Exemplo n.º 1
0
def test_basic_collectable():
    c = Collectable()

    # empty by default
    assert_equal(c.name, None)
    assert_equal(c.value, None)
    assert_equal(c.__doc__, None)

    # late assignment
    c.name = 'somename'
    c.value = 12345
    assert_equal(c.name, 'somename')
    assert_equal(c.value, 12345)

    # immediate content
    c = Collectable('value', 'myname', "This is a test")
    assert_equal(c.name, 'myname')
    assert_equal(c.value, 'value')
    assert_equal(c.__doc__, "This is a test")
    assert_equal(str(c), 'myname')

    # repr
    e = eval(repr(c))
    assert_equal(e.name, 'myname')
    assert_equal(e.value, 'value')
    assert_equal(e.__doc__, "This is a test")

    # shallow copy does not create a view of value array
    c.value = np.arange(5)
    d = copy.copy(c)
    assert_false(d.value.base is c.value)

    # names starting with _ are not allowed
    assert_raises(ValueError, c._set_name, "_underscore")
Exemplo n.º 2
0
def test_basic_collectable():
    c = Collectable()

    # empty by default
    assert_equal(c.name, None)
    assert_equal(c.value, None)
    assert_equal(c.__doc__, None)

    # late assignment
    c.name = 'somename'
    c.value = 12345
    assert_equal(c.name, 'somename')
    assert_equal(c.value, 12345)

    # immediate content
    c = Collectable('value', 'myname', "This is a test")
    assert_equal(c.name, 'myname')
    assert_equal(c.value, 'value')
    assert_equal(c.__doc__, "This is a test")
    assert_equal(str(c), 'myname')

    # repr
    e = eval(repr(c))
    assert_equal(e.name, 'myname')
    assert_equal(e.value, 'value')
    assert_equal(e.__doc__, "This is a test")

    # shallow copy does not create a view of value array
    c.value = np.arange(5)
    d = copy.copy(c)
    assert_false(d.value.base is c.value)

    # names starting with _ are not allowed
    assert_raises(ValueError, c._set_name, "_underscore")
Exemplo n.º 3
0
def test_forward_dense_array_mapper():
    mask = np.ones((3, 2), dtype="bool")
    map_ = mask_mapper(mask)

    # test shape reports
    assert_equal(map_.forward1(mask).shape, (6,))

    # test 1sample mapping
    assert_array_equal(map_.forward1(np.arange(6).reshape(3, 2)), [0, 1, 2, 3, 4, 5])

    # test 4sample mapping
    foursample = map_.forward(np.arange(24).reshape(4, 3, 2))
    assert_array_equal(
        foursample, [[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11], [12, 13, 14, 15, 16, 17], [18, 19, 20, 21, 22, 23]]
    )

    # check incomplete masks
    mask[1, 1] = 0
    map_ = mask_mapper(mask)
    assert_equal(map_.forward1(mask).shape, (5,))
    assert_array_equal(map_.forward1(np.arange(6).reshape(3, 2)), [0, 1, 2, 4, 5])

    # check that it doesn't accept wrong dataspace
    assert_raises(ValueError, map_.forward, np.arange(4).reshape(2, 2))

    # check fail if neither mask nor shape
    assert_raises(ValueError, mask_mapper)

    # check that a full mask is automatically created when providing shape
    m = mask_mapper(shape=(2, 3, 4))
    mp = m.forward1(np.arange(24).reshape(2, 3, 4))
    assert_array_equal(mp, np.arange(24))
Exemplo n.º 4
0
def test_sphere_scaled():
    s1 = ne.Sphere(3)
    s = ne.Sphere(3, element_sizes=(1, 1))

    # Should give exactly the same results since element_sizes are 1s
    for p in ((0, 0), (-23, 1)):
        assert_array_equal(s1(p), s(p))
        ok_(len(s(p)) == len(set(s(p))))

    # Raise exception if query dimensionality does not match element_sizes
    assert_raises(ValueError, s, (1,))

    s = ne.Sphere(3, element_sizes=(1.5, 2))
    assert_array_equal(s((0, 0)),
                       [(-2, 0), (-1, -1), (-1, 0), (-1, 1),
                        (0, -1), (0, 0), (0, 1),
                        (1, -1), (1, 0), (1, 1), (2, 0)])

    s = ne.Sphere(1.5, element_sizes=(1.5, 1.5, 1.5))
    res = s((0, 0, 0))
    ok_(np.all([np.sqrt(np.sum(np.array(x)**2)) <= 1.5 for x in res]))
    ok_(len(res) == 7)

    # all neighbors so no more than 1 voxel away -- just a cube, for
    # some "sphere" effect radius had to be 3.0 ;)
    td = np.sqrt(3*1.5**2)
    s = ne.Sphere(td, element_sizes=(1.5, 1.5, 1.5))
    res = s((0, 0, 0))
    ok_(np.all([np.sqrt(np.sum(np.array(x)**2)) <= td for x in res]))
    ok_(np.all([np.sum(np.abs(x) > 1) == 0 for x in res]))
    ok_(len(res) == 27)
Exemplo n.º 5
0
def test_subset():
    data = np.array(
            [[ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15],
            [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31],
            [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47],
            [48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]])
    # float array doesn't work
    sm = FeatureSliceMapper(np.ones(16))
    assert_raises(IndexError, sm.forward, data)

