Exemplo n.º 1
0
def main():
    """
    Run an mpi job on a grid resource. To run in local mode please install mpi.
    """

    # mig.debug_mode_on() # uncomment to enable debug print outs
    # mig.local_mode_on() # uncomment to enable local mode execution

    mig.test_connection()  # Check if we can connect to the MiG server
    mpi_file = "example.c"  # mpi program source file

    # The shell command to execute on the grid resource using 4 processes. We need to it compile on the resource first.
    cmds = ["mpicc -O2 example.c -o example", "$MPI_WRAP mpirun -np 4 ./example Hello"]

    # specify that we need require MPI as a runtime env and use the DIKU vgrid cluster
    specifications = {"RUNTIMEENVIRONMENT": "MPI-WRAP-2.0", "VGRID": "DIKU"}
    # Create and submit the grid job
    job_id = mig.create_job(cmds, input_files=mpi_file, resource_specifications=specifications)
    print "\nJob (ID : %s) submitted. \n\n" % job_id

    # Wait for the job to finish while monitoring the status
    polling_frequency = 10  # seconds
    while not mig.job_finished(job_id):
        job_info = mig.job_info(job_id)  # get an info dictionary
        print "Grid job : %(ID)s \t %(STATUS)s " % job_info
        time.sleep(polling_frequency)  # wait a while before polling again

    print mig.job_output(job_id)
Exemplo n.º 2
0
def main():
    """
    Run an mpi job on a grid resource. To run in local mode please install mpi.
    """

    # mig.debug_mode_on() # uncomment to enable debug print outs
    # mig.local_mode_on() # uncomment to enable local mode execution
     
    mig.test_connection() # Check if we can connect to the MiG server
    mpi_file = "example.c" # mpi program source file
    
    # The shell command to execute on the grid resource using 4 processes. We need to it compile on the resource first.
    cmds = ["mpicc -O2 example.c -o example", "$MPI_WRAP mpirun -np 4 ./example Hello"]

    # specify that we need require MPI as a runtime env and use the DIKU vgrid cluster
    specifications = {"RUNTIMEENVIRONMENT":"MPI-WRAP-2.0", "VGRID":"DIKU"}
    # Create and submit the grid job
    job_id = mig.create_job(cmds, input_files=mpi_file, resource_specifications=specifications)
    print "\nJob (ID : %s) submitted. \n\n" % job_id

    # Wait for the job to finish while monitoring the status
    polling_frequency = 10 # seconds
    while not mig.job_finished(job_id):
        job_info = mig.job_info(job_id) # get an info dictionary
        print 'Grid job : %(ID)s \t %(STATUS)s ' % job_info
        time.sleep(polling_frequency) # wait a while before polling again

    print mig.job_output(job_id)
Exemplo n.º 3
0
def main():
    """
    Run an pvm job on a grid resource. To run in local mode please install pvm
    """

    # mig.debug_mode_on() # uncomment to enable debug print outs
    # mig.local_mode_on() # uncomment to enable local mode execution
    
    
    mig.test_connection() # Check if we can connect to the MiG server
    

    proc = subprocess.Popen("gcc example.c -o pvm_example -lpvm3 -lgpvm3", shell= True, stdout=subprocess.PIPE,stderr=subprocess.PIPE)
    out, err = proc.communicate()
    pvm_program = "pvm_example" # The PVM executable
    cmd = "$PVM_WRAP ./pvm_example 4 Hello" # The shell command to execute on the grid resource

    # specify to the job that we want PVM as RTE and we want to use the DIKU VGRID
    specifications = {"RUNTIMEENVIRONMENT":"PVM-WRAP-1.0", "VGRID":"DIKU"}
    
    # Create and submit the grid job
    job_id = mig.create_job(cmd, executables=pvm_program, resource_specifications=specifications)
    print "\nJob (ID : %s) submitted. \n\n" % job_id

