Exemplo n.º 1
0
def test_diagHamiltonian2():
    """
    Diagonalization of composite systems
    """

    H1 = scipy.rand() * sigmax() + scipy.rand() * sigmay() +\
        scipy.rand() * sigmaz()
    H2 = scipy.rand() * sigmax() + scipy.rand() * sigmay() +\
        scipy.rand() * sigmaz()

    H = tensor(H1, H2)

    evals, ekets = H.eigenstates()

    for n in range(len(evals)):
        # assert that max(H * ket - e * ket) is small
        assert_equal(amax(
            abs((H * ekets[n] - evals[n] * ekets[n]).full())) < 1e-10, True)

    N1 = 10
    N2 = 2

    a1 = tensor(destroy(N1), qeye(N2))
    a2 = tensor(qeye(N1), destroy(N2))
    H = scipy.rand() * a1.dag() * a1 + scipy.rand() * a2.dag() * a2 + \
        scipy.rand() * (a1 + a1.dag()) * (a2 + a2.dag())
    evals, ekets = H.eigenstates()

    for n in range(len(evals)):
        # assert that max(H * ket - e * ket) is small
        assert_equal(amax(
            abs((H * ekets[n] - evals[n] * ekets[n]).full())) < 1e-10, True)
Exemplo n.º 2
0
def _qubit_integrate(tlist, psi0, epsilon, delta, g1, g2, solver):

    H = epsilon / 2.0 * sigmaz() + delta / 2.0 * sigmax()

    c_op_list = []

    rate = g1
    if rate > 0.0:
        c_op_list.append(np.sqrt(rate) * sigmam())

    rate = g2
    if rate > 0.0:
        c_op_list.append(np.sqrt(rate) * sigmaz())

    e_ops = [sigmax(), sigmay(), sigmaz()]

    if solver == "me":
        output = mesolve(H, psi0, tlist, c_op_list, e_ops)
    elif solver == "es":
        output = essolve(H, psi0, tlist, c_op_list, e_ops)
    elif solver == "mc":
        output = mcsolve(H, psi0, tlist, c_op_list, e_ops, ntraj=750)
    else:
        raise ValueError("unknown solver")

    return output.expect[0], output.expect[1], output.expect[2]
Exemplo n.º 3
0
    def testFloquetUnitary(self):
        """
        Floquet: test unitary evolution of time-dependent two-level system
        """

        delta = 1.0 * 2 * np.pi
        eps0 = 1.0 * 2 * np.pi
        A = 0.5 * 2 * np.pi
        omega = np.sqrt(delta ** 2 + eps0 ** 2)
        T = (2 * np.pi) / omega
        tlist = np.linspace(0.0, 2 * T, 101)
        psi0 = rand_ket(2)
        H0 = - eps0 / 2.0 * sigmaz() - delta / 2.0 * sigmax()
        H1 = A / 2.0 * sigmax()
        args = {'w': omega}
        H = [H0, [H1, lambda t, args: np.sin(args['w'] * t)]]
        e_ops = [num(2)]

        # solve schrodinger equation with floquet solver
        sol = fsesolve(H, psi0, tlist, e_ops, T, args)

        # compare with results from standard schrodinger equation
        sol_ref = mesolve(H, psi0, tlist, [], e_ops, args)

        assert_(max(abs(sol.expect[0] - sol_ref.expect[0])) < 1e-4)
Exemplo n.º 4
0
def pauli():
    '''Define pauli spin matrices'''
    identity = qutip.qeye(2)
    sx = qutip.sigmax()/2
    sy = qutip.sigmay()/2
    sz = qutip.sigmaz()/2
    return identity, sx, sy, sz
    def __init__(self, N_field_levels, coupling=None, N_qubits=1):

        # basic parameters
        self.N_field_levels = N_field_levels
        self.N_qubits = N_qubits

        if coupling is None:
            self.g = 0
        else:
            self.g = coupling

        # bare operators
        self.idcavity = qt.qeye(self.N_field_levels)
        self.idqubit = qt.qeye(2)
        self.a_bare = qt.destroy(self.N_field_levels)
        self.sm_bare = qt.sigmam()
        self.sz_bare = qt.sigmaz()
        self.sx_bare = qt.sigmax()
        self.sy_bare = qt.sigmay()

        # 1 atom 1 cavity operators
        self.jc_a = qt.tensor(self.a_bare, self.idqubit)
        self.jc_sm = qt.tensor(self.idcavity, self.sm_bare)
        self.jc_sx = qt.tensor(self.idcavity, self.sx_bare)
        self.jc_sy = qt.tensor(self.idcavity, self.sy_bare)
        self.jc_sz = qt.tensor(self.idcavity, self.sz_bare)
Exemplo n.º 6
0
def ptracetest():
    gamma = 1.
    neq = 2
    psi0 = qt.basis(neq,neq-1)
    psi0 = qt.tensor(psi0,psi0)
    H = qt.tensor(qt.sigmax(),qt.sigmay())
    c1 = np.sqrt(gamma)*qt.sigmax()
    e1 = np.sqrt(gamma)*qt.sigmaz()
    c_ops = [qt.tensor(c1,c1)]
    e_ops = [qt.tensor(e1,e1),qt.tensor(c1,c1)]
    #e_ops = []
    tlist = np.linspace(0,10,100)
    ntraj = 2000
    ptrace_sel = [0]
    sol_f90 = mcf90.mcsolve_f90(H,psi0,tlist,c_ops,e_ops,ntraj=ntraj,
            ptrace_sel=ptrace_sel,calc_entropy=True)
    def test_crab(self):
        """
        Optimise pulse for Hadamard gate using CRAB algorithm
        Apply guess and ramping pulse
        assert that goal is achieved and fidelity error is below threshold
        assert that starting amplitude is zero
        """
        # Hadamard
        H_d = sigmaz()
        H_c = [sigmax()]
        U_0 = identity(2)
        U_targ = hadamard_transform(1)

        n_ts = 12
        evo_time = 10
        
        # Run the optimisation
        result = cpo.opt_pulse_crab_unitary(H_d, H_c, U_0, U_targ, 
                n_ts, evo_time, 
                fid_err_targ=1e-5, 
                alg_params={'crab_pulse_params':{'randomize_coeffs':False, 
                                                 'randomize_freqs':False}},
                init_coeff_scaling=0.5,
                guess_pulse_type='GAUSSIAN', 
                guess_pulse_params={'variance':0.1*evo_time},
                guess_pulse_scaling=1.0, guess_pulse_offset=1.0,
                amp_lbound=None, amp_ubound=None,
                ramping_pulse_type='GAUSSIAN_EDGE', 
                ramping_pulse_params={'decay_time':evo_time/100.0},
                gen_stats=True)
        assert_(result.goal_achieved, msg="Hadamard goal not achieved")
        assert_almost_equal(result.fid_err, 0.0, decimal=3, 
                            err_msg="Hadamard infidelity too high")
        assert_almost_equal(result.final_amps[0, 0], 0.0, decimal=3, 
                            err_msg="lead in amplitude not zero")
 def count_waves(n_ts, evo_time, ptype, freq=None, num_waves=None):
     