    # full mask
    sm = FeatureSliceMapper(slice(None))
    # should not change single samples
    assert_array_equal(sm.forward(data[0:1].copy()), data[0:1])
    # or multi-samples
    assert_array_equal(sm.forward(data.copy()), data)
    sm.train(data)
    # same on reverse
    assert_array_equal(sm.reverse(data[0:1].copy()), data[0:1])
    # or multi-samples
    assert_array_equal(sm.reverse(data.copy()), data)

    # identical mappers
    sm_none = FeatureSliceMapper(slice(None))
    sm_int = FeatureSliceMapper(np.arange(16))
    sm_bool = FeatureSliceMapper(np.ones(16, dtype='bool'))
    sms = [sm_none, sm_int, sm_bool]

    # test subsets
    sids = [3,4,5,6]
    bsubset = np.zeros(16, dtype='bool')
    bsubset[sids] = True
    subsets = [sids, slice(3,7), bsubset, [3,3,4,4,6,6,6,5]]
    # all test subset result in equivalent masks, hence should do the same to
    # the mapper and result in identical behavior
    for st in sms:
        for i, sub in enumerate(subsets):
            # shallow copy
            orig = copy(st)
            subsm = FeatureSliceMapper(sub)
            # should do copy-on-write for all important stuff!!
            assert_true(orig.is_mergable(subsm))
            orig += subsm
            # test if selection did its job
            if i == 3:
                # special case of multiplying features
                assert_array_equal(orig.forward1(data[0].copy()), subsets[i])
            else:
                assert_array_equal(orig.forward1(data[0].copy()), sids)

    ## all of the above shouldn't change the original mapper
    #assert_array_equal(sm.get_mask(), np.arange(16))

    # check for some bug catcher
    # no 3D input
    #assert_raises(IndexError, sm.forward, np.ones((3,2,1)))
    # no input of wrong length
    if __debug__:
        # checked only in __debug__
        assert_raises(ValueError, sm.forward, np.ones(4))
Exemplo n.º 6
0
def test_chainmapper():
    # the chain needs at lest one mapper
    assert_raises(ValueError, ChainMapper, [])
    # a typical first mapper is to flatten
    cm = ChainMapper([FlattenMapper()])

    # few container checks
    assert_equal(len(cm), 1)
    assert_true(isinstance(cm[0], FlattenMapper))

    # now training
    # come up with data
    samples_shape = (2, 2, 4)
    data_shape = (4,) + samples_shape
    data = np.arange(np.prod(data_shape)).reshape(data_shape)
    pristinedata = data.copy()
    target = [
        [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15],
        [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31],
        [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47],
        [48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63],
    ]
    target = np.array(target)

    # if it is not trained it knows nothing
    cm.train(data)

    # a new mapper should appear when doing feature selection
    cm.append(FeatureSliceMapper(range(1, 16)))
    assert_equal(cm.forward1(data[0]).shape, (15,))
    assert_equal(len(cm), 2)
    # multiple slicing
    cm.append(FeatureSliceMapper([9, 14]))
    assert_equal(cm.forward1(data[0]).shape, (2,))
    assert_equal(len(cm), 3)

    # check reproduction
    cm_clone = eval(repr(cm))
    assert_equal(repr(cm_clone), repr(cm))

    # what happens if we retrain the whole beast an same data as before
    cm.train(data)
    assert_equal(cm.forward1(data[0]).shape, (2,))
    assert_equal(len(cm), 3)

    # let's map something
    mdata = cm.forward(data)
    assert_array_equal(mdata, target[:, [10, 15]])
    # and back
    rdata = cm.reverse(mdata)
    # original shape
    assert_equal(rdata.shape, data.shape)
    # content as far it could be restored
    assert_array_equal(rdata[rdata > 0], data[rdata > 0])
    assert_equal(np.sum(rdata > 0), 8)
Exemplo n.º 7
0
def test_attrmap_conflicts():
    am_n = AttributeMap({'a':1, 'b':2, 'c':1})
    am_t = AttributeMap({'a':1, 'b':2, 'c':1}, collisions_resolution='tuple')
    am_l = AttributeMap({'a':1, 'b':2, 'c':1}, collisions_resolution='lucky')
    q_f = ['a', 'b', 'a', 'c']
    # should have no effect on forward mapping
    ok_(np.all(am_n.to_numeric(q_f) == am_t.to_numeric(q_f)))
    ok_(np.all(am_t.to_numeric(q_f) == am_l.to_numeric(q_f)))

    assert_raises(ValueError, am_n.to_literal, [2])
    r_t = am_t.to_literal([2, 1])
    r_l = am_l.to_literal([2, 1])
Exemplo n.º 8
0
def test_splitter():
    ds = give_data()
    # split with defaults
    spl1 = Splitter('chunks')
    assert_raises(NotImplementedError, spl1, ds)

    splits = list(spl1.generate(ds))
    assert_equal(len(splits), len(ds.sa['chunks'].unique))

    for split in splits:
        # it should have perform basic slicing!
        assert_true(split.samples.base is ds.samples)
        assert_equal(len(split.sa['chunks'].unique), 1)
        assert_true('lastsplit' in split.a)
    assert_true(splits[-1].a.lastsplit)

