Exemplo n.º 1
0
    def test_between_date(self):
        g = df_generate(self.df, "2014-01-01:2014-02-01",
                        "filter__date__between__date__:Y-:m-:d")

        self.assertEquals(g, u"date in ['2014-01-01', '2014-01-02', "
                          "'2014-01-03', '2014-01-04', '2014-01-05', "
                          "'2014-01-06', '2014-01-07', '2014-01-08', "
                          "'2014-01-09', '2014-01-10', '2014-01-11', "
                          "'2014-01-12', '2014-01-13', '2014-01-14', "
                          "'2014-01-15', '2014-01-16', '2014-01-17', "
                          "'2014-01-18', '2014-01-19', '2014-01-20', "
                          "'2014-01-21', '2014-01-22', '2014-01-23', "
                          "'2014-01-24', '2014-01-25', '2014-01-26', "
                          "'2014-01-27', '2014-01-28', '2014-01-29', "
                          "'2014-01-30', '2014-01-31', '2014-02-01']")
Exemplo n.º 2
0
    def test_between_date(self):
        g = df_generate(self.df, "2014-01-01:2014-02-01",
                        "filter__date__between__date__:Y-:m-:d")

        self.assertEquals(
            g, u"date in ['2014-01-01', '2014-01-02', "
            "'2014-01-03', '2014-01-04', '2014-01-05', "
            "'2014-01-06', '2014-01-07', '2014-01-08', "
            "'2014-01-09', '2014-01-10', '2014-01-11', "
            "'2014-01-12', '2014-01-13', '2014-01-14', "
            "'2014-01-15', '2014-01-16', '2014-01-17', "
            "'2014-01-18', '2014-01-19', '2014-01-20', "
            "'2014-01-21', '2014-01-22', '2014-01-23', "
            "'2014-01-24', '2014-01-25', '2014-01-26', "
            "'2014-01-27', '2014-01-28', '2014-01-29', "
            "'2014-01-30', '2014-01-31', '2014-02-01']")
Exemplo n.º 3
0
 def test_is(self):
     g = df_generate(self.df, "2014-01-01", "filter__date")
     self.assertEquals(g, u"date == '2014-01-01'")
Exemplo n.º 4
0
 def test_notin_int(self):
     g = df_generate(self.df, "1,2,3", "filter__int__notin__int")
     self.assertEquals(g, u"[1, 2, 3] not in int")
Exemplo n.º 5
0
 def test_is(self):
     g = df_generate(self.df, "2014-01-01", "filter__date")
     self.assertEquals(g, u"date == '2014-01-01'")
Exemplo n.º 6
0
def data(ws, mongodb, slug):
    if not ws:
        abort(400, 'Expected WebSocket request.')

    DW = DataWarehouse()

    element = mongodb['element'].find_one({'slug': slug})

    element['page_limit'] = 50
    if request.GET.get('limit', True) is False:
        element['page_limit'] = 9999999999

    data = DW.get(element.get('cube'))
    columns = data.get('columns') or []

    fields = columns
    if request.GET.get('fields', None):
        fields = request.GET.get('fields').split(',')

    cube_last_update = mongodb['cube'].find_one({'slug': element.get('cube')})
    ws.send(json.dumps({'type': 'last_update',
                        'data': str(cube_last_update.get('lastupdate', ''))}))

    ws.send(json.dumps({'type': 'columns', 'data': fields}))

    filters = [i[0] for i in request.GET.iteritems()
               if len(i[0].split('filter__')) > 1]

    if element['type'] == 'grid':
        page = int(request.GET.get('page', 1))
        page_start = 0
        page_end = element['page_limit']
        if page >= 2:
            page_end = element['page_limit'] * page
            page_start = page_end - element['page_limit']
    else:
        page_start = None
        page_end = None

