dict()
    z = dict()
    for ty in zdic:
        z_[ty] = []
        for k in sorted(zdic[ty]):
            z_[ty].append(zdic[ty][k][0])
        z[ty] = np.array(z_[ty])
        z[ty] = z[ty].reshape((x.shape[1], x.shape[0])).T

    for k in sorted(z):
        fig = plt.figure(figsize=(16, 9))
        if flag3D == 1:
            ax = fig.add_subplot(211, projection='3d')
            ax.plot_surface(x, y, z[k], rstride=1, cstride=1, cmap=cm.get_cmap('bwr'))
            if se != 0:
                ax.set_zlabel("Spearman's rho")
                plt.gca().zaxis.set_major_formatter(FuncFormatter(lambda x, pos=0: "{0:.3f} ".format(x)))
            else:
                ax.set_zlabel('Accuracy TOP1')
                plt.gca().zaxis.set_major_formatter(FuncFormatter(plot_percent))
        else:
            ax = fig.add_subplot(111)
            if se != 0:
                cax = ax.imshow(z[k], cmap=cm.jet, interpolation='None', origin='lower',
                                extent=[x[0][0], x[0][-1], y[0][0], y[-1][0]], aspect='auto', vmin=-1, vmax=1)
                bar = fig.colorbar(cax, format='%.3f')
                bar.set_label("Spearman's rho")
            else:
                cax = ax.imshow(z[k], cmap=cm.jet, interpolation='None', origin='lower',
                                extent=[x[0][0], x[0][-1], y[0][0], y[-1][0]], aspect='auto', vmin=0, vmax=100)
                bar = fig.colorbar(cax, format='%.1f%%')
                bar.set_label('Accuracy TOP1')

            a1 = len(z[k])
            a2 = len(z[k][0])
            for i in xrange(a1):
                for j in xrange(a2):
                    ax.text(float(j+0.5)/a2, float(i+0.5)/a1, '{0:.3}'.format(z[k][i][j]),
                            size='medium', ha='center', va='center', transform=ax.transAxes,
                            path_effects=[patheffects.withSimplePatchShadow(shadow_rgbFace=(1, 1, 1))])

        plt.title(k)
        plt.xlabel(names[changes[0]])
        plt.ylabel(names[changes[1]])

        plt.gca().yaxis.set_major_formatter(FuncFormatter(lambda x, pos=0: "{0:.1E}".format(x)))
        plt.gca().xaxis.set_major_formatter(FuncFormatter(lambda x, pos=0: "{0:.1E}".format(x)))
        add_table(csv_data, changes)


        if rot == 1 and flag3D == 1 and count == '':
            create_output_folder('{0}/{1}'.format(folder, k))
            for ii in xrange(0, 360, 20):
                ax.view_init(elev=30., azim=ii)
                plt.savefig(folder+'/'+k+'/{}'.format(ii)+names[changes[0]]+'-'+names[changes[1]]+'_'+k+'.png',
                            bbox_inches='tight', transparent=False)
        else:
            plt.savefig(folder+'/'+count+names[changes[0]]+'-'+names[changes[1]]+'_'+k, bbox_inches='tight',
                        transparent=False)
        plt.close()
Exemplo n.º 43
0
def create_plots(robot, obstacles, dist_est, gt_grid, use3d=False):
    fig = plt.figure(figsize=(4 * 2 + 0.5, 4 * 1))
    # fig = plt.figure(figsize=(3*2+0.5, 3 * 1)) # temp
    plt.rcParams.update({
        "text.usetex": True,
        "font.family": "sans-serif",
        "font.sans-serif": ["Helvetica"]
    })
    gs = fig.add_gridspec(1, 3)
    ax = fig.add_subplot(gs[0, 0])
    ax.set_xlim(-8, 8)
    ax.set_ylim(-8, 8)
    ax.set_aspect('equal', adjustable='box')
    ax.set_xticks([-4, 0, 4])
    ax.set_yticks([-4, 0, 4])
    ax.set_xticklabels(['', '', ''])
    ax.set_yticklabels(['', '', ''])
    from matplotlib.cm import get_cmap
    cmap = get_cmap('RdBu_r')
    for obs in obstacles:
        if obs[0] == 'circle':
            ax.add_patch(
                Circle(obs[1],
                       obs[2],
                       path_effects=[path_effects.withSimplePatchShadow()
                                     ]))  #, color=cmaps[1](0.5)))
        elif obs[0] == 'rect':
            ax.add_patch(
                Rectangle((obs[1][0] - float(obs[2][0]) / 2,
                           obs[1][1] - float(obs[2][1]) / 2),
                          obs[2][0],
                          obs[2][1],
                          path_effects=[path_effects.withSimplePatchShadow()],
                          color=cmap(0.8)))  #, color=cmaps[0](0.5)))
            print((obs[1][0] - obs[2][0] / 2, obs[1][1] - obs[2][1] / 2))