    # now again, more customized
    spl2 = Splitter('targets', attr_values = [0,1,1,2,3,3,3], count=4,
                   noslicing=True)
    splits = list(spl2.generate(ds))
    assert_equal(len(splits), 4)
    for split in splits:
        # it should NOT have perform basic slicing!
        assert_false(split.samples.base is ds.samples)
        assert_equal(len(split.sa['targets'].unique), 1)
        assert_equal(len(split.sa['chunks'].unique), 10)
    assert_true(splits[-1].a.lastsplit)

    # two should be identical
    assert_array_equal(splits[1].samples, splits[2].samples)

    # now go wild and split by feature attribute
    ds.fa['roi'] = np.repeat([0,1], 5)
    # splitter should auto-detect that this is a feature attribute
    spl3 = Splitter('roi')
    splits = list(spl3.generate(ds))
    assert_equal(len(splits), 2)
    for split in splits:
        assert_true(split.samples.base is ds.samples)
        assert_equal(len(split.fa['roi'].unique), 1)
        assert_equal(split.shape, (100, 5))

    # and finally test chained splitters
    cspl = ChainNode([spl2, spl3, spl1])
    splits = list(cspl.generate(ds))
    # 4 target splits and 2 roi splits each and 10 chunks each
    assert_equal(len(splits), 80)
Exemplo n.º 9
0
def test_collections():
    sa = SampleAttributesCollection()
    assert_equal(len(sa), 0)

    assert_raises(ValueError, sa.__setitem__, 'test', 0)
    l = range(5)
    sa['test'] = l
    # auto-wrapped
    assert_true(isinstance(sa['test'], ArrayCollectable))
    assert_equal(len(sa), 1)

    # names which are already present in dict interface
    assert_raises(ValueError, sa.__setitem__, 'values', range(5))

    sa_c = copy.deepcopy(sa)
    assert_equal(len(sa), len(sa_c))
    assert_array_equal(sa.test, sa_c.test)
Exemplo n.º 10
0
def test_cached_query_engine():
    """Test cached query engine
    """
    sphere = ne.Sphere(1)
    # dataset with just one "space"
    ds = datasets['3dlarge']
    qe0 = ne.IndexQueryEngine(myspace=sphere)
    qec = ne.CachedQueryEngine(qe0)

    # and ground truth one
    qe = ne.IndexQueryEngine(myspace=sphere)
    results_ind = []
    results_kw = []

    def cmp_res(res1, res2):
        comp = [x == y for x, y in zip(res1, res2)]
        ok_(np.all(comp))

    for iq, q in enumerate((qe, qec)):
        q.train(ds)
        # sequential train on the same should be ok in both cases
        q.train(ds)
        res_ind = [q[fid] for fid in xrange(ds.nfeatures)]
        res_kw = [q(myspace=x) for x in ds.fa.myspace]
        # test if results match
        cmp_res(res_ind, res_kw)

        results_ind.append(res_ind)
        results_kw.append(res_kw)

    # now check if results of cached were the same as of regular run
    cmp_res(results_ind[0], results_ind[1])

    # Now do sanity checks
    assert_raises(ValueError, qec.train, ds[:, :-1])
    assert_raises(ValueError, qec.train, ds.copy())
    ds2 = ds.copy()
    qec.untrain()
    qec.train(ds2)
    # should be the same results on the copy
    cmp_res(results_ind[0], [qec[fid] for fid in xrange(ds.nfeatures)])
    cmp_res(results_kw[0], [qec(myspace=x) for x in ds.fa.myspace])
    ok_(qec.train(ds2) is None)
Exemplo n.º 11
0
def test_reverse_dense_array_mapper():
    mask = np.ones((3, 2), dtype="bool")
    mask[1, 1] = 0
    map_ = mask_mapper(mask)

    rmapped = map_.reverse1(np.arange(1, 6))
    assert_equal(rmapped.shape, (3, 2))
    assert_equal(rmapped[1, 1], 0)
    assert_equal(rmapped[2, 1], 5)