    df = DataFrame(data.get('data') or {}, columns=fields)
    if len(filters) >= 1:
        for f in filters:
            s = f.split('__')
            field = s[1]
            operator = s[2]
            value = request.GET.get(f)
            if operator == 'like':
                df = df[df[field].str.contains(value)]
            elif operator == 'regex':
                df = DataFrameSearchColumn(df, field, value, operator)
            else:
                df = df.query(df_generate(df, value, f))

    groupby = []
    if request.GET.get('groupby', None):
        groupby = request.GET.get('groupby', ).split(',')
    if len(groupby) >= 1:
        df = DataFrame(df.groupby(groupby).grouper.get_group_levels())

    if request.GET.get('orderby',
                       element.get('orderby', None)) and request.GET.get(
            'orderby', element.get('orderby', None)) in fields:

        orderby = request.GET.get('orderby', element.get('orderby', ''))
        if type(orderby) == str:
            orderby = orderby.split(',')
        orderby__order = request.GET.get('orderby__order',
                                         element.get('orderby__order', ''))
        if type(orderby__order) == str:
            orderby__order = orderby__order.split(',')
        ind = 0
        for orde in orderby__order:
            if orde == '0':
                orderby__order[ind] = False
            else:
                orderby__order[ind] = True
            ind += 1
        df = df.sort(orderby, ascending=orderby__order)

    ws.send(json.dumps({'type': 'max_page', 'data': len(df)}))

    # CLEAN MEMORY
    del filters, fields, columns
    gc.collect()
    categories = []
    for i in df.to_dict(outtype='records')[page_start:page_end]:
        if element.get('categories', None):
            categories.append(i[element.get('categories')])
        ws.send(json.dumps({'type': 'data', 'data': i}))

    # CLEAN MEMORY
    del df
    gc.collect()

    ws.send(json.dumps({'type': 'categories', 'data': categories}))
    ws.send(json.dumps({'type': 'close'}))

    # CLEAN MEMORY
    del categories
    gc.collect()
Exemplo n.º 7
0
def data(mongodb, slug, ext='xls'):
    DW = DataWarehouse()

    element = mongodb['element'].find_one({'slug': slug})

    element['page_limit'] = 50
    if request.GET.get('limit', True) is False:
        element['page_limit'] = 9999999999

    data = DW.get(element.get('cube'))
    columns = data.get('columns') or []

    fields = columns
    if request.GET.get('fields', None):
        fields = request.GET.get('fields').split(',')

    filters = [i[0] for i in request.GET.iteritems()
               if len(i[0].split('filter__')) > 1]

    df = DataFrame(data.get('data') or {}, columns=fields)
    if len(filters) >= 1:
        for f in filters:
            s = f.split('__')
            field = s[1]
            operator = s[2]
            value = request.GET.get(f)
            if operator == 'like':
                df = df[df[field].str.contains(value)]
            elif operator == 'regex':
                df = DataFrameSearchColumn(df, field, value, operator)
            else:
                df = df.query(df_generate(df, value, f))

    groupby = []
    if request.GET.get('groupby', None):
        groupby = request.GET.get('groupby', "").split(',')
    if len(groupby) >= 1:
        df = DataFrame(df.groupby(groupby).grouper.get_group_levels())

    if request.GET.get('orderby',
                       element.get('orderby', None)) and request.GET.get(
            'orderby', element.get('orderby', None)) in fields:

        orderby = request.GET.get('orderby', element.get('orderby', ''))
        if type(orderby) == str:
            orderby = orderby.split(',')
        orderby__order = request.GET.get('orderby__order',
                                         element.get('orderby__order', ''))
        if type(orderby__order) == str:
            orderby__order = orderby__order.split(',')
        ind = 0
        for orde in orderby__order:
            if orde == '0':
                orderby__order[ind] = False
            else:
                orderby__order[ind] = True
            ind += 1
        df = df.sort(orderby, ascending=orderby__order)