     # Any dyn config will do 
     #Hadamard
     H_d = sigmaz()
     H_c = [sigmax()]
     U_0 = identity(2)
     U_targ = hadamard_transform(1)
     
     pulse_params = {}
     if freq is not None:
         pulse_params['freq'] = freq
     if num_waves is not None:
         pulse_params['num_waves'] = num_waves
     
     optim = cpo.create_pulse_optimizer(H_d, H_c, U_0, U_targ, 
                                 n_ts, evo_time, 
                                 dyn_type='UNIT', 
                                 init_pulse_type=ptype,
                                 init_pulse_params=pulse_params,
                                 gen_stats=False)
     pgen = optim.pulse_generator
     pulse = pgen.gen_pulse()
     
     # count number of waves
     zero_cross = pulse[0:-2]*pulse[1:-1] < 0
     
     return (sum(zero_cross) + 1) / 2
    def test_01_1_unitary_hadamard(self):
        """
        control.pulseoptim: Hadamard gate with linear initial pulses
        assert that goal is achieved and fidelity error is below threshold
        """
        # Hadamard
        H_d = sigmaz()
        H_c = [sigmax()]
        U_0 = identity(2)
        U_targ = hadamard_transform(1)

        n_ts = 10
        evo_time = 10

        # Run the optimisation
        result = cpo.optimize_pulse_unitary(H_d, H_c, U_0, U_targ,
                        n_ts, evo_time,
                        fid_err_targ=1e-10,
                        init_pulse_type='LIN',
                        gen_stats=True)
        assert_(result.goal_achieved, msg="Hadamard goal not achieved. "
                    "Terminated due to: {}, with infidelity: {}".format(
                    result.termination_reason, result.fid_err))
        assert_almost_equal(result.fid_err, 0.0, decimal=10,
                            err_msg="Hadamard infidelity too high")
def pauli():
	'''Return the Pauli spin matrices for S=1/2'''
	identity = qutip.qeye(2)
	sx = qutip.sigmax()/2
	sy = qutip.sigmay()/2
	sz = qutip.sigmaz()/2
	return identity, sx, sy, sz
    def construct_hamiltonian(self, number_of_spins, alpha):
        """
following example
http://qutip.googlecode.com/svn/doc/2.0.0/html/examples/me/ex-24.html
returns H0 - hamiltonian without the B field
and y_list - list of sigma_y operators
"""
        N = number_of_spins
        si = qeye(2)
        sx = sigmax()
        sy = sigmay()
        # constructing a list of operators sx_list and sy_list where
        # the operator sx_list[i] applies sigma_x on the ith particle and
        # identity to the rest
        sx_list = []
        sy_list = []
        for n in range(N):
            op_list = []
            for m in range(N):
                op_list.append(si)
            op_list[n] = sx
            sx_list.append(tensor(op_list))
            op_list[n] = sy
            sy_list.append(tensor(op_list))
        # construct the hamiltonian
        H0 = 0
        # ising coupling term, time independent
        for i in range(N):
            for j in range(N):
                if i < j:
                    H0 -= abs(i - j) ** -alpha * sx_list[i] * sx_list[j]
        H1 = 0
        for i in range(N):
            H1 -= sy_list[i]
        return H0, H1
Exemplo n.º 12
0
    def test_9_time_dependent_drift(self):
        """
        control.pulseoptim: Hadamard gate with fixed and time varying drift
        assert that goal is achieved for both and that different control
        pulses are produced (only) when they should be
        """
        # Hadamard
        H_0 = sigmaz()
        H_c = [sigmax()]
        U_0 = identity(2)
        U_targ = hadamard_transform(1)

        n_ts = 20
        evo_time = 10
        
        drift_amps_flat = np.ones([n_ts], dtype=float)
        dript_amps_step = [np.round(float(k)/n_ts) for k in range(n_ts)]
        
        # Run the optimisations
        result_fixed = cpo.optimize_pulse_unitary(H_0, H_c, U_0, U_targ, 
                        n_ts, evo_time, 
                        fid_err_targ=1e-10, 
                        init_pulse_type='LIN', 
                        gen_stats=True)
        assert_(result_fixed.goal_achieved, 
                    msg="Fixed drift goal not achieved. "
                    "Terminated due to: {}, with infidelity: {}".format(
                    result_fixed.termination_reason, result_fixed.fid_err))
                    
        H_d = [drift_amps_flat[k]*H_0 for k in range(n_ts)]
        result_flat = cpo.optimize_pulse_unitary(H_d, H_c, U_0, U_targ, 
                        n_ts, evo_time, 
                        fid_err_targ=1e-10, 
                        init_pulse_type='LIN', 
                        gen_stats=True)
        assert_(result_flat.goal_achieved, msg="Flat drift goal not achieved. "
                    "Terminated due to: {}, with infidelity: {}".format(
                    result_flat.termination_reason, result_flat.fid_err))
                    
        # Check fixed and flat produced the same pulse
        assert_almost_equal(result_fixed.final_amps, result_flat.final_amps, 
                            decimal=9, 
                            err_msg="Flat and fixed drift result in "
                                    "different control pules")
                            
        H_d = [dript_amps_step[k]*H_0 for k in range(n_ts)]
        result_step = cpo.optimize_pulse_unitary(H_d, H_c, U_0, U_targ, 
                        n_ts, evo_time, 
                        fid_err_targ=1e-10, 
                        init_pulse_type='LIN', 
                        gen_stats=True)
        assert_(result_step.goal_achieved, msg="Step drift goal not achieved. "
                    "Terminated due to: {}, with infidelity: {}".format(
                    result_step.termination_reason, result_step.fid_err))
                    
        # Check step and flat produced different results
        assert_(np.any(
            np.abs(result_flat.final_amps - result_step.final_amps) > 1e-3), 
                            msg="Flat and step drift result in "
                                    "the same control pules")
Exemplo n.º 13
0
    def test_01_4_unitary_hadamard_qobj(self):
        """
        control.pulseoptim: Hadamard gate with linear initial pulses (Qobj)
        assert that goal is achieved
        """
        # Hadamard
        H_d = sigmaz()
        H_c = [sigmax()]
        U_0 = identity(2)
        U_targ = hadamard_transform(1)

        n_ts = 10
        evo_time = 10

        # Run the optimisation
        #Try with Qobj propagation
        result = cpo.optimize_pulse_unitary(H_d, H_c, U_0, U_targ,
                        n_ts, evo_time,
                        fid_err_targ=1e-10,
                        init_pulse_type='LIN',
                        dyn_params={'oper_dtype':Qobj},
                        gen_stats=True)
        assert_(result.goal_achieved, msg="Hadamard goal not achieved "
                                            "(Qobj propagation). "
                    "Terminated due to: {}, with infidelity: {}".format(
                    result.termination_reason, result.fid_err))
Exemplo n.º 14
0
    def test_01_2_unitary_hadamard_no_stats(self):
        """
        control.pulseoptim: Hadamard gate with linear initial pulses (no stats)
        assert that goal is achieved
        """
        # Hadamard
        H_d = sigmaz()
        H_c = [sigmax()]
        U_0 = identity(2)
        U_targ = hadamard_transform(1)

        n_ts = 10
        evo_time = 10

        # Run the optimisation
        #Try without stats
        result = cpo.optimize_pulse_unitary(H_d, H_c, U_0, U_targ,
                        n_ts, evo_time,
                        fid_err_targ=1e-10,
                        init_pulse_type='LIN',
                        gen_stats=False)
        assert_(result.goal_achieved, msg="Hadamard goal not achieved "
                                            "(no stats). "
                    "Terminated due to: {}, with infidelity: {}".format(
                    result.termination_reason, result.fid_err))
Exemplo n.º 15
0
    def test_02_2_qft_bounds(self):
        """
        control.pulseoptim: QFT gate with linear initial pulses (bounds)
        assert that amplitudes remain in bounds
        """
        Sx = sigmax()
        Sy = sigmay()
        Sz = sigmaz()
        Si = 0.5*identity(2)