    # Placeholder of the robot plot
    trans = ax.transData.transform
    lw = ((trans((1, robot.link_width)) - trans(
        (0, 0))) * 72 / ax.figure.dpi)[1]
    # q = torch.FloatTensor([-np.pi/8, -np.pi/4])#-np.pi/4])
    q = torch.ones(
        robot.dof) * np.pi / 6 * (torch.randint(0, 3, [robot.dof]) - 1)
    points = robot.fkine(q)[0]
    points = torch.cat([torch.zeros(1, 2), points], dim=0)

    link_plot, = ax.plot(
        points[:, 0],
        points[:, 1],
        color='orange',
        alpha=1,
        lw=lw,
        solid_capstyle='round',
        path_effects=[path_effects.SimpleLineShadow(),
                      path_effects.Normal()])
    joint_plot, = ax.plot(points[:-1, 0],
                          points[:-1, 1],
                          'o',
                          color='tab:red',
                          markersize=lw)
    eff_plot, = ax.plot(points[-1:, 0],
                        points[-1:, 1],
                        'o',
                        color='black',
                        markersize=lw)

    # ax.axis('off')
    # return None, None

    size = [400, 400]
    yy, xx = torch.meshgrid(torch.linspace(-np.pi, np.pi, size[0]),
                            torch.linspace(-np.pi, np.pi, size[1]))
    grid_points = torch.stack([xx, yy], axis=2).reshape((-1, 2))
    est_grid = dist_est(grid_points).reshape(size)
    gt_grid = gt_grid.reshape(size)
    # gt_grid = torch.from_numpy(ndimage.gaussian_filter(gt_grid, 15))
    # est_grid = torch.from_numpy(ndimage.gaussian_filter(est_grid, 3))

    c_axes = []
    with sns.axes_style('ticks'):
        for i, d in enumerate([gt_grid, est_grid], 1):
            # for i, d in enumerate([est_grid], 1): #TEMP
            # for i, d in enumerate([gt_grid], 1): # for clustering
            c_ax = fig.add_subplot(gs[0, i],
                                   projection='3d' if use3d else None)

            if use3d:
                from matplotlib import cm
                # c_ax.plot_wireframe(xx.numpy(), yy.numpy(), d.numpy(), alpha=1, #vmin=-d.max(), vmax=d.max(),
                #     rstride=10, cstride=10, linewidth=0.1, antialiased=False, edgecolor='black') # , 'RdBu_r'
                surf = c_ax.plot_surface(
                    xx.numpy(),
                    yy.numpy(),
                    d.numpy(),
                    alpha=1,  #vmin=-d.max(), vmax=d.max(), 
                    rstride=10,
                    cstride=10,
                    linewidth=0.1,
                    antialiased=True,
                    cmap='Greys_r',
                    edgecolor='black')  # , 'RdBu_r' cmap='Greys_r',
                # c_ax.plot_wireframe(xx.numpy(), yy.numpy(), d.numpy(), rstride=5, cstride=5, color='black')
                # surf._facecolors2d=surf._facecolor3d
                # surf._facecolors3d = 'face'
                # surf.set_edgecolor('none')
                # c_ax.contour3D(xx, yy, d, 50, linewidths=1, alpha=1)
                # c_ax.plot_surface(xx[::199, ::199], yy[::199, ::199].numpy(), np.zeros_like(yy[::199, ::199].numpy()), alpha=0.3) #, vmin=-torch.abs(d).max(), vmax=torch.abs(d).max()) #cmap='RdBu_r',
            else:
                color_mesh = c_ax.pcolormesh(
                    xx,
                    yy,
                    d,
                    cmap='RdBu_r',
                    vmin=-torch.abs(d).max(),
                    vmax=torch.abs(
                        d).max())  #, alpha=0.5) # binary shading='gouraud',
                c_ax.contour(xx, yy, d, levels=[0], linewidths=1,
                             alpha=0.4)  #-1.5, -0.75, 0, 0.3