    # CLEAN MEMORY
    del filters, fields, columns
    gc.collect()

    file_name = '{}/assets/exports/openmining-{}.{}'.format(
        PROJECT_PATH, element.get('cube'), ext)
    if ext == 'csv':
        df.to_csv(file_name, sep=";")
        contenttype = 'text/csv'
    else:
        df.to_excel(file_name)
        contenttype = 'application/vnd.ms-excel'

    response.set_header('charset', 'utf-8')
    response.set_header('Content-disposition', 'attachment; '
                        'filename={}.{}'.format(element.get('cube'), ext))
    response.content_type = contenttype

    ifile = open(file_name, "r")
    o = ifile.read()
    ifile.close()
    return o
Exemplo n.º 8
0
 def test_is_type_str(self):
     g = df_generate(self.df, "1", "filter__int__is__str")
     self.assertEquals(g, u"int == '1'")
Exemplo n.º 9
0
 def test_in_str_text(self):
     g = df_generate(self.df, "Diamond,Angular", "filter__str__in__str")
     self.assertEquals(g, u"str in ['Diamond', 'Angular']")
Exemplo n.º 10
0
 def test_lte(self):
     g = df_generate(self.df, "1", "filter__int__lte")
     self.assertEquals(g, u"int <= 1")
Exemplo n.º 11
0
 def test_is_type_str(self):
     g = df_generate(self.df, "1", "filter__int__is__str")
     self.assertEquals(g, u"int == '1'")
Exemplo n.º 12
0
 def test_is_type_int(self):
     g = df_generate(self.df, "1", "filter__int__is__int")
     self.assertEquals(g, u"int == 1")
Exemplo n.º 13
0
 def test_is_type_str_text(self):
     g = df_generate(self.df, "Diamon", "filter__nivel__is__str")
     self.assertEquals(g, u"nivel == 'Diamon'")
Exemplo n.º 14
0
 def test_is_type_str_text(self):
     g = df_generate(self.df, "Diamon", "filter__nivel__is__str")
     self.assertEquals(g, u"nivel == 'Diamon'")
Exemplo n.º 15
0
 def test_in_int(self):
     g = df_generate(self.df, "1,2,3", "filter__int__in__int")
     self.assertEquals(g, u"int in [1, 2, 3]")
Exemplo n.º 16
0
 def test_is_type_int(self):
     g = df_generate(self.df, "1", "filter__int__is__int")
     self.assertEquals(g, u"int == 1")
Exemplo n.º 17
0
 def test_notin_str(self):
     g = df_generate(self.df, "1,2,3", "filter__int__notin")
     self.assertEquals(g, u"['1', '2', '3'] not in int")
Exemplo n.º 18
0
 def test_lte(self):
     g = df_generate(self.df, "1", "filter__int__lte")
     self.assertEquals(g, u"int <= 1")
Exemplo n.º 19
0
def data(mongodb, slug, ext='xls'):
    MyClient = riak.RiakClient(protocol=conf("riak")["protocol"],
                               http_port=conf("riak")["http_port"],
                               host=conf("riak")["host"])

    MyBucket = MyClient.bucket(conf("riak")["bucket"])

    element = mongodb['element'].find_one({'slug': slug})

    columns = json.loads(MyBucket.get(
        '{}-columns'.format(element.get('cube'))).data or [])

    fields = columns
    if request.GET.get('fields', None):
        fields = request.GET.get('fields').split(',')

    filters = [i[0] for i in request.GET.iteritems()
               if len(i[0].split('filter__')) > 1]

    df = DataFrame(MyBucket.get(element.get('cube')).data, columns=fields)
    if len(filters) >= 1:
        for f in filters:
            s = f.split('__')
            field = s[1]
            operator = s[2]
            value = request.GET.get(f)
            if operator in ['like', 'regex']:
                df = DataFrameSearchColumn(df, field, value, operator)
            else:
                df = df.query(df_generate(df, value, f))

    groupby = []
    if request.GET.get('groupby', None):
        groupby = request.GET.get('groupby', ).split(',')
    if len(groupby) >= 1:
        df = df.groupby(groupby)

    if request.GET.get('orderby', None):
        orderby = request.GET.get('orderby', [])
        orderby__order = True
        if request.GET.get('orderby__order', 0) != 1:
            orderby__order = False
        df = df.sort(orderby, ascending=orderby__order)

