Exemplo n.º 1
0
    def test_log1p(self):
        """log1p should give same results as cephes"""
        p_s = [1e-10, 1e-5, 0.1, 0.8, 0.9, 0.95, 0.999, 0.9999999, 1, \
            1.000000001, 1.01, 2]
        exp = [
9.9999999995e-11,
9.99995000033e-06,
0.0953101798043,
0.587786664902,
0.641853886172,
0.667829372576,
0.692647055518,
0.69314713056,
0.69314718056,
0.69314718106,
0.698134722071,
1.09861228867,]
        for p, e in zip(p_s, exp):
            self.assertFloatEqual(log1p(p), e)
Exemplo n.º 2
0
def bdtri(k, n, y):
    """Inverse of binomial distribution.

    Finds binomial p such that sum of terms 0-k reaches cum probability y.
    """
    y = fix_rounding_error(y)
    if y < 0.0 or y > 1.0:
        raise ZeroDivisionError, "y must be between 1 and 0."
    if k < 0 or n <= k:
        raise ZeroDivisionError, "k must be between 0 and n"
    dn = n - k
    if k == 0:
        if y > 0.8:
            p = -expm1(log1p(y-1.0) / dn)
        else:
            p = 1.0 - y**(1.0/dn)
    else:
        dk = k + 1;
        p = incbet(dn, dk, 0.5)
        if p > 0.5:
            p = incbi(dk, dn, 1.0-y)
        else:
            p = 1.0 - incbi(dn, dk, y)
    return p
Exemplo n.º 3
0
def bdtrc(k, n, p):
    """Complement of binomial distribution, k+1 through n.

    Uses formula bdtrc(k, n, p) = betai(k+1, n-k, p)

    See Cephes docs for details.
    """
    p = fix_rounding_error(p)
    if (p < 0) or (p > 1):
        raise ValueError, "Binomial p must be between 0 and 1."
    if (k < 0) or (n < k):
        raise ValueError, "Binomial k must be between 0 and n."
    if k == n:
        return 0
    dn = n - k
    if k == 0:
        if p < .01:
            dk = -expm1(dn * log1p(-p))
        else:
            dk = 1 - pow(1.0-p, dn)
    else:
        dk = k + 1
        dk = betai(dk, dn, p)
    return dk