    # check that it doesn't accept wrong dataspace
    assert_raises(ValueError, map_.forward, np.arange(6))

    rmapped2 = map_.reverse(np.arange(1, 11).reshape(2, 5))
    assert_equal(rmapped2.shape, (2, 3, 2))
    assert_equal(rmapped2[0, 1, 1], 0)
    assert_equal(rmapped2[1, 1, 1], 0)
    assert_equal(rmapped2[0, 2, 1], 5)
    assert_equal(rmapped2[1, 2, 1], 10)
Exemplo n.º 12
0
def test_query_engine():
    data = np.arange(54)
    # indices in 3D
    ind = np.transpose((np.ones((3, 3, 3)).nonzero()))
    # sphere generator for 3 elements diameter
    sphere = ne.Sphere(1)
    # dataset with just one "space"
    ds = Dataset([data, data], fa={'s_ind': np.concatenate((ind, ind))})
    # and the query engine attaching the generator to the "index-space"
    qe = ne.IndexQueryEngine(s_ind=sphere)
    # cannot train since the engine does not know about the second space
    assert_raises(ValueError, qe.train, ds)
    # now do it again with a full spec
    ds = Dataset([data, data], fa={'s_ind': np.concatenate((ind, ind)),
                                   't_ind': np.repeat([0,1], 27)})
    qe = ne.IndexQueryEngine(s_ind=sphere, t_ind=None)
    qe.train(ds)
    # internal representation check
    # YOH: invalid for new implementation with lookup tables (dictionaries)
    #assert_array_equal(qe._searcharray,
    #                   np.arange(54).reshape(qe._searcharray.shape) + 1)
    # should give us one corner, collapsing the 't_ind'
    assert_array_equal(qe(s_ind=(0, 0, 0)),
                       [0, 1, 3, 9, 27, 28, 30, 36])
    # directly specifying an index for 't_ind' without having an ROI
    # generator, should give the same corner, but just once
    assert_array_equal(qe(s_ind=(0, 0, 0), t_ind=0), [0, 1, 3, 9])
    # just out of the mask -- no match
    assert_array_equal(qe(s_ind=(3, 3, 3)), [])
    # also out of the mask -- but single match
    assert_array_equal(qe(s_ind=(2, 2, 3), t_ind=1), [53])
    # query by id
    assert_array_equal(qe(s_ind=(0, 0, 0), t_ind=0), qe[0])
    assert_array_equal(qe(s_ind=(0, 0, 0), t_ind=[0, 1]),
                       qe(s_ind=(0, 0, 0)))
    # should not fail if t_ind is outside
    assert_array_equal(qe(s_ind=(0, 0, 0), t_ind=[0, 1, 10]),
                       qe(s_ind=(0, 0, 0)))

    # should fail if asked about some unknown thing
    assert_raises(ValueError, qe.__call__, s_ind=(0, 0, 0), buga=0)

    # Test by using some literal feature atttribute
    ds.fa['lit'] =  ['roi1', 'ro2', 'r3']*18
    # should work as well as before
    assert_array_equal(qe(s_ind=(0, 0, 0)), [0, 1, 3, 9, 27, 28, 30, 36])
    # should fail if asked about some unknown (yet) thing
    assert_raises(ValueError, qe.__call__, s_ind=(0,0,0), lit='roi1')

    # Create qe which can query literals as well
    qe_lit = ne.IndexQueryEngine(s_ind=sphere, t_ind=None, lit=None)
    qe_lit.train(ds)
    # should work as well as before
    assert_array_equal(qe_lit(s_ind=(0, 0, 0)), [0, 1, 3, 9, 27, 28, 30, 36])
    # and subselect nicely -- only /3 ones
    assert_array_equal(qe_lit(s_ind=(0, 0, 0), lit='roi1'),
                       [0, 3, 9, 27, 30, 36])
    assert_array_equal(qe_lit(s_ind=(0, 0, 0), lit=['roi1', 'ro2']),
                       [0, 1, 3, 9, 27, 28, 30, 36])
Exemplo n.º 13
0
def test_mapper_vs_zscore():
    """Test by comparing to results of elderly z-score function
    """
    # data: 40 sample feature line in 20d space (40x20; samples x features)
    dss = [
        dataset_wizard(np.concatenate(
            [np.arange(40) for i in range(20)]).reshape(20,-1).T,
                targets=1, chunks=1),
        ] + datasets.values()

    for ds in dss:
        ds1 = deepcopy(ds)
        ds2 = deepcopy(ds)

        zsm = ZScoreMapper(chunks_attr=None)
        assert_raises(RuntimeError, zsm.forward, ds1.samples)
        zsm.train(ds1)
        ds1z = zsm.forward(ds1.samples)

        zscore(ds2, chunks_attr=None)
        assert_array_almost_equal(ds1z, ds2.samples)
        assert_array_equal(ds1.samples, ds.samples)
Exemplo n.º 14
0
def test_sphere():
    # test sphere initialization
    s = ne.Sphere(1)
    center0 = (0, 0, 0)
    center1 = (1, 1, 1)
    assert_equal(len(s(center0)), 7)
    target = array([array([-1,  0,  0]),
              array([ 0, -1,  0]),
              array([ 0,  0, -1]),
              array([0, 0, 0]),
              array([0, 0, 1]),
              array([0, 1, 0]),
              array([1, 0, 0])])
    # test of internals -- no recomputation of increments should be done
    prev_increments = s._increments
    assert_array_equal(s(center0), target)
    ok_(prev_increments is s._increments)
    # query lower dimensionality
    _ = s((0, 0))
    ok_(not prev_increments is s._increments)