            # ============arrows and configuration point========
            sparse_stride = 20
            sparse_score = d[5:-5:sparse_stride, 5:-5:sparse_stride]
            score_grad_x = -ndimage.sobel(sparse_score.numpy(), axis=1)
            score_grad_y = -ndimage.sobel(sparse_score.numpy(), axis=0)
            if use3d:
                score_grad = np.stack([
                    score_grad_x, score_grad_y,
                    -(score_grad_x**2 + score_grad_y**2)
                ],
                                      axis=2)
                score_grad /= np.linalg.norm(score_grad, axis=2, keepdims=True)
                score_grad_x, score_grad_y, score_grad_z = [
                    score_grad[:, :, dim] for dim in range(3)
                ]
            else:
                score_grad = np.stack([score_grad_x, score_grad_y], axis=2)
                score_grad /= np.linalg.norm(score_grad, axis=2,
                                             keepdims=True) / 10
                score_grad_x, score_grad_y = score_grad[:, :,
                                                        0], score_grad[:, :, 1]
            if use3d:
                # c_ax.quiver(xx[5:-5:sparse_stride, 5:-5:sparse_stride], yy[5:-5:sparse_stride, 5:-5:sparse_stride], sparse_score+0.05,
                #     score_grad_x, score_grad_y, score_grad_z,
                #     color='red') #width=1e-2, headwidth=2, headlength=5
                c_ax.set_aspect('auto', adjustable='box')
                nearest_gridpoint = np.argmin(
                    np.square(grid_points - q).sum(axis=1))
                print(
                    xx.reshape(-1)[nearest_gridpoint],
                    yy.reshape(-1)[nearest_gridpoint],
                )
                q_score = d.reshape(-1, 1)[nearest_gridpoint]
                # c_ax.scatter([q[0].item()], [q[1].item()], q_score+0.5, marker='o', s=40, c='orange', edgecolors='black', zorder=100)
                circle_patch = Circle([q[0].item(), q[1].item()],
                                      np.pi / 20,
                                      ec='k',
                                      fc="orange",
                                      alpha=1)
                c_ax.add_patch(circle_patch)
                from mpl_toolkits.mplot3d import art3d
                art3d.pathpatch_2d_to_3d(circle_patch, z=q_score, zdir="z")
                c_ax.view_init(60, 225)
                c_ax.set_facecolor('white')
                c_ax.w_xaxis.set_pane_color(ax.get_facecolor())
                c_ax.w_yaxis.set_pane_color(ax.get_facecolor())
                c_ax.w_zaxis.set_pane_color(ax.get_facecolor())
            else:
                c_ax.quiver(xx[5:-5:sparse_stride, 5:-5:sparse_stride],
                            yy[5:-5:sparse_stride, 5:-5:sparse_stride],
                            score_grad_x,
                            score_grad_y,
                            color='red',
                            width=1e-2,
                            headwidth=2,
                            headlength=5,
                            pivot='mid')
                c_ax.set_aspect('equal', adjustable='box')
                c_ax.scatter([q[0].item()], [q[1].item()],
                             marker='o',
                             s=40,
                             c='orange',
                             edgecolors='black')
            # fig.colorbar(color_mesh, ax=c_ax)