    # CLEAN MEMORY
    del filters, fields, columns
    gc.collect()

    file_name = '{}/assets/exports/openmining-{}.{}'.format(
        PROJECT_PATH, element.get('cube'), ext)
    if ext == 'csv':
        df.to_csv(file_name, sep=";")
        contenttype = 'text/csv'
    else:
        df.to_excel(file_name)
        contenttype = 'application/vnd.ms-excel'

    response.set_header('charset', 'utf-8')
    response.set_header('Content-disposition', 'attachment; '
                        'filename={}.{}'.format(element.get('cube'), ext))
    response.content_type = contenttype

    ifile = open(file_name, "r")
    o = ifile.read()
    ifile.close()
    return o
Exemplo n.º 20
0
 def test_in_str(self):
     g = df_generate(self.df, "1,2,3", "filter__int__in")
     self.assertEquals(g, u"int in ['1', '2', '3']")
Exemplo n.º 21
0
def data(mongodb, slug):
    # check protocol to work
    ws = request.environ.get("wsgi.websocket")
    protocol = "websocket"
    if not ws:
        response.content_type = "application/json"
        protocol = "http"
    DataManager = __from__("mining.controllers.data.{}.DataManager".format(protocol))

    # instantiates the chosen protocol
    DM = DataManager(ws)

    # instantiate data warehouse
    DW = DataWarehouse()

    element = mongodb["element"].find_one({"slug": slug})

    element["page_limit"] = 50
    if request.GET.get("limit", True) is False:
        element["page_limit"] = 9999999999

    if element["type"] == "grid" and "download" not in request.GET.keys():
        page = int(request.GET.get("page", 1))
        page_start = 0
        page_end = element["page_limit"]
        if page >= 2:
            page_end = element["page_limit"] * page
            page_start = page_end - element["page_limit"]
    else:
        page = 1
        page_start = None
        page_end = None

    filters = [i[0] for i in request.GET.iteritems() if len(i[0].split("filter__")) > 1]

    if not DW.search:
        data = DW.get(element.get("cube"), page=page)
    else:
        data = DW.get(element.get("cube"), filters=filters, page=page)

    columns = data.get("columns") or []

    fields = columns
    if request.GET.get("fields", None):
        fields = request.GET.get("fields").split(",")

    cube_last_update = mongodb["cube"].find_one({"slug": element.get("cube")})
    DM.send(json.dumps({"type": "last_update", "data": str(cube_last_update.get("lastupdate", ""))}))

    DM.send(json.dumps({"type": "columns", "data": fields}))

    df = DataFrame(data.get("data") or {}, columns=fields)
    if len(filters) >= 1:
        for f in filters:
            s = f.split("__")
            field = s[1]
            operator = s[2]
            value = request.GET.get(f)
            if operator == "like":
                df = df[df[field].str.contains(value)]
            elif operator == "regex":
                df = DataFrameSearchColumn(df, field, value, operator)
            else:
                df = df.query(df_generate(df, value, f))

    groupby = []
    if request.GET.get("groupby", None):
        groupby = request.GET.get("groupby", "").split(",")
    if len(groupby) >= 1:
        df = DataFrame(df.groupby(groupby).grouper.get_group_levels())

    if (
        request.GET.get("orderby", element.get("orderby", None))
        and request.GET.get("orderby", element.get("orderby", None)) in fields
    ):

        orderby = request.GET.get("orderby", element.get("orderby", ""))
        if type(orderby) == str:
            orderby = orderby.split(",")
        orderby__order = request.GET.get("orderby__order", element.get("orderby__order", ""))
        if type(orderby__order) == str:
            orderby__order = orderby__order.split(",")
        ind = 0
        for orde in orderby__order:
            if orde == "0":
                orderby__order[ind] = False
            else:
                orderby__order[ind] = True
            ind += 1
        df = df.sort(orderby, ascending=orderby__order)