    # test Sphere call
    target = [array([0, 1, 1]),
              array([1, 0, 1]),
              array([1, 1, 0]),
              array([1, 1, 1]),
              array([1, 1, 2]),
              array([1, 2, 1]),
              array([2, 1, 1])]
    res = s(center1)
    assert_array_equal(array(res), target)
    # They all should be tuples
    ok_(np.all([isinstance(x, tuple) for x in res]))

    # test for larger diameter
    s = ne.Sphere(4)
    assert_equal(len(s(center1)), 257)

    # test extent keyword
    #s = ne.Sphere(4,extent=(1,1,1))
    #assert_array_equal(array(s((0,0,0))), array([[0,0,0]]))

    # test Errors during initialisation and call
    #assert_raises(ValueError, ne.Sphere, 2)
    #assert_raises(ValueError, ne.Sphere, 1.0)

    # no longer extent available
    assert_raises(TypeError, ne.Sphere, 1, extent=(1))
    assert_raises(TypeError, ne.Sphere, 1, extent=(1.0, 1.0, 1.0))

    s = ne.Sphere(1)
    #assert_raises(ValueError, s, (1))
    if __debug__:
        # No float coordinates allowed for now...
        # XXX might like to change that ;)
        # 
        assert_raises(ValueError, s, (1.0, 1.0, 1.0))
Exemplo n.º 15
0
def test_array_collectable():
    c = ArrayCollectable()

    # empty by default
    assert_equal(c.name, None)
    assert_equal(c.value, None)

    # late assignment
    c.name = 'somename'
    assert_raises(ValueError, c._set, 12345)
    assert_equal(c.value, None)
    c.value = np.arange(5)
    assert_equal(c.name, 'somename')
    assert_array_equal(c.value, np.arange(5))

    # immediate content
    data = np.random.random(size=(3,10))
    c = ArrayCollectable(data.copy(), 'myname',
                         "This is a test", length=3)
    assert_equal(c.name, 'myname')
    assert_array_equal(c.value, data)
    assert_equal(c.__doc__, "This is a test")
    assert_equal(str(c), 'myname')

    # repr
    from numpy import array
    e = eval(repr(c))
    assert_equal(e.name, 'myname')
    assert_array_almost_equal(e.value, data)
    assert_equal(e.__doc__, "This is a test")

    # cannot assign array of wrong length
    assert_raises(ValueError, c._set, np.arange(5))
    assert_equal(len(c), 3)

    # shallow copy DOES create a view of value array
    c.value = np.arange(3)
    d = copy.copy(c)
    assert_true(d.value.base is c.value)

    # names starting with _ are not allowed
    assert_raises(ValueError, c._set_name, "_underscore")
Exemplo n.º 16
0
def test_array_collectable():
    c = ArrayCollectable()

    # empty by default
    assert_equal(c.name, None)
    assert_equal(c.value, None)

    # late assignment
    c.name = 'somename'
    assert_raises(ValueError, c._set, 12345)
    assert_equal(c.value, None)
    c.value = np.arange(5)
    assert_equal(c.name, 'somename')
    assert_array_equal(c.value, np.arange(5))

    # immediate content
    data = np.random.random(size=(3, 10))
    c = ArrayCollectable(data.copy(), 'myname', "This is a test", length=3)
    assert_equal(c.name, 'myname')
    assert_array_equal(c.value, data)
    assert_equal(c.__doc__, "This is a test")
    assert_equal(str(c), 'myname')

    # repr
    from numpy import array
    e = eval(repr(c))
    assert_equal(e.name, 'myname')
    assert_array_almost_equal(e.value, data)
    assert_equal(e.__doc__, "This is a test")

    # cannot assign array of wrong length
    assert_raises(ValueError, c._set, np.arange(5))
    assert_equal(len(c), 3)

    # shallow copy DOES create a view of value array
    c.value = np.arange(3)
    d = copy.copy(c)
    assert_true(d.value.base is c.value)

    # names starting with _ are not allowed
    assert_raises(ValueError, c._set_name, "_underscore")
Exemplo n.º 17
0
def test_attrmap():
    map_default = {'eins': 0, 'zwei': 2, 'sieben': 1}
    map_custom = {'eins': 11, 'zwei': 22, 'sieben': 33}
    literal = ['eins', 'zwei', 'sieben', 'eins', 'sieben', 'eins']
    literal_nonmatching = ['uno', 'dos', 'tres']
    num_default = [0, 2, 1, 0, 1, 0]
    num_custom = [11, 22, 33, 11, 33, 11]

    # no custom mapping given
    am = AttributeMap()
    assert_false(am)
    ok_(len(am) == 0)
    assert_array_equal(am.to_numeric(literal), num_default)
    assert_array_equal(am.to_literal(num_default), literal)
    ok_(am)
    ok_(len(am) == 3)