    # Wait for the job to finish while monitoring the status
    polling_frequency = 10 # seconds
    while not mig.job_finished(job_id):
        job_info = mig.job_info(job_id) # get an info dictionary
        print 'Grid job : %(ID)s \t %(STATUS)s ' % job_info
        time.sleep(polling_frequency) # wait a while before polling again

    print mig.job_output(job_id)
Exemplo n.º 4
0
def main():
    """
    Executes the bash file test_executable.sh in a grid job. 
    Afterwards, the result is downloaded and printed to screen.
    """

    # mig.debug_mode_on() # uncomment to enable debug print outs
    # mig.local_mode_on() # uncomment to enable local mode execution

    mig.test_connection()  # Check if we can connect to the MiG server

    # The program we want to execute on the grid
    executable_file = "test_executable.sh"
    # The shell command to execute on the grid resource
    cmd = "./test_executable.sh > out.txt"
    # Create and submit the grid job
    job_id = mig.create_job(cmd,
                            output_files=["out.txt"],
                            executables=[executable_file])
    print "\nJob (ID : %s) submitted. \n\n" % job_id

    # Wait for the job to finish while monitoring the status
    polling_frequency = 10  # seconds
    while not mig.job_finished(job_id):
        job_info = mig.job_info(job_id)  # get an info dictionary
        print 'Grid job : %(ID)s \t %(STATUS)s ' % job_info
        time.sleep(polling_frequency)  # wait a while before polling again

    # Download the result file and print
    output_file = mig.get_file("out.txt")
    f = open(output_file)
    print "Output file (%s) contains :\n %s \n\n" % (output_file,
                                                     str(f.readlines()))
    f.close()

    # Clean up
    os.remove(output_file)  # remove locally
    mig.remove(output_file)  # remove on the MiG server
    print "Output (" + output_file + ") deleted."
Exemplo n.º 5
0
def update_solver_data(name, status="", state=""):
    """
    Write the current status to the status file. 
    """
    
    job_data_dir = os.path.join(config.jobdata_directory, name)
    solver_data_path = os.path.join(job_data_dir, config.solver_data_file)
    data_file = open(solver_data_path)
    
    fcntl.flock(data_file, fcntl.LOCK_EX)  # lock the file while updating
    
    solver_data = cPickle.load(data_file)
    data_file.close()
    
    retries = 3
    if solver_data.has_key("grid_enabled") and not solver_data["grid_enabled"]:
        mig.local_mode_on()
    for job in solver_data["timesteps"][-1]["jobs"]: # Go through the jobs in the current time step (indexed last: -1)
        # there seems to be incidents where MiG does not recognize the job id even though it should. 
        # in such a case we let it pass unless the error is consistent across 3 retries. 
        if not retries:  
            break
        
        try :
        
            job_info = mig.job_info(job["job_id"])

        except migerror.MigUnknownJobIdError, e:
            log(str(e))
            retries -= 1
            continue
        
        for (key, value) in job_info.items():
            job_info.pop(key)
            job_info[key.lower()] = value
        
        
        job.update(job_info)
Exemplo n.º 6
0
def main():
    """
    Execute a simple grid job and print the output.
    """
    
    # mig.debug_mode_on() # uncomment to enable debug print outs
    # mig.local_mode_on() # uncomment to enable local mode execution

    # Check if we can connect to the MiG server
    mig.test_connection()

    # Create and submit the grid job
    job_id = mig.create_job("echo HELLO GRID")
    print "\nJob (ID : %s) submitted. \n\n" % job_id

    # Wait for the job to finish while monitoring the status
    polling_frequency = 10 # seconds
    while not mig.job_finished(job_id):
        job_info = mig.job_info(job_id) # get an info dictionary
        print 'Grid job : %(ID)s \t %(STATUS)s ' % job_info
        time.sleep(polling_frequency) # wait a while before polling again
    
    print mig.job_output(job_id)
Exemplo n.º 7
0
def main():
    """
    Execute a simple grid job and print the output.
    """

    # mig.debug_mode_on() # uncomment to enable debug print outs
    # mig.local_mode_on() # uncomment to enable local mode execution

    # Check if we can connect to the MiG server
    mig.test_connection()

    # Create and submit the grid job
    job_id = mig.create_job("echo HELLO GRID")
    print "\nJob (ID : %s) submitted. \n\n" % job_id