        H_d = 0.5*(tensor(Sx, Sx) + tensor(Sy, Sy) + tensor(Sz, Sz))
        H_c = [tensor(Sx, Si), tensor(Sy, Si), tensor(Si, Sx), tensor(Si, Sy)]
        U_0 = identity(4)
        # Target for the gate evolution - Quantum Fourier Transform gate
        U_targ = qft.qft(2)

        n_ts = 10
        evo_time = 10

        result = cpo.optimize_pulse_unitary(H_d, H_c, U_0, U_targ,
                        n_ts, evo_time,
                        fid_err_targ=1e-9,
                        amp_lbound=-1.0, amp_ubound=1.0,
                        init_pulse_type='LIN',
                        gen_stats=True)
        assert_((result.final_amps >= -1.0).all() and
                    (result.final_amps <= 1.0).all(),
                    msg="Amplitude bounds exceeded for QFT")
Exemplo n.º 16
0
    def test_01_6_unitary_hadamard_grad(self):
        """
        control.pulseoptim: Hadamard gate gradient check
        assert that gradient approx and exact gradient match in tolerance
        """
        # Hadamard
        H_d = sigmaz()
        H_c = [sigmax()]
        U_0 = identity(2)
        U_targ = hadamard_transform(1)

        n_ts = 10
        evo_time = 10

        # Create the optim objects
        optim = cpo.create_pulse_optimizer(H_d, H_c, U_0, U_targ,
                        n_ts, evo_time,
                        fid_err_targ=1e-10,
                        dyn_type='UNIT',
                        init_pulse_type='LIN',
                        gen_stats=True)
        dyn = optim.dynamics

        init_amps = optim.pulse_generator.gen_pulse().reshape([-1, 1])
        dyn.initialize_controls(init_amps)

        # Check the exact gradient
        func = optim.fid_err_func_wrapper
        grad = optim.fid_err_grad_wrapper
        x0 = dyn.ctrl_amps.flatten()
        grad_diff = check_grad(func, grad, x0)
        assert_almost_equal(grad_diff, 0.0, decimal=6,
                            err_msg="Unitary gradient outside tolerance")
 def construct_hamiltonian(self, number_of_spins, alpha, B):
     '''
     following example
     http://qutip.googlecode.com/svn/doc/2.0.0/html/examples/me/ex-24.html
     '''
     N = number_of_spins
     si = qeye(2)
     sx = sigmax()
     sy = sigmay()
     #constructing a list of operators sx_list and sy_list where
     #the operator sx_list[i] applies sigma_x on the ith particle and 
     #identity to the rest
     sx_list = []
     sy_list = []
     for n in range(N):
         op_list = []
         for m in range(N):
             op_list.append(si)
         op_list[n] = sx
         sx_list.append(tensor(op_list))
         op_list[n] = sy
         sy_list.append(tensor(op_list))
     #construct the hamiltonian
     H = 0
     #magnetic field term, hamiltonian is in units of J0
     for i in range(N):
         H-= B * sy_list[i]
     #ising coupling term
     for i in range(N):
         for j in range(N):
             if i < j:
                 H+= abs(i - j)**-alpha * sx_list[i] * sx_list[j]
     return H
Exemplo n.º 18
0
def test_Transformation1():
    "Transform 2-level to eigenbasis and back"
    H1 = scipy.rand() * sigmax() + scipy.rand() * sigmay() + \
        scipy.rand() * sigmaz()
    evals, ekets = H1.eigenstates()
    Heb = H1.transform(ekets)        # eigenbasis (should be diagonal)
    H2 = Heb.transform(ekets, True)  # back to original basis
    assert_equal((H1 - H2).norm() < 1e-6, True)
Exemplo n.º 19
0
 def __init__(self):
     super(TestBloch, self).__init__()
     self.propagator = propagator(sigmaz(), .1, [])
     self.set_state(qeye(2) + sigmax())
     self.timer = QtCore.QTimer()
     self.timer.setInterval(100)
     self.timer.timeout.connect(self.propagate)
     self.timer.start()
Exemplo n.º 20
0
def test_Transformation6():
    "Check diagonalization via eigenbasis transformation"

    cx, cy, cz = np.random.rand(), np.random.rand(), np.random.rand()
    H = cx * sigmax() + cy * sigmay() + cz * sigmaz()
    evals, evecs = H.eigenstates()
    Heb = H.transform(evecs).tidyup()  # Heb should be diagonal
    assert_(abs(Heb.full() - np.diag(Heb.full().diagonal())).max() < 1e-6)
Exemplo n.º 21
0
def Hfred(x,N) : # A possible Hamiltonian for the Fredkin gate
    k = 0
    H = 0
    sx = qt.sigmax()/2
    sy = qt.sigmay()/2
    sz = qt.sigmaz()/2
    Id = qt.qeye(2)

    for q in [sx, sy, sz] :
        temp = 0
        OpChain = [Id]*N
        OpChain[2] = q
        OpChain[1] = q
        temp += x[k]*qt.tensor(OpChain)
        H += temp 
    k+=1        

    for q in [sx,sz]:
        
        temp = 0
        OpChain = [Id]*N
        OpChain[2] = q
        OpChain[0] = q
        temp += x[k]*qt.tensor(OpChain)
    
        OpChain = [Id]*N
        OpChain[1] = q
        OpChain[0] = q
        temp += x[k]*qt.tensor(OpChain)
        k += 1
        H += temp 
    
    for q in [1,2]:
        temp = 0
        OpChain = [Id]*N
        OpChain[q] = sx
        OpChain[3] = sx
        temp += x[k]*qt.tensor(OpChain)
        H += temp 
    k+=1        

    temp = 0
    OpChain = [Id]*N
    OpChain[0] = sz
    temp += x[k]*qt.tensor(OpChain)
    H += temp 
    k += 1
    
    temp = 0
    OpChain = [Id]*N
    OpChain[3] = sx
    temp += x[k]*qt.tensor(OpChain)#last one

    H += temp 

    
    return H
Exemplo n.º 22
0
    def qubit_integrate(self, tlist, psi0, epsilon, delta, g1, g2):