            # c_ax.axis('equal')
            c_ax.set_xlim(-np.pi, np.pi)
            c_ax.set_ylim(-np.pi, np.pi)
            c_ax.set_xticks([-np.pi, 0, np.pi])
            c_ax.set_xticklabels(['$-\pi$', '$0$', '$\pi$'])
            c_ax.set_yticks([-np.pi, 0, np.pi])
            c_ax.set_yticklabels(['$-\pi$', '$0$', '$\pi$'])
            c_axes.append(c_ax)
            c_ax.grid(False)

    return est_grid.reshape(-1), c_axes
Exemplo n.º 44
0
def create_plots(robot, obstacles, dist_est, checker):
    from matplotlib.cm import get_cmap
    from matplotlib.patches import Rectangle, FancyBboxPatch, Circle
    import seaborn as sns
    sns.set()
    import matplotlib.patheffects as path_effects
    cmaps = [get_cmap('Reds'), get_cmap('Blues')]
    plt.rcParams.update({
        "text.usetex": True,
        "font.family": "sans-serif",
        "font.sans-serif": ["Helvetica"]})

    if robot.dof > 2:
        fig = plt.figure(figsize=(3, 3))
        ax = fig.add_subplot(111) #, projection='3d'
    elif robot.dof == 2:
        # Show C-space at the same time
        num_class = getattr(checker, 'num_class', 1)
        fig = plt.figure(figsize=(3*(num_class + 1), 3 * num_class))
        gs = fig.add_gridspec(num_class, num_class+1)
        ax = fig.add_subplot(gs[:, :-1]) #sum([list(range(r*(num_class+1)+1, (r+1)*(num_class+1))) for r in range(num_class)], [])) #, projection='3d'
        cfg_path_plots = []

        size = [400, 400]
        yy, xx = torch.meshgrid(torch.linspace(-np.pi, np.pi, size[0]), torch.linspace(-np.pi, np.pi, size[1]))
        grid_points = torch.stack([xx, yy], axis=2).reshape((-1, 2))
        score_spline = dist_est(grid_points).reshape(size+[num_class])
        c_axes = []
        with sns.axes_style('ticks'):
            for cat in range(num_class):
                c_ax = fig.add_subplot(gs[cat, -1])

                # score_diffco = checker.score(grid_points).reshape(size)
                # score = (torch.sign(score_diffco)+1)/2*(score_spline-score_spline.min()) + (-torch.sign(score_diffco)+1)/2*(score_spline-score_spline.max())
                score = score_spline[:, :, cat]
                color_mesh = c_ax.pcolormesh(xx, yy, score, cmap=cmaps[cat], vmin=-torch.abs(score).max(), vmax=torch.abs(score).max())
                c_support_points = checker.support_points[checker.gains[:, cat] != 0]
                c_ax.scatter(c_support_points[:, 0], c_support_points[:, 1], marker='.', c='black', s=1.5)
                contour_plot = c_ax.contour(xx, yy, score, levels=[-18, -10, 0, 3.5 if cat==0 else 2.5], linewidths=1, alpha=0.4, colors='k') #-1.5, -0.75, 0, 0.3
                ax.clabel(contour_plot, inline=1, fmt='%.1f', fontsize=8)
                # fig.colorbar(color_mesh, ax=c_ax)
                # sparse_score = score[5:-5:10, 5:-5:10]
                # score_grad_x = -ndimage.sobel(sparse_score.numpy(), axis=1)
                # score_grad_y = -ndimage.sobel(sparse_score.numpy(), axis=0)
                # score_grad = np.stack([score_grad_x, score_grad_y], axis=2)
                # score_grad /= np.linalg.norm(score_grad, axis=2, keepdims=True)
                # score_grad_x, score_grad_y = score_grad[:, :, 0], score_grad[:, :, 1]
                # c_ax.quiver(xx[5:-5:10, 5:-5:10], yy[5:-5:10, 5:-5:10], score_grad_x, score_grad_y, color='red', width=2e-3, headwidth=2, headlength=5)
                # cfg_point = Circle(collision_cfgs[0], radius=0.05, facecolor='orange', edgecolor='black', path_effects=[path_effects.withSimplePatchShadow()])
                # c_ax.add_patch(cfg_point)
                cfg_path, = c_ax.plot([], [], '-o', c='orange', markersize=3)
                cfg_path_plots.append(cfg_path)