    #
    # Tests for recursive mapping + preserving datatype
    class myarray(np.ndarray):
        pass

    assert_raises(KeyError, am.to_literal, [(1, 2), 2, 0])
    literal_fancy = [(1, 2), 2, [0], np.array([0, 1]).view(myarray)]
    literal_fancy_tuple = tuple(literal_fancy)
    literal_fancy_array = np.array(literal_fancy, dtype=object)

    for l in (literal_fancy, literal_fancy_tuple,
              literal_fancy_array):
        res = am.to_literal(l, recurse=True)
        assert_equal(res[0], ('sieben', 'zwei'))
        assert_equal(res[1], 'zwei')
        assert_equal(res[2], ['eins'])
        assert_array_equal(res[3], ['eins', 'sieben'])

        # types of result and subsequences should be preserved
        ok_(isinstance(res, l.__class__))
        ok_(isinstance(res[0], tuple))
        ok_(isinstance(res[1], str))
        ok_(isinstance(res[2], list))
        ok_(isinstance(res[3], myarray))

    # yet another example
    a = np.empty(1, dtype=object)
    a[0] = (0, 1)
    res = am.to_literal(a, recurse=True)
    ok_(isinstance(res[0], tuple))

    #
    # with custom mapping
    am = AttributeMap(map=map_custom)
    assert_array_equal(am.to_numeric(literal), num_custom)
    assert_array_equal(am.to_literal(num_custom), literal)

    # if not numeric nothing is mapped
    assert_array_equal(am.to_numeric(num_custom), num_custom)
    # even if the map doesn't fit
    assert_array_equal(am.to_numeric(num_default), num_default)

    # need to_numeric first
    am = AttributeMap()
    assert_raises(RuntimeError, am.to_literal, [1,2,3])
    # stupid args
    assert_raises(ValueError, AttributeMap, map=num_custom)

    # map mismatch
    am = AttributeMap(map=map_custom)
    if __debug__:
        # checked only in __debug__
        assert_raises(KeyError, am.to_numeric, literal_nonmatching)
    # needs reset and should work afterwards
    am.clear()
    assert_array_equal(am.to_numeric(literal_nonmatching), [2, 0, 1])
    # and now reverse
    am = AttributeMap(map=map_custom)
    assert_raises(KeyError, am.to_literal, num_default)

    # dict-like interface
    am = AttributeMap()

    ok_([(k, v) for k, v in am.iteritems()] == [])
Exemplo n.º 18
0
def test_zscore():
    """Test z-scoring transformation
    """
    # dataset: mean=2, std=1
    samples = np.array((0, 1, 3, 4, 2, 2, 3, 1, 1, 3, 3, 1, 2, 2, 2, 2)).\
        reshape((16, 1))
    data = dataset_wizard(samples.copy(), targets=range(16), chunks=[0] * 16)
    assert_equal(data.samples.mean(), 2.0)
    assert_equal(data.samples.std(), 1.0)
    data_samples = data.samples.copy()
    zscore(data, chunks_attr='chunks')

    # copy should stay intact
    assert_equal(data_samples.mean(), 2.0)
    assert_equal(data_samples.std(), 1.0)
    # we should be able to operate on ndarrays
    # But we can't change type inplace for an array, can't we?
    assert_raises(TypeError, zscore, data_samples, chunks_attr=None)
    # so lets do manually
    data_samples = data_samples.astype(float)
    zscore(data_samples, chunks_attr=None)
    assert_array_equal(data.samples, data_samples)
    print data_samples

    # check z-scoring
    check = np.array([-2, -1, 1, 2, 0, 0, 1, -1, -1, 1, 1, -1, 0, 0, 0, 0],
                    dtype='float64').reshape(16, 1)
    assert_array_equal(data.samples, check)

    data = dataset_wizard(samples.copy(), targets=range(16), chunks=[0] * 16)
    zscore(data, chunks_attr=None)
    assert_array_equal(data.samples, check)

    # check z-scoring taking set of labels as a baseline
    data = dataset_wizard(samples.copy(),
                   targets=[0, 2, 2, 2, 1] + [2] * 11,
                   chunks=[0] * 16)
    zscore(data, param_est=('targets', [0, 1]))
    assert_array_equal(samples, data.samples + 1.0)

    # check that zscore modifies in-place; only guaranteed if no upcasting is
    # necessary
    samples = samples.astype('float')
    data = dataset_wizard(samples,
                   targets=[0, 2, 2, 2, 1] + [2] * 11,
                   chunks=[0] * 16)
    zscore(data, param_est=('targets', [0, 1]))
    assert_array_equal(samples, data.samples)

    # these might be duplicating code above -- but twice is better than nothing

    # dataset: mean=2, std=1
    raw = np.array((0, 1, 3, 4, 2, 2, 3, 1, 1, 3, 3, 1, 2, 2, 2, 2))
    # dataset: mean=12, std=1
    raw2 = np.array((0, 1, 3, 4, 2, 2, 3, 1, 1, 3, 3, 1, 2, 2, 2, 2)) + 10
    # zscore target
    check = [-2, -1, 1, 2, 0, 0, 1, -1, -1, 1, 1, -1, 0, 0, 0, 0]

    ds = dataset_wizard(raw.copy(), targets=range(16), chunks=[0] * 16)
    pristine = dataset_wizard(raw.copy(), targets=range(16), chunks=[0] * 16)

    zm = ZScoreMapper()
    # should do global zscore by default
    zm.train(ds)                        # train
    assert_array_almost_equal(zm.forward(ds), np.transpose([check]))
    # should not modify the source
    assert_array_equal(pristine, ds)