        H = epsilon / 2.0 * sigmaz() + delta / 2.0 * sigmax()

        c_op_list = []

        rate = g1
        if rate > 0.0:
            c_op_list.append(np.sqrt(rate) * sigmam())

        rate = g2
        if rate > 0.0:
            c_op_list.append(np.sqrt(rate) * sigmaz())

        output = mesolve(H, psi0, tlist, c_op_list, [sigmax(), sigmay(), sigmaz()])
        expt_list = output.expect[0], output.expect[1], output.expect[2]

        return expt_list[0], expt_list[1], expt_list[2]
Exemplo n.º 23
0
    def testTLS(self):
        "brmesolve: qubit"

        delta = 0.0 * 2 * np.pi
        epsilon = 0.5 * 2 * np.pi
        gamma = 0.25
        times = np.linspace(0, 10, 100)
        H = delta/2 * sigmax() + epsilon/2 * sigmaz()
        psi0 = (2 * basis(2, 0) + basis(2, 1)).unit()
        c_ops = [np.sqrt(gamma) * sigmam()]
        a_ops = [sigmax()]
        e_ops = [sigmax(), sigmay(), sigmaz()]
        res_me = mesolve(H, psi0, times, c_ops, e_ops)
        res_brme = brmesolve(H, psi0, times, a_ops, e_ops,
                             spectra_cb=[lambda w: gamma * (w >= 0)])

        for idx, e in enumerate(e_ops):
            diff = abs(res_me.expect[idx] - res_brme.expect[idx]).max()
            assert_(diff < 1e-2)
Exemplo n.º 24
0
    def qubit_integrate(self, tlist, psi0, epsilon, delta, g1, g2):

        H = epsilon / 2.0 * sigmaz() + delta / 2.0 * sigmax()

        c_op_list = []

        rate = g1
        if rate > 0.0:
            c_op_list.append(np.sqrt(rate) * sigmam())

        rate = g2
        if rate > 0.0:
            c_op_list.append(np.sqrt(rate) * sigmaz())

        output = mesolve(H, psi0, tlist, c_op_list,
                         [sigmax(), sigmay(), sigmaz()])
        expt_list = output.expect[0], output.expect[1], output.expect[2]

        return expt_list[0], expt_list[1], expt_list[2]
Exemplo n.º 25
0
    def test_operator_between_cells(self):
        lattice_412 = qutip.Lattice1d(num_cell=4, boundary="periodic",
                                      cell_num_site=1, cell_site_dof=[2])
        op = qutip.sigmax()
        op_sp = lattice_412.operator_at_cells(op, cells=[1, 2])

        aop_sp = np.zeros((8, 8), dtype=complex)
        aop_sp[2:4, 2:4] = aop_sp[4:6, 4:6] = op.full()
        sv_op_sp = qutip.Qobj(aop_sp, dims=[[4, 2], [4, 2]])
        assert op_sp == sv_op_sp
Exemplo n.º 26
0
 def rotate_player(self, who, rot, dt=0.01, inverse=False):
     x, y, z = rot
     unitary = (2*math.pi*1j*dt*(x*qt.sigmax() + y*qt.sigmay() + z*qt.sigmaz())).expm()
     total_unitary = upgrade_tensor(unitary, who, self.n_players)
     if inverse:
         total_unitary = total_unitary.dag()
     total_unitary.dims = [[total_unitary.shape[0]], [total_unitary.shape[0]]]
     copy = self.current_state.copy()
     if total_unitary.dims[0] == self.current_state.dims[0]:
         self.current_state = total_unitary*self.current_state
Exemplo n.º 27
0
    def test_01_1_state_with_const_H(self):
        "sesolve: state with const H"
        delta = 1.0 * 2*np.pi   # atom frequency
        psi0 = basis(2, 0)        # initial state
        H1 = 0.5*delta*sigmax()      # Hamiltonian operator
        tlist = np.linspace(0, 20, 200)

        analytic_func = lambda t, args: t

        self.check_evolution(H1, delta, psi0, tlist, analytic_func)
Exemplo n.º 28
0
 def test_cyclic_permutation(self):
     operators = [qutip.sigmax(), qutip.sigmaz()]
     test = gates.expand_operator(qutip.tensor(*operators), N=3,
                                  targets=[0, 1], cyclic_permutation=True)
     base_expected = qutip.tensor(*operators, qutip.qeye(2))
     expected = [base_expected.permute(x)
                 for x in [[0, 1, 2], [1, 2, 0], [2, 0, 1]]]
     assert len(expected) == len(test)
     for element in expected:
         assert element in test
Exemplo n.º 29
0
    def local_hamiltonian(self):
        field_vector = self.parent_field.field_vector.values()
        pauli_basis = [qt.sigmax(), qt.sigmay(), qt.sigmaz()]

        b_field = sum(
            [field_vector[i] * pauli_basis[i]
             for i in xrange(0, len(field_vector))
             ]
        )
        return self.gyromagnetic_ratio * b_field * const.HBAR / 2
Exemplo n.º 30
0
    def test_combine(self):
        exp_ix = BathExponent("I", None, Q=sigmax(), ck=2.0, vk=0.5)
        exp_rx = BathExponent("R", None, Q=sigmax(), ck=1.0, vk=0.5)
        exp_rix = BathExponent("RI", None, Q=sigmax(), ck=0.1, vk=0.5, ck2=0.2)
        exp_rz = BathExponent("R", None, Q=sigmaz(), ck=1.0, vk=0.5)

        [exp] = BosonicBath.combine([exp_rx, exp_rx])
        check_exponent(exp, "R", dim=None, Q=sigmax(), ck=2.0, vk=0.5)

        [exp] = BosonicBath.combine([exp_ix, exp_ix])
        check_exponent(exp, "I", dim=None, Q=sigmax(), ck=4.0, vk=0.5)

        [exp] = BosonicBath.combine([exp_rix, exp_rix])
        check_exponent(
            exp,
            "RI",
            dim=None,
            Q=sigmax(),
            ck=0.2,
            vk=0.5,
            ck2=0.4,
        )

        [exp1, exp2] = BosonicBath.combine([exp_rx, exp_rz])
        check_exponent(exp1, "R", dim=None, Q=sigmax(), ck=1.0, vk=0.5)
        check_exponent(exp2, "R", dim=None, Q=sigmaz(), ck=1.0, vk=0.5)

        [exp] = BosonicBath.combine([exp_rx, exp_ix])
        check_exponent(
            exp,
            "RI",
            dim=None,
            Q=sigmax(),
            ck=1.0,
            vk=0.5,
            ck2=2.0,
        )

