Exemplo n.º 1
0
def main():
    """
    runs experiment in different settings
    """

    #data = ["cancer", "toy", "landmine", "mnist"]

    #compare_solvers(500, "splicing")
    #compare_solvers("cancer", 100)
    #compare_solvers("landmine", 30000)
    #compare_solvers("mnist", 30000)
    #compare_solvers("toy", 10000)

    #args = [["mnist", 30000],["toy", 10000]]
    ar = []
    #ar.append({"data_name": "mnist", "min_interval": 1000})
    ar.append({"data_name": "toy", "min_interval": 1000})
    #ar.append({"data_name": "landmine", "min_interval": 300})
    #ar.append({"data_name": "cancer", "min_interval": 100})

    local = True
    max_num_threads = 1
    pythongrid.pg_map(compare_solvers,
                      ar, {},
                      local,
                      max_num_threads,
                      mem="18G")
Exemplo n.º 2
0
def runExample():
    """
    execute map example
    """

    args = [1, 2, 4, 8, 16]
    local = True
    max_num_threads = 3
    param = {"h_vmem": "1G"}

    intermediate_results = pg_map(computeFactorial, args, param, local, max_num_threads)

    print "reducing result"
    for i, ret in enumerate(intermediate_results):
        print "f(%i) = %i" % (args[i], ret)
Exemplo n.º 3
0
def train(tax, tax_name, num_train):
    """
    hierarchical training procedure
    """

    datadir = "../../data"
    num_vald = num_train*3

    params_c = "[1 10 100 250]"
    params_b = "[0 0.25 0.5 0.75 1.0]"

    # enqueue root node 
    grey_nodes = [tax]
    
    
    #####################################################
    #         top-down processing of taxonomy           #
    #####################################################
   
    leaf_cmds = []
 
    while len(grey_nodes)>0:
    
        node = grey_nodes.pop(0) # pop first item
    
        # enqueue children
        if node.children != None:
            grey_nodes.extend(node.children)
                
        # get data below current node
        data_keys = node.get_data_keys()
        # create org list in matlab format
        org_list = str(data_keys).replace("[", "{").replace("]", "}")
        
        # set up presvm
        if node.is_root():
            # no parent at root node
            parent_model = "none"
        
        else:
            # regularize against parent predictor
            parent_model = "../../out/%s/%s" % (tax_name, node.parent.name)

        # determine current output directory
        current_out = "../out/%s/%s" % (tax_name, node.name)

        # create dirs if not present
        if not os.path.exists(current_out):
            #Super-mkdir; create a leaf directory and all intermediate ones.
            print "creating dir %s" % (current_out)
            os.makedirs(current_out)

        # construct commands
        matlab_call_train = "matlab -nojvm -nosplash -nodesktop -r \"train_orgs('%s',%s,'%s',%i,%i,%s,%s,'%s/evaluation.mat'), exit;\" " % (datadir, org_list, current_out, num_train, num_vald, params_c, params_b, parent_model)
        matlab_call_eval = "matlab -nojvm -nosplash -nodesktop -r \"evaluate_result('%s'), exit;\" " % ("../" + current_out)

        # example call:
        # matlab -nojvm -nosplash -nodesktop -r train_orgs('../../data',{'Bacillus_anthracis_Ames_uid57909', 'Bacillus_subtilis_168_uid57675'},'../out/tax1/bacillus',10,50,[0.1 1 10],[0 0.1 0.5 0.8 0.9],'../../out/All_Tasks/evaluation.mat'), exit;

        cmd_tuple = matlab_call_train, matlab_call_eval

        # execute processing at inner nodes, enqueue for leaves
        if node.is_leaf():
            leaf_cmds.append(cmd_tuple)
        else:
            system_call.call2(cmd_tuple)

    # execute leaf processing in parallel 
    result = pg.pg_map(system_call.call2, leaf_cmds, local=True, maxNumThreads=4, mem="16G")