    # if we tell it a different mean it should obey the order
    zm = ZScoreMapper(params=(3,1))
    zm.train(ds)
    assert_array_almost_equal(zm.forward(ds), np.transpose([check]) - 1 )
    assert_array_equal(pristine, ds)

    # let's look at chunk-wise z-scoring
    ds = dataset_wizard(np.hstack((raw.copy(), raw2.copy())),
                        targets=range(32),
                        chunks=[0] * 16 + [1] * 16)
    # by default chunk-wise
    zm = ZScoreMapper()
    zm.train(ds)                        # train
    assert_array_almost_equal(zm.forward(ds), np.transpose([check + check]))
    # we should be able to do that same manually
    zm = ZScoreMapper(params={0: (2,1), 1: (12,1)})
    zm.train(ds)                        # train
    assert_array_almost_equal(zm.forward(ds), np.transpose([check + check]))
Exemplo n.º 19
0
def test_flatten():
    samples_shape = (2, 2, 4)
    data_shape = (4,) + samples_shape
    data = np.arange(np.prod(data_shape)).reshape(data_shape).view(myarray)
    pristinedata = data.copy()
    target = [[ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15],
              [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31],
              [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47],
              [48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]]
    target = np.array(target).view(myarray)
    index_target = np.array([[0, 0, 0], [0, 0, 1], [0, 0, 2], [0, 0, 3],
                            [0, 1, 0], [0, 1, 1], [0, 1, 2], [0, 1, 3],
                            [1, 0, 0], [1, 0, 1], [1, 0, 2], [1, 0, 3],
                            [1, 1, 0], [1, 1, 1], [1, 1, 2], [1, 1, 3]])


    # array subclass survives
    ok_(isinstance(data, myarray))

    # actually, there should be no difference between a plain FlattenMapper and
    # a chain that only has a FlattenMapper as the one element
    for fm in [FlattenMapper(space='voxel'),
               ChainMapper([FlattenMapper(space='voxel'),
                            StaticFeatureSelection(slice(None))])]:
        # not working if untrained
        assert_raises(RuntimeError,
                      fm.forward1,
                      np.arange(np.sum(samples_shape) + 1))

        fm.train(data)

        ok_(isinstance(fm.forward(data), myarray))
        ok_(isinstance(fm.forward1(data[2]), myarray))
        assert_array_equal(fm.forward(data), target)
        assert_array_equal(fm.forward1(data[2]), target[2])
        assert_raises(ValueError, fm.forward, np.arange(4))

        # all of that leaves that data unmodified
        assert_array_equal(data, pristinedata)

        # reverse mapping
        ok_(isinstance(fm.reverse(target), myarray))
        ok_(isinstance(fm.reverse1(target[0]), myarray))
        ok_(isinstance(fm.reverse(target[1:2]), myarray))
        assert_array_equal(fm.reverse(target), data)
        assert_array_equal(fm.reverse1(target[0]), data[0])
        assert_array_equal(fm.reverse(target[1:2]), data[1:2])
        assert_raises(ValueError, fm.reverse, np.arange(14))

        # check one dimensional data, treated as scalar samples
        oned = np.arange(5)
        fm.train(Dataset(oned))
        # needs 2D
        assert_raises(ValueError, fm.forward, oned)
        # doesn't match mapper, since Dataset turns `oned` into (5,1)
        assert_raises(ValueError, fm.forward, oned)
        assert_equal(Dataset(oned).nfeatures, 1)

        # try dataset mode, with some feature attribute
        fattr = np.arange(np.prod(samples_shape)).reshape(samples_shape)
        ds = Dataset(data, fa={'awesome': fattr.copy()})
        assert_equal(ds.samples.shape, data_shape)
        fm.train(ds)
        dsflat = fm.forward(ds)
        ok_(isinstance(dsflat, Dataset))
        ok_(isinstance(dsflat.samples, myarray))
        assert_array_equal(dsflat.samples, target)
        assert_array_equal(dsflat.fa.awesome, np.arange(np.prod(samples_shape)))
        assert_true(isinstance(dsflat.fa['awesome'], ArrayCollectable))
        # test index creation
        assert_array_equal(index_target, dsflat.fa.voxel)

        # and back
        revds = fm.reverse(dsflat)
        ok_(isinstance(revds, Dataset))
        ok_(isinstance(revds.samples, myarray))
        assert_array_equal(revds.samples, data)
        assert_array_equal(revds.fa.awesome, fattr)
        assert_true(isinstance(revds.fa['awesome'], ArrayCollectable))
        assert_false('voxel' in revds.fa)
Exemplo n.º 20
0
def test_simpleboxcar():
    data = np.atleast_2d(np.arange(10)).T
    sp = np.arange(10)

    # check if stupid thing don't work
    assert_raises(ValueError, BoxcarMapper, sp, 0)

    # now do an identity transformation
    bcm = BoxcarMapper(sp, 1)
    trans = bcm.forward(data)
    # ,0 is a feature below, so we get explicit 2D out of 1D
    assert_array_equal(trans[:,0], data)