        [exp] = BosonicBath.combine([exp_rx, exp_ix, exp_rix])
        check_exponent(
            exp,
            "RI",
            dim=None,
            Q=sigmax(),
            ck=1.1,
            vk=0.5,
            ck2=2.2,
        )
Exemplo n.º 31
0
def test_qsave_qload():
    ops_in = [
        qutip.sigmax(),
        qutip.num(_dimension),
        qutip.coherent_dm(_dimension, 1j)
    ]
    filename = _random_file_name()
    qutip.qsave(ops_in, filename)
    ops_out = qutip.qload(filename)
    assert ops_in == ops_out
Exemplo n.º 32
0
def keyboard(event):
    global selected
    global alice
    global bob
    global touched
    key = event.key
    if key == "a":
    	if selected == "Bob":
    		bob = apply(qutip.sigmax(), bob, inverse=True)
    	else:
    		alice = apply(qutip.sigmax(), alice, inverse=True)
    elif key == "d":
    	if selected == "Bob":
    		bob = apply(qutip.sigmax(), bob, inverse=False)
    	else:
    		alice = apply(qutip.sigmax(), alice, inverse=False)
    elif key == "s":
    	if selected == "Bob":
    		bob = apply(qutip.sigmaz(), bob, inverse=True)
    	else:
    		alice = apply(qutip.sigmaz(), alice, inverse=True)
    elif key == "w":
    	if selected == "Bob":
    		bob = apply(qutip.sigmaz(), bob, inverse=False)
    	else:
    		alice = apply(qutip.sigmaz(), alice, inverse=False)
    elif key == "z":
    	if selected == "Bob":
    		bob = apply(qutip.sigmay(), bob, inverse=True)
    	else:
    		alice = apply(qutip.sigmay(), alice, inverse=True)
    elif key == "x":
    	if selected == "Bob":
    		bob = apply(qutip.sigmay(), bob, inverse=False)
    	else:
    		alice = apply(qutip.sigmay(), alice, inverse=False)
    elif key == "p":
        if selected == "Bob":
        	selected = "Alice"
        else:
        	selected = "Bob"
    touched = True
Exemplo n.º 33
0
def keyboard(event):
    global dt
    global a
    global b
    key = event.key
    operator = None
    if key == "a":   #-x for A
        operator = qutip.Qobj(scipy.linalg.expm(-2*math.pi*complex(0,1)*qutip.sigmax().full()*dt))
        a = operator.dag()*a
    elif key == "d": #+x for A
        operator = qutip.Qobj(scipy.linalg.expm(-2*math.pi*complex(0,1)*qutip.sigmax().full()*dt))
        a = operator*a
    elif key == "s": #-z for A
        operator = qutip.Qobj(scipy.linalg.expm(-2*math.pi*complex(0,1)*qutip.sigmaz().full()*dt))
        a = operator.dag()*a
    elif key == "w": #+z for A
        operator = qutip.Qobj(scipy.linalg.expm(-2*math.pi*complex(0,1)*qutip.sigmaz().full()*dt))
        a = operator*a
    elif key == "z": #-y for A
        operator = qutip.Qobj(scipy.linalg.expm(-2*math.pi*complex(0,1)*qutip.sigmay().full()*dt))
        a = operator.dag()*a
    elif key == "x": #+y for A
        operator = qutip.Qobj(scipy.linalg.expm(-2*math.pi*complex(0,1)*qutip.sigmay().full()*dt))
        a = operator*a
    elif key == "j": #-x for B
        operator = qutip.Qobj(scipy.linalg.expm(-2*math.pi*complex(0,1)*qutip.sigmax().full()*dt))
        b = operator.dag()*b
    elif key == "l": #+x for B
        operator = qutip.Qobj(scipy.linalg.expm(-2*math.pi*complex(0,1)*qutip.sigmax().full()*dt))
        b = operator*b
    elif key == "k": #-z for B
        operator = qutip.Qobj(scipy.linalg.expm(-2*math.pi*complex(0,1)*qutip.sigmaz().full()*dt))
        b = operator.dag()*b
    elif key == "i": #+z for B
        operator = qutip.Qobj(scipy.linalg.expm(-2*math.pi*complex(0,1)*qutip.sigmaz().full()*dt))
        b = operator*b
    elif key == "m": #-y for B
        operator = qutip.Qobj(scipy.linalg.expm(-2*math.pi*complex(0,1)*qutip.sigmay().full()*dt))
        b = operator.dag()*b
    elif key == ",": #+y for B
        operator = qutip.Qobj(scipy.linalg.expm(-2*math.pi*complex(0,1)*qutip.sigmay().full()*dt))
        b = operator*b
    def test_bigreal_conversion(self):
        test_vec1 = np.array([1, 2])
        test_vec2 = np.array([1j, 1 - 2j])
        test_matrix1 = np.array([[0.2, 0.1], [1., -3.]])
        test_matrix2 = qutip.sigmax()
        target_bigreal_vec = np.array([[1], [2], [0], [0]])

        assert_array_equal(
            utils.complex2bigreal(test_vec1), target_bigreal_vec)

        assert_array_equal(
            utils.complex2bigreal(qutip.sigmax()),
            np.array([[0, 1, 0, 0],
                      [1, 0, 0, 0],
                      [0, 0, 0, 1],
                      [0, 0, 1, 0]])
        )

        assert_array_equal(
            utils.complex2bigreal(qutip.sigmay()),
            np.array([[0, 0, 0, 1],
                      [0, 0, -1, 0],
                      [0, -1, 0, 0],
                      [1, 0, 0, 0]])
        )
        # test back and forth between complex and bigreal form
        assert_array_equal(
            utils.bigreal2complex(utils.complex2bigreal(test_vec1)),
            test_vec1.reshape((len(test_vec1), 1))
        )
        assert_array_equal(
            utils.bigreal2complex(utils.complex2bigreal(test_vec2)),
            test_vec2.reshape((len(test_vec2), 1))
        )
        assert_array_equal(
            utils.bigreal2complex(utils.complex2bigreal(test_matrix1)),
            test_matrix1
        )
        assert_array_equal(
            utils.bigreal2complex(utils.complex2bigreal(test_matrix2)),
            test_matrix2.data.toarray()
        )
Exemplo n.º 35
0
def test_regression_490():
    """Test for regression of gh-490."""
    h = [qutip.sigmax(),
         [qutip.sigmay(), _regression_490_f1],
         [qutip.sigmaz(), _regression_490_f2]]
    state = (qutip.basis(2, 0) + qutip.basis(2, 1)).unit()
    times = np.linspace(0, 3, 10)
    result_me = qutip.mesolve(h, state, times)
    result_mc = qutip.mcsolve(h, state, times, ntraj=1)
    for state_me, state_mc in zip(result_me.states, result_mc.states):
        np.testing.assert_allclose(state_me.full(), state_mc.full(), atol=1e-8)
    def __init__(self, omega_0, td_protocol=None):
        self.name = 'lz'
        self.model_parameters = dict(omega_0=omega_0)
        self.critical_value = 0.
        if td_protocol is not None and isinstance(td_protocol, str):
            self._parse_td_protocol(td_protocol)
        else:
            self.td_protocol = td_protocol

        self.H0 = omega_0 * qutip.sigmax()
        self.H1 = qutip.sigmaz()
Exemplo n.º 37
0
    def set_up_ops(self, num_qubits):
        """
        Generate the Hamiltonians for the spinchain model and save them in the
        attribute `ctrls`.