    DM.send(json.dumps({"type": "max_page", "data": data.get("count", len(df))}))

    # CLEAN MEMORY
    del filters, fields, columns
    gc.collect()
    categories = []

    records = df.to_dict(orient="records")
    if not DW.search:
        records = records[page_start:page_end]
    for i in records:
        if element.get("categories", None):
            categories.append(i[element.get("categories")])
        DM.send(json.dumps({"type": "data", "data": i}))

    DM.send(json.dumps({"type": "categories", "data": categories}))
    DM.send(json.dumps({"type": "close"}))

    # CLEAN MEMORY
    del categories
    gc.collect()

    if not ws:
        if "download" in request.GET.keys():

            ext = request.GET.get("download", "xls")
            if ext == "":
                ext = "xls"

            file_name = "{}/frontend/assets/exports/openmining-{}.{}".format(PROJECT_PATH, element.get("cube"), ext)
            if ext == "csv":
                df.to_csv(file_name, sep=";")
                contenttype = "text/csv"
            else:
                df.to_excel(file_name)
                contenttype = "application/vnd.ms-excel"

            response.set_header("charset", "utf-8")
            response.set_header("Content-disposition", "attachment; " "filename={}.{}".format(element.get("cube"), ext))
            response.content_type = contenttype

            ifile = open(file_name, "r")
            o = ifile.read()
            ifile.close()

            return o

        return json.dumps(DM.data)
Exemplo n.º 22
0
def data(mongodb, slug, ext='xls'):
    DW = DataWarehouse()

    element = mongodb['element'].find_one({'slug': slug})

    element['page_limit'] = 50
    if request.GET.get('limit', True) is False:
        element['page_limit'] = 9999999999

    data = DW.get(element.get('cube'))
    columns = data.get('columns') or []

    fields = columns
    if request.GET.get('fields', None):
        fields = request.GET.get('fields').split(',')

    filters = [i[0] for i in request.GET.iteritems()
               if len(i[0].split('filter__')) > 1]

    df = DataFrame(data.get('data') or {}, columns=fields)
    if len(filters) >= 1:
        for f in filters:
            s = f.split('__')
            field = s[1]
            operator = s[2]
            value = request.GET.get(f)
            if operator == 'like':
                df = df[df[field].str.contains(value)]
            elif operator == 'regex':
                df = DataFrameSearchColumn(df, field, value, operator)
            else:
                df = df.query(df_generate(df, value, f))

    groupby = []
    if request.GET.get('groupby', None):
        groupby = request.GET.get('groupby', "").split(',')
    if len(groupby) >= 1:
        df = DataFrame(df.groupby(groupby).grouper.get_group_levels())

    if request.GET.get('orderby',
                       element.get('orderby', None)) and request.GET.get(
            'orderby', element.get('orderby', None)) in fields:

        orderby = request.GET.get('orderby', element.get('orderby', ''))
        if type(orderby) == str:
            orderby = orderby.split(',')
        orderby__order = request.GET.get('orderby__order',
                                         element.get('orderby__order', ''))
        if type(orderby__order) == str:
            orderby__order = orderby__order.split(',')
        ind = 0
        for orde in orderby__order:
            if orde == '0':
                orderby__order[ind] = False
            else:
                orderby__order[ind] = True
            ind += 1
        df = df.sort(orderby, ascending=orderby__order)

    # CLEAN MEMORY
    del filters, fields, columns
    gc.collect()

    file_name = '{}/assets/exports/openmining-{}.{}'.format(
        PROJECT_PATH, element.get('cube'), ext)
    if ext == 'csv':
        df.to_csv(file_name, sep=";")
        contenttype = 'text/csv'
    else:
        df.to_excel(file_name)
        contenttype = 'application/vnd.ms-excel'

    response.set_header('charset', 'utf-8')
    response.set_header('Content-disposition', 'attachment; '
                        'filename={}.{}'.format(element.get('cube'), ext))
    response.content_type = contenttype