                c_ax.set_aspect('equal', adjustable='box')
                # c_ax.axis('equal')
                c_ax.set_xlim(-np.pi, np.pi)
                c_ax.set_ylim(-np.pi, np.pi)
                c_ax.set_xticks([-np.pi, 0, np.pi])
                c_ax.set_xticklabels(['$-\pi$', '$0$', '$\pi$'], fontsize=18)
                c_ax.set_yticks([-np.pi, 0, np.pi])
                c_ax.set_yticklabels(['$-\pi$', '$0$', '$\pi$'], fontsize=18)
                # c_ax.tick_params(direction='in', reset=True)
                # c_ax.tick_params(which='both', direction='out', length=6, width=2, colors='r',
                #    grid_color='r', grid_alpha=0.5)
            # c_ax.set_ticks('')

    # Plot ostacles
    # ax.axis('tight')
    ax.set_xlim(-8, 8)
    ax.set_ylim(-8, 8)
    ax.set_aspect('equal', adjustable='box')
    ax.set_xticks([-4, 0, 4])
    ax.set_yticks([-4, 0, 4])
    ax.tick_params(labelsize=18)
    for obs in obstacles:
        cat = obs[3] if len(obs) >= 4 else 1
        print('{}, cat {}, {}'.format(obs[0], cat, obs))
        if obs[0] == 'circle':
            ax.add_patch(Circle(obs[1], obs[2], path_effects=[path_effects.withSimplePatchShadow()], color=cmaps[cat](0.5)))
        elif obs[0] == 'rect':
            ax.add_patch(Rectangle((obs[1][0]-float(obs[2][0])/2, obs[1][1]-float(obs[2][1])/2), obs[2][0], obs[2][1], path_effects=[path_effects.withSimplePatchShadow()], 
            color=cmaps[cat](0.5)))
            # print((obs[1][0]-obs[2][0]/2, obs[1][1]-obs[2][1]/2))
    
    # Placeholder of the robot plot
    trans = ax.transData.transform
    lw = ((trans((1, robot.link_width))-trans((0,0)))*72/ax.figure.dpi)[1]
    link_plot, = ax.plot([], [], color='silver', alpha=0.1, lw=lw, solid_capstyle='round', path_effects=[path_effects.SimpleLineShadow(), path_effects.Normal()])
    joint_plot, = ax.plot([], [], 'o', color='tab:red', markersize=lw)
    eff_plot, = ax.plot([], [], 'o', color='black', markersize=lw)

    if robot.dof > 2:
        return fig, ax, link_plot, joint_plot, eff_plot
    elif robot.dof == 2:
        return fig, ax, link_plot, joint_plot, eff_plot, cfg_path_plots
Exemplo n.º 45
0
from matplotlib import patheffects
import numpy as np

data = np.random.randn(70)
print data

fontsize = 18
plt.plot(data)

title = "This is figure title"
x_label = "This is x axis label"
y_label = "This is y axis label"

title_text_obj = plt.title(title, fontsize=fontsize, verticalalignment='bottom')

title_text_obj.set_path_effects([patheffects.withSimplePatchShadow()])

# offset_xy -- set the 'angle' of the shadow
# shadow_rgbFace -- set the color of the shadow
# patch_alpha -- setup the transparaency of the shadow

offset_xy = (1, -1)
rgbRed = (1.0,0.0,0.0)
alpha = 0.8

# customize shadow properties
pe = patheffects.withSimplePatchShadow(offset_xy = offset_xy,
                                       shadow_rgbFace = rgbRed,
                                       patch_alpha = alpha)
# apply them to the xaxis and yaxis labels
xlabel_obj = plt.xlabel(x_label, fontsize=fontsize, alpha=0.5)