    # now check for illegal boxes
    if __debug__:
        # condition is checked only in __debug__
        assert_raises(ValueError, BoxcarMapper(sp, 2).train, data)

    # now something that should work
    nbox = 9
    boxlength = 2
    sp = np.arange(nbox)
    bcm = BoxcarMapper(sp, boxlength)
    trans = bcm(data)
    # check that is properly upcasts the dimensionality
    assert_equal(trans.shape, (nbox, boxlength) + data.shape[1:])
    # check actual values, squeezing the last dim for simplicity
    assert_array_equal(trans.squeeze(), np.vstack((np.arange(9), np.arange(9)+1)).T)


    # now test for proper data shape
    data = np.ones((10,3,4,2))
    sp = [ 2, 4, 3, 5 ]
    trans = BoxcarMapper(sp, 4)(data)
    assert_equal(trans.shape, (4,4,3,4,2))

    # test reverse
    data = np.arange(240).reshape(10, 3, 4, 2)
    sp = [ 2, 4, 3, 5 ]
    boxlength = 2
    m = BoxcarMapper(sp, boxlength)
    m.train(data)
    mp = m.forward(data)
    assert_equal(mp.shape, (4, 2, 3, 4, 2))

    # try full reconstruct
    mr = m.reverse(mp)
    # shape has to match
    assert_equal(mr.shape, (len(sp) * boxlength,) + data.shape[1:])
    # only known samples are part of the results
    assert_true((mr >= 24).all())
    assert_true((mr < 168).all())

    # check proper reconstruction of non-conflicting sample
    assert_array_equal(mr[0].ravel(), np.arange(48, 72))

    # check proper reconstruction of samples being part of multiple
    # mapped samples
    assert_array_equal(mr[1].ravel(), np.arange(72, 96))

    # test reverse of a single sample
    singlesample = np.arange(48).reshape(2, 3, 4, 2)
    assert_array_equal(singlesample, m.reverse1(singlesample))
    # should not work for shape mismatch, but it does work and is useful when
    # reverse mapping sample attributes
    #assert_raises(ValueError, m.reverse, singlesample[0])

    # check broadcasting of 'raw' samples into proper boxcars on forward()
    bc = m.forward1(np.arange(24).reshape(3, 4, 2))
    assert_array_equal(bc, np.array(2 * [np.arange(24).reshape(3, 4, 2)]))
Exemplo n.º 21
0
def test_chainmapper():
    # the chain needs at lest one mapper
    assert_raises(ValueError, ChainMapper, [])
    # a typical first mapper is to flatten
    cm = ChainMapper([FlattenMapper()])

    # few container checks
    assert_equal(len(cm), 1)
    assert_true(isinstance(cm[0], FlattenMapper))

    # now training
    # come up with data
    samples_shape = (2, 2, 4)
    data_shape = (4,) + samples_shape
    data = np.arange(np.prod(data_shape)).reshape(data_shape)
    pristinedata = data.copy()
    target = [
        [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15],
        [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31],
        [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47],
        [48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63],
    ]
    target = np.array(target)

    # if it is not trained it knows nothing
    cm.train(data)

    # a new mapper should appear when doing feature selection
    cm.append(StaticFeatureSelection(range(1, 16)))
    assert_equal(cm.forward1(data[0]).shape, (15,))
    assert_equal(len(cm), 2)
    # multiple slicing
    cm.append(StaticFeatureSelection([9, 14]))
    assert_equal(cm.forward1(data[0]).shape, (2,))
    assert_equal(len(cm), 3)

    # check reproduction
    if __debug__:
        # debug mode needs special test as it enhances the repr output
        # with module info and id() appendix for objects
        import mvpa

        cm_clone = eval(repr(cm))
        assert_equal("#".join(repr(cm_clone).split("#")[:-1]), "#".join(repr(cm).split("#")[:-1]))
    else:
        cm_clone = eval(repr(cm))
        assert_equal(repr(cm_clone), repr(cm))

    # what happens if we retrain the whole beast an same data as before
    cm.train(data)
    assert_equal(cm.forward1(data[0]).shape, (2,))
    assert_equal(len(cm), 3)

    # let's map something
    mdata = cm.forward(data)
    assert_array_equal(mdata, target[:, [10, 15]])
    # and back
    rdata = cm.reverse(mdata)
    # original shape
    assert_equal(rdata.shape, data.shape)
    # content as far it could be restored
    assert_array_equal(rdata[rdata > 0], data[rdata > 0])
    assert_equal(np.sum(rdata > 0), 8)

    # Lets construct a dataset with mapper assigned and see
    # if sub-selecting a feature adjusts trailing StaticFeatureSelection
    # appropriately
    ds_subsel = Dataset.from_wizard(data, mapper=cm)[:, 1]
    tail_sfs = ds_subsel.a.mapper[-1]
    assert_equal(repr(tail_sfs), "StaticFeatureSelection(slicearg=array([14]))")