    ifile = open(file_name, "r")
    o = ifile.read()
    ifile.close()
    return o
Exemplo n.º 23
0
 def test_in_str_text(self):
     g = df_generate(self.df, "Diamond,Angular", "filter__str__in__str")
     self.assertEquals(g, u"str in ['Diamond', 'Angular']")
Exemplo n.º 24
0
def data(mongodb, slug, ext="xls"):
    DW = DataWarehouse()

    element = mongodb["element"].find_one({"slug": slug})

    element["page_limit"] = 50
    if request.GET.get("limit", True) is False:
        element["page_limit"] = 9999999999

    data = DW.get(element.get("cube"))
    columns = data.get("columns") or []

    fields = columns
    if request.GET.get("fields", None):
        fields = request.GET.get("fields").split(",")

    filters = [i[0] for i in request.GET.iteritems() if len(i[0].split("filter__")) > 1]

    df = DataFrame(data.get("data") or {}, columns=fields)
    if len(filters) >= 1:
        for f in filters:
            s = f.split("__")
            field = s[1]
            operator = s[2]
            value = request.GET.get(f)
            if operator == "like":
                df = df[df[field].str.contains(value)]
            elif operator == "regex":
                df = DataFrameSearchColumn(df, field, value, operator)
            else:
                df = df.query(df_generate(df, value, f))

    groupby = []
    if request.GET.get("groupby", None):
        groupby = request.GET.get("groupby").split(",")
    if len(groupby) >= 1:
        df = DataFrame(df.groupby(groupby).grouper.get_group_levels())

    if (
        request.GET.get("orderby", element.get("orderby", None))
        and request.GET.get("orderby", element.get("orderby", None)) in fields
    ):

        orderby = request.GET.get("orderby", element.get("orderby", ""))
        if type(orderby) == str:
            orderby = orderby.split(",")
        orderby__order = request.GET.get("orderby__order", element.get("orderby__order", ""))
        if type(orderby__order) == str:
            orderby__order = orderby__order.split(",")
        ind = 0
        for orde in orderby__order:
            if orde == "0":
                orderby__order[ind] = False
            else:
                orderby__order[ind] = True
            ind += 1
        df = df.sort(orderby, ascending=orderby__order)

    # CLEAN MEMORY
    del filters, fields, columns
    gc.collect()

    file_name = "{}/assets/exports/openmining-{}.{}".format(PROJECT_PATH, element.get("cube"), ext)
    if ext == "csv":
        df.to_csv(file_name, sep=";")
        contenttype = "text/csv"
    else:
        df.to_excel(file_name)
        contenttype = "application/vnd.ms-excel"

    response.set_header("charset", "utf-8")
    response.set_header("Content-disposition", "attachment; " "filename={}.{}".format(element.get("cube"), ext))
    response.content_type = contenttype

    ifile = open(file_name, "r")
    o = ifile.read()
    ifile.close()
    return o
Exemplo n.º 25
0
def data(mongodb, slug):
    # check protocol to work
    ws = request.environ.get('wsgi.websocket')
    protocol = "websocket"
    if not ws:
        response.content_type = 'application/json'
        protocol = "http"
    DataManager = __from__(
        "mining.controllers.data.{}.DataManager".format(protocol))

    # instantiates the chosen protocol
    DM = DataManager(ws)

    # instantiate data warehouse
    DW = DataWarehouse()

    element = mongodb['element'].find_one({'slug': slug})

    element['page_limit'] = 50
    if request.GET.get('limit', True) is False:
        element['page_limit'] = 9999999999

    if element['type'] == 'grid' and "download" not in request.GET.keys():
        page = int(request.GET.get('page', 1))
        page_start = 0
        page_end = element['page_limit']
        if page >= 2:
            page_end = element['page_limit'] * page
            page_start = page_end - element['page_limit']
    else:
        page = 1
        page_start = None
        page_end = None

    filters = [i[0] for i in request.GET.iteritems()
               if len(i[0].split('filter__')) > 1]

    if not DW.search:
        data = DW.get(element.get('cube'), page=page)
    else:
        data = DW.get(element.get('cube'), filters=filters, page=page)

    columns = data.get('columns') or []

    fields = columns
    if request.GET.get('fields', None):
        fields = request.GET.get('fields').split(',')

    cube_last_update = mongodb['cube'].find_one({'slug': element.get('cube')})
    DM.send(json.dumps({'type': 'last_update',
                        'data': str(cube_last_update.get('lastupdate', ''))}))