        Parameters
        ----------
        num_qubits: int
            The number of qubits in the system.
        """
        # sx_ops
        for m in range(num_qubits):
            self.add_control(sigmax(), m, label="sx" + str(m))
        # sz_ops
        for m in range(num_qubits):
            self.add_control(sigmaz(), m, label="sz" + str(m))
        # sxsy_ops
        operator = tensor([sigmax(), sigmax()]) + tensor([sigmay(), sigmay()])
        for n in range(num_qubits - 1):
            self.add_control(operator, [n, n+1], label="g" + str(n))
Exemplo n.º 38
0
def R_k_pulse(k, theta, phi, N: int = 4, tau: float = 1):
    Id = qt.qeye(2)
    if N == 1:
        X = qt.sigmax()
        Y = qt.sigmay()
    else:
        X = [Id]*(N - 1)
        Y = [Id]*(N - 1)
        X.insert(k, qt.sigmax())
        Y.insert(k, qt.sigmay())
        X = qt.tensor(X)
        Y = qt.tensor(Y)

    H_c = [[X, [theta/2/tau*np.cos(phi)], 'I'*k + 'X' + 'I'*(N - k - 1)],
           [Y, [theta/2/tau*np.sin(phi)], 'I'*k + 'Y' + 'I'*(N - k - 1)]]
    H_n = [[X/np.sqrt(X.shape[0]), [1], 'I'*k + 'X' + 'I'*(N - k - 1)],
           [Y/np.sqrt(Y.shape[0]), [1], 'I'*k + 'Y' + 'I'*(N - k - 1)]]
    dt = [tau]

    return ff.PulseSequence(H_c, H_n, dt)
Exemplo n.º 39
0
def test_commutator():
    A = qutip.qeye(N)
    B = qutip.destroy(N)
    assert qutip.commutator(A, B) == qutip.qzero(N)

    sx = qutip.sigmax()
    sy = qutip.sigmay()
    assert qutip.commutator(sx, sy) / 2 == (qutip.sigmaz() * 1j)

    A = qutip.qeye(N)
    B = qutip.destroy(N)
    assert qutip.commutator(A, B, 'anti') == qutip.destroy(N) * 2

    sx = qutip.sigmax()
    sy = qutip.sigmay()
    assert qutip.commutator(sx, sy, 'anti') == qutip.qzero(2)

    with pytest.raises(TypeError) as e:
        qutip.commutator(sx, sy, 'something')
    assert str(e.value).startswith("Unknown commutator kind")
Exemplo n.º 40
0
 def test_makeBlochEqSyms():
     H0 = toDense(q.sigmaz() * q.sigmaz().dag())
     H1 = toDense(q.sigmax())
     c_opL = [toDense(q.destroy(2))]
     delt = sm.symbols('Delta', real=True)
     Ef = sm.symbols("Ef")
     return makeBlochEqSymbs(H0,
                             Hfield_L=[[Ef, H1]],
                             Hother_L=[],
                             c_opL=[],
                             rhoS=None)
Exemplo n.º 41
0
 def as_qobj(self):
     if self == Pauli.I:
         return qt.qeye(2)
     elif self == Pauli.X:
         return qt.sigmax()
     elif self == Pauli.Y:
         return qt.sigmay()
     elif self == Pauli.Z:
         return qt.sigmaz()
     else:
         raise ValueError(f"Unrecognized Pauli value {self}.")
 def _model(self, amps, phis, r, theta, phi, A, offset):
     tomo_z_data = []
     rho_0 = self._dm_from_sph_coords(r, theta, phi)
     for amp in amps:
         phi_data = []
         for phi in phis:
             gate = (-1j * amp * pi / 2 * (cos(phi) * sigmax() + sin(phi) * sigmay())).expm()
             rho_1 = gate * rho_0 * gate.dag()
             phi_data.append(expect(sigmaz(), rho_1))
         tomo_z_data.append(phi_data)
     return (array(tomo_z_data) + 1) / 2 * A + offset
Exemplo n.º 43
0
    def test_lindblad_no_dissipation(self):
        """
        Use the previous test to verify the Lindblad master equation in absence
        of decoherence terms.
        """

        h_drift = [
            matrix.DenseOperator(np.zeros((2, 2), dtype=complex))
            for _ in range(4)
        ]
        h_control = [
            .5 * matrix.DenseOperator(qutip.sigmax()),
            .5 * matrix.DenseOperator(qutip.sigmaz())
        ]
        ctrl_amps = np.asarray([[.5, 0, .25, .25], [0, .5, 0, 0]
                                ]).T * 2 * math.pi
        tau = [1, 1, 1, 1]

        dissipation_sup_op = [matrix.DenseOperator(np.zeros((4, 4)))]
        initial_state = matrix.DenseOperator(np.eye(4))

        lindblad_tslot_obj = solver_algorithms.LindbladSolver(
            h_ctrl=h_control,
            h_drift=h_drift,
            tau=tau,
            initial_state=initial_state,
            ctrl_amps=ctrl_amps,
            initial_diss_super_op=dissipation_sup_op,
            calculate_unitary_derivatives=True)

        propagators = lindblad_tslot_obj.propagators

        # test the propagators
        # use the exponential identity for pauli operators for verification
        correct_props = [[[0. + 0.j, 0. - 1.j], [0. - 1.j, 0. + 0.j]],
                         [[0. - 1.j, 0. + 0.j], [0. + 0.j, 0. + 1.j]],
                         [[0.70710678 + 0.j, 0. - 0.70710678j],
                          [0. - 0.70710678j, 0.70710678 + 0.j]],
                         [[0.70710678 + 0.j, 0. - 0.70710678j],
                          [0. - 0.70710678j, 0.70710678 + 0.j]]]
        correct_props = list(map(np.asarray, correct_props))
        correct_props = [np.kron(cp.conj(), cp) for cp in correct_props]

        for i in range(4):
            np.testing.assert_array_almost_equal(correct_props[i],
                                                 propagators[i].data)

        analytic_reference = -.5j * np.eye(2, dtype=complex)
        sx = np.asarray([[0, 1], [1, 0]]) * (1 + 0j)
        analytic_reference = np.kron(sx, analytic_reference) \
            - np.kron(analytic_reference, sx)
        np.testing.assert_array_almost_equal(
            analytic_reference,
            lindblad_tslot_obj.frechet_deriv_propagators[0][0].data)
Exemplo n.º 44
0
def testCOPS():
    """
    brmesolve: c_ops alone
    """

    delta = 0.0 * 2 * np.pi
    epsilon = 0.5 * 2 * np.pi
    gamma = 0.25
    times = np.linspace(0, 10, 100)
    H = delta/2 * sigmax() + epsilon/2 * sigmaz()
    psi0 = (2 * basis(2, 0) + basis(2, 1)).unit()
    c_ops = [np.sqrt(gamma) * sigmam()]
    e_ops = [sigmax(), sigmay(), sigmaz()]
    res_me = mesolve(H, psi0, times, c_ops, e_ops)
    res_brme = brmesolve(H, psi0, times, [], e_ops,
                         spectra_cb=[], c_ops=c_ops)