    # Wait for the job to finish while monitoring the status
    polling_frequency = 10  # seconds
    while not mig.job_finished(job_id):
        job_info = mig.job_info(job_id)  # get an info dictionary
        print 'Grid job : %(ID)s \t %(STATUS)s ' % job_info
        time.sleep(polling_frequency)  # wait a while before polling again

    print mig.job_output(job_id)
Exemplo n.º 8
0
def main():
    """
    Executes the bash file test_executable.sh in a grid job. 
    Afterwards, the result is downloaded and printed to screen.
    """

    # mig.debug_mode_on() # uncomment to enable debug print outs
    # mig.local_mode_on() # uncomment to enable local mode execution
    
    mig.test_connection() # Check if we can connect to the MiG server

    # The program we want to execute on the grid
    executable_file = "test_executable.sh"
    # The shell command to execute on the grid resource
    cmd = "./test_executable.sh > out.txt"
    # Create and submit the grid job
    job_id = mig.create_job(cmd, output_files=["out.txt"], executables=[executable_file])
    print "\nJob (ID : %s) submitted. \n\n" % job_id
    
    # Wait for the job to finish while monitoring the status
    polling_frequency = 10 # seconds
    while not mig.job_finished(job_id):
        job_info = mig.job_info(job_id) # get an info dictionary
        print 'Grid job : %(ID)s \t %(STATUS)s ' % job_info
        time.sleep(polling_frequency) # wait a while before polling again

    # Download the result file and print
    output_file = mig.get_file("out.txt")
    f = open(output_file)
    print "Output file (%s) contains :\n %s \n\n" % (output_file, str(f.readlines()))
    f.close()

    # Clean up
    os.remove(output_file) # remove locally
    mig.remove(output_file) # remove on the MiG server
    print "Output ("+output_file+") deleted."
Exemplo n.º 9
0
def main():
    """
    Run five grid jobs executing the bash file parameter_sweet_script.sh with different input arguments.
    When a job has finished executing, the corresponding output file is downloaded.
    Finally, the output contents are printed.
    """

    # mig.debug_mode_on() # uncomment to enable debug print outs
    # mig.local_mode_on() # uncomment to enable local mode execution
    mig.test_connection()  # Check if we can connect to the MiG server

    input_values = range(5)  # Input parameters
    # The program we want to execute on grid resources
    executable_file = "parameter_sweep_script.sh"

    print "\nStarting grid jobs:\n"

    jobs = []
    for i in input_values:  # Start a job for each input
        output_file = "output%s.txt" % i  # The output file name
        # The shell command to start the script on the resource
        cmd = "./parameter_sweep_script.sh %i > %s" % (i, output_file)
        # Run the job resources on any vgrid
        resource_requirements = {"VGRID": "ANY"}
        # Start the grid job
        job_id = mig.create_job(cmd,
                                output_files=[output_file],
                                executables=[executable_file],
                                resource_specifications=resource_requirements)
        jobs.append((job_id, output_file))
        print "Job (ID : %s) submitted." % job_id
    print "\n\n"

    print "Monitor job status...\n"  # Now we wait for results

    finished_jobs = []
    while len(finished_jobs) < len(jobs):
        for id, output_file in jobs:
            job_info = mig.job_info(id)  # get an info dictionary
            print 'Grid job : %(ID)s \t %(STATUS)s ' % job_info
            if mig.job_finished(id) and id not in finished_jobs:
                # Download the output file from the server
                mig.get_file(output_file)
                finished_jobs.append(id)
                mig.remove(
                    output_file)  # clean up the result file on the server

        time.sleep(10)  # Wait a few seconds before trying again
        print "\n\n"

    print "All jobs finished."
    # Clean up the result files and print out the contents
    print "Cleaning up."
    output_lines = []
    for _, output_file in jobs:
        fh = open(output_file)
        output_lines.append(" ".join(fh.readlines()))
        fh.close()
        os.remove(output_file)
        print "Output file (" + output_file + ") deleted."

    print "\n\nOutput contents : \n\n%s\n" % "\n".join(output_lines)