    DM.send(json.dumps({'type': 'columns', 'data': fields}))

    df = DataFrame(data.get('data') or {}, columns=fields)
    if len(filters) >= 1:
        for f in filters:
            s = f.split('__')
            field = s[1]
            operator = s[2]
            value = request.GET.get(f)
            if operator == 'like':
                df = df[df[field].str.contains(value)]
            elif operator == 'regex':
                df = DataFrameSearchColumn(df, field, value, operator)
            else:
                df = df.query(df_generate(df, value, f))

    groupby = []
    if request.GET.get('groupby', None):
        groupby = request.GET.get('groupby', "").split(',')
    if len(groupby) >= 1:
        df = DataFrame(df.groupby(groupby).grouper.get_group_levels())

    if request.GET.get('orderby',
                       element.get('orderby', None)) and request.GET.get(
            'orderby', element.get('orderby', None)) in fields:

        orderby = request.GET.get('orderby', element.get('orderby', ''))
        if type(orderby) == str:
            orderby = orderby.split(',')
        orderby__order = request.GET.get('orderby__order',
                                         element.get('orderby__order', ''))
        if type(orderby__order) == str:
            orderby__order = orderby__order.split(',')
        ind = 0
        for orde in orderby__order:
            if orde == '0':
                orderby__order[ind] = False
            else:
                orderby__order[ind] = True
            ind += 1
        df = df.sort(orderby, ascending=orderby__order)

    DM.send(json.dumps({'type': 'max_page',
                        'data': data.get('count', len(df))}))

    # CLEAN MEMORY
    del filters, fields, columns
    gc.collect()
    categories = []

    # TODO: loop in aggregate (apply mult aggregate)
    aggregate = [i[0] for i in request.GET.iteritems()
                 if len(i[0].split('aggregate__')) > 1]
    if len(aggregate) >= 1:
        agg = aggregate[0].split('__')
        _agg = getattr(df.groupby(agg[1]), request.GET.get(aggregate[0]))()
        DF_A = DataFrame(_agg[_agg.keys()[0]]).to_dict().get(_agg.keys()[0])
        DM.send(json.dumps({'type': 'aggregate', 'data': DF_A}))

    records = df.to_dict(orient='records')
    if not DW.search:
        records = records[page_start:page_end]
    for i in records:
        if element.get('categories', None):
            categories.append(i[element.get('categories')])
        DM.send(json.dumps({'type': 'data', 'data': i}))

    DM.send(json.dumps({'type': 'categories', 'data': categories}))
    DM.send(json.dumps({'type': 'close'}))

    # CLEAN MEMORY
    del categories
    gc.collect()

    if not ws:
        if "download" in request.GET.keys():

            ext = request.GET.get("download", "xls")
            if ext == '':
                ext = 'xls'

            file_name = '{}/frontend/assets/exports/openmining-{}.{}'.format(
                PROJECT_PATH, element.get('cube'), ext)
            if ext == 'csv':
                df.to_csv(file_name, sep=";")
                contenttype = 'text/csv'
            else:
                df.to_excel(file_name)
                contenttype = 'application/vnd.ms-excel'

            response.set_header('charset', 'utf-8')
            response.set_header('Content-disposition', 'attachment; '
                                'filename={}.{}'.format(
                                    element.get('cube'), ext))
            response.content_type = contenttype

            ifile = open(file_name, "r")
            o = ifile.read()
            ifile.close()

            return o

        return json.dumps(DM.data)