    for idx, e in enumerate(e_ops):
        diff = abs(res_me.expect[idx] - res_brme.expect[idx]).max()
        assert_(diff < 1e-2)
Exemplo n.º 45
0
def keyboard(event):
    global qubits
    global active_qubit
    key = event.key
    if key.isdigit():
        i = int(key)
        if i < n_qubits:
            active_qubit = i
    elif key == "a":
        qubits[active_qubit].evolve(qutip.sigmax(), inverse=True)
    elif key == "d":
        qubits[active_qubit].evolve(qutip.sigmax(), inverse=False)
    elif key == "s":
        qubits[active_qubit].evolve(qutip.sigmaz(), inverse=True)
    elif key == "w":
        qubits[active_qubit].evolve(qutip.sigmaz(), inverse=False)
    elif key == "z":
        qubits[active_qubit].evolve(qutip.sigmay(), inverse=True)
    elif key == "x":
        qubits[active_qubit].evolve(qutip.sigmay(), inverse=False)
Exemplo n.º 46
0
    def test_random_noise(self):
        """
        Test for the white noise
        """
        tlist = np.array([1, 2, 3, 4, 5, 6])
        coeff = np.array([1, 1, 1, 1, 1, 1])
        dummy_qobjevo = QobjEvo(sigmaz(), tlist=tlist)
        mean = 0.
        std = 0.5
        pulses = [Pulse(sigmaz(), 0, tlist, coeff),
                  Pulse(sigmax(), 0, tlist, coeff*2),
                  Pulse(sigmay(), 0, tlist, coeff*3)]

        # random noise with operators from proc_qobjevo
        gaussnoise = RandomNoise(
            dt=0.1, rand_gen=np.random.normal, loc=mean, scale=std)
        noisy_pulses, systematic_noise = \
            gaussnoise.get_noisy_dynamics(pulses=pulses)
        assert_allclose(noisy_pulses[2].qobj, sigmay())
        assert_allclose(noisy_pulses[1].coherent_noise[0].qobj, sigmax())
        assert_allclose(
            len(noisy_pulses[0].coherent_noise[0].tlist),
            len(noisy_pulses[0].coherent_noise[0].coeff))

        # random noise with dt and other random number generator
        pulses = [Pulse(sigmaz(), 0, tlist, coeff),
                  Pulse(sigmax(), 0, tlist, coeff*2),
                  Pulse(sigmay(), 0, tlist, coeff*3)]
        gaussnoise = RandomNoise(lam=0.1, dt=0.2, rand_gen=np.random.poisson)
        assert_(gaussnoise.rand_gen is np.random.poisson)
        noisy_pulses, systematic_noise = \
            gaussnoise.get_noisy_dynamics(pulses=pulses)
        assert_allclose(
            noisy_pulses[0].coherent_noise[0].tlist,
            np.linspace(1, 6, int(5/0.2) + 1))
        assert_allclose(
            noisy_pulses[1].coherent_noise[0].tlist,
            np.linspace(1, 6, int(5/0.2) + 1))
        assert_allclose(
            noisy_pulses[2].coherent_noise[0].tlist,
            np.linspace(1, 6, int(5/0.2) + 1))
Exemplo n.º 47
0
def hermitian_txyz(hermitian):
    def scalarProduct(m, n):
        return 0.5 * np.trace(np.dot(np.conjugate(m).T, n))

    t = scalarProduct(hermitian, np.eye(2)).real
    x = scalarProduct(hermitian, qutip.sigmax().full()).real
    y = scalarProduct(hermitian, qutip.sigmay().full()).real
    z = scalarProduct(
        hermitian,
        qutip.sigmaz().full(),
    ).real
    return np.array([t, x, y, z])
Exemplo n.º 48
0
 def test_user_defined_noise(self):
     """
     Test for the user-defined noise object
     """
     dr_noise = DriftNoise(sigmax())
     proc = Processor(1)
     proc.add_noise(dr_noise)
     tlist = np.array([0, np.pi/2.])
     proc.add_pulse(Pulse(identity(2), 0, tlist, False))
     result = proc.run_state(init_state=basis(2, 0))
     assert_allclose(
         fidelity(result.states[-1], basis(2, 1)), 1, rtol=1.0e-6)
Exemplo n.º 49
0
def test_simple_qubit_system(me_c_ops, brme_c_ops, brme_a_ops):
    delta = 0.0 * 2 * np.pi
    epsilon = 0.5 * 2 * np.pi
    e_ops = pauli_spin_operators()
    H = delta * 0.5 * qutip.sigmax() + epsilon * 0.5 * qutip.sigmaz()
    psi0 = (2 * qutip.basis(2, 0) + qutip.basis(2, 1)).unit()
    times = np.linspace(0, 10, 100)
    me = qutip.mesolve(H, psi0, times, c_ops=me_c_ops, e_ops=e_ops).expect
    brme = qutip.brmesolve([[H, '1']], psi0, times, brme_a_ops, e_ops,
                           brme_c_ops).expect
    for me_expectation, brme_expectation in zip(me, brme):
        assert np.allclose(me_expectation, brme_expectation, atol=1e-2)
Exemplo n.º 50
0
def viz_update():
    global state, G, basis, vpts
    n = len(state.dims[0])
    for i in range(n):
        pov_state = take_pov(state, 0, i, G, basis=basis)
        for k in range(n):
            partial = pov_state.ptrace(k)
            xyz = np.array([qt.expect(qt.sigmax(), partial),\
                            qt.expect(qt.sigmay(), partial),\
                            qt.expect(qt.sigmaz(), partial)])
            vpts[(i, k)].axis = vp.vector(*xyz)
            vpts[(i, k)].visible = not np.isclose(np.linalg.norm(xyz), 0)
Exemplo n.º 51
0
    def test_02_1_qft(self):
        """
        control.pulseoptim: QFT gate with linear initial pulses
        assert that goal is achieved and fidelity error is below threshold
        """
        Sx = sigmax()
        Sy = sigmay()
        Sz = sigmaz()
        Si = 0.5 * identity(2)

        H_d = 0.5 * (tensor(Sx, Sx) + tensor(Sy, Sy) + tensor(Sz, Sz))
        H_c = [tensor(Sx, Si), tensor(Sy, Si), tensor(Si, Sx), tensor(Si, Sy)]
        U_0 = identity(4)
        # Target for the gate evolution - Quantum Fourier Transform gate
        U_targ = qft.qft(2)

        n_ts = 10
        evo_time = 10

        result = cpo.optimize_pulse_unitary(H_d,
                                            H_c,
                                            U_0,
                                            U_targ,
                                            n_ts,
                                            evo_time,
                                            fid_err_targ=1e-9,
                                            init_pulse_type='LIN',
                                            gen_stats=True)

        assert_(result.goal_achieved,
                msg="QFT goal not achieved. "
                "Terminated due to: {}, with infidelity: {}".format(
                    result.termination_reason, result.fid_err))
        assert_almost_equal(result.fid_err,
                            0.0,
                            decimal=7,
                            err_msg="QFT infidelity too high")

        # check bounds
        result2 = cpo.optimize_pulse_unitary(H_d,
                                             H_c,
                                             U_0,
                                             U_targ,
                                             n_ts,
                                             evo_time,
                                             fid_err_targ=1e-9,
                                             amp_lbound=-1.0,
                                             amp_ubound=1.0,
                                             init_pulse_type='LIN',
                                             gen_stats=True)
        assert_((result2.final_amps >= -1.0).all()
                and (result2.final_amps <= 1.0).all(),
                msg="Amplitude bounds exceeded for QFT")
Exemplo n.º 52
0
    def test_pulse_mode(self):
        processor = Processor(2)
        processor.add_control(sigmax(), targets=0, label="sx")
        processor.set_coeffs({"sx": np.array([1., 2., 3.])})
        processor.set_tlist({"sx": np.array([0., 1., 2., 3.])})

        processor.pulse_mode = "continuous"
        assert (processor.pulse_mode == "continuous")
        assert (processor.pulses[0].spline_kind == "cubic")
        processor.pulse_mode = "discrete"
        assert (processor.pulse_mode == "discrete")
        assert (processor.pulses[0].spline_kind == "step_func")
Exemplo n.º 53
0
 def test_distribute_operator(self):
     """
     lattice: Test the method Lattice1d.distribute_operator().
     """
     lattice_412 = Lattice1d(num_cell=4,
                             boundary="periodic",
                             cell_num_site=1,
                             cell_site_dof=[2])
     op = Qobj(np.array([[0, 1], [1, 0]]))
     op_all = lattice_412.distribute_operator(op)
     sv_op_all = tensor(qeye(4), sigmax())
     assert_(op_all == sv_op_all)
Exemplo n.º 54
0
def test_hamiltonian_order_unimportant():
    # Testing for regression on issue 1048.
    sp = qutip.sigmap()
    H = [[qutip.sigmax(), lambda t, _: _step(t-2)],
         [qutip.qeye(2), lambda t, _: _step(-(t-2))]]
    start = qutip.basis(2, 0)
    times = np.linspace(0, 5, 6)
    forwards = qutip.correlation_2op_2t(H, start, times, times, [sp],
                                        sp.dag(), sp)
    backwards = qutip.correlation_2op_2t(H[::-1], start, times, times, [sp],
                                         sp.dag(), sp)
    np.testing.assert_allclose(forwards, backwards, atol=1e-6)
Exemplo n.º 55
0
def excitation(args):
    H0 = args['parity']*args['vFermi']*(args['kpoint'][0]*qp.sigmax() + args['kpoint'][1]*qp.sigmay())
    H1 = qp.sigmax()
    H2 = qp.sigmay()
    Hamiltonian = [H0,[H1,HCoeff]]
    states = H0.eigenstates()  
    psi0 = states[1][0]
    psi1 = states[1][1]
    import hashlib
    label = hashlib.sha224(str(args)).hexdigest()
    import os
    if os.path.exists('Data/'+label+'.qu'):
      result = qp.qload('Data/'+label)
      print 'Loading'
    else:
      result = qp.mesolve(Hamiltonian, psi0, args['times'], [], [], args=args)
      print 'Recalculate'
      qp.qsave(result, 'Data/'+   label)
    proj0 =  np.array([(state.dag()*psi0).norm() for state in result.states])
    proj1 =  np.array([(state.dag()*psi1).norm() for state in result.states])
    return result, proj0, proj1
Exemplo n.º 56
0
def _crow_lattice(coupling, phase_delay,
                  cells=4, boundary="periodic", sites_per_cell=1,
                  freedom=[2]):
    r"""
    Return a `qutip.Lattice1d` of a "Coupled Resonator Optical Waveguide"
    (CROW) with the given coupling strength and phase delay.

    See for example: https://www.doi.org/10.1103/PhysRevB.99.224201
    where `coupling` is $J$ and `phase_delay` is $\eta$.
    """
    cell_hamiltonian = coupling * np.sin(phase_delay) * qutip.sigmax()
    phase_term = np.exp(1j * phase_delay)
    hopping = [
        0.5 * coupling * qutip.qdiags([phase_term, phase_term.conj()], 0),
        0.5 * coupling * qutip.sigmax(),
    ]
    return qutip.Lattice1d(num_cell=cells, boundary=boundary,
                           cell_num_site=sites_per_cell,
                           cell_site_dof=freedom,
                           Hamiltonian_of_cell=cell_hamiltonian,
                           inter_hop=hopping)
Exemplo n.º 57
0
def run():
    from mpi4py import MPI
    comm = MPI.COMM_WORLD
    size = comm.Get_size()
    rank = comm.Get_rank()
    print "Process number", rank, "of", size, "total."

    neq = 2
    gamma = 1.0
    psi0 = qt.basis(neq,neq-1)
    H = qt.sigmax()
    c_ops = [np.sqrt(gamma)*qt.sigmax()]
    e_ops = [qt.sigmam()*qt.sigmap()]

    tlist = np.linspace(0,10,100)

    ntraj=100

    # One CPU per MPI process
    opts = qt.Odeoptions()
    opts.num_cpus = 1

    # Solve
    sols = mcf90.mcsolve_f90(H,psi0,tlist,c_ops,e_ops,ntraj=ntraj,options=opts)
    #sols = qt.mcsolve(H,psi0,tlist,c_ops,e_ops,ntraj=ntraj,options=opts)

    # Gather data
    sols = comm.gather(sols,root=0)
    if (rank==0):
        sol = sols[0]
        sol.expect = np.array(sols[0].expect)
        plt.figure()
        plt.plot(tlist,sols[0].expect[0],'r',label='proc '+str(0))
        for i in range(1,size):
            plt.plot(tlist,sols[i].expect[0],'r',label='proc '+str(i))
            sol.expect += np.array(sols[i].expect)
        sol.expect = sol.expect/size
        plt.plot(tlist,sol.expect[0],'b',label='average')
        plt.legend()
        plt.show()
Exemplo n.º 58
0
def test_diagHamiltonian1():
    """
    Diagonalization of random two-level system
    """

    H = scipy.rand() * sigmax() + scipy.rand() * sigmay() +\
        scipy.rand() * sigmaz()

    evals, ekets = H.eigenstates()

    for n in range(len(evals)):
        # assert that max(H * ket - e * ket) is small
        assert_equal(amax(
            abs((H * ekets[n] - evals[n] * ekets[n]).full())) < 1e-10, True)
Exemplo n.º 59
0
def test_qpt_snot():
    "quantum process tomography for snot gate"

    U_psi = snot()
    U_rho = spre(U_psi) * spost(U_psi.dag())
    N = 1
    op_basis = [[qeye(2), sigmax(), 1j * sigmay(), sigmaz()] for i in range(N)]
    # op_label = [["i", "x", "y", "z"] for i in range(N)]
    chi1 = qpt(U_rho, op_basis)

    chi2 = np.zeros((2 ** (2 * N), 2 ** (2 * N)), dtype=complex)
    chi2[1, 1] = chi2[1, 3] = chi2[3, 1] = chi2[3, 3] = 0.5

    assert_(norm(chi2 - chi1) < 1e-8)
 def test_state_to_state(self):
     """
     control.pulseoptim: state-to-state transfer 
     linear initial pulse used
     assert that goal is achieved
     """       
     # 2 qubits with Ising interaction
     # some arbitary coupling constants
     alpha = [0.9, 0.7]
     beta  = [0.8, 0.9]
     Sx = sigmax()
     Sz = sigmaz()
     H_d = (alpha[0]*tensor(Sx,identity(2)) + 
           alpha[1]*tensor(identity(2),Sx) +
           beta[0]*tensor(Sz,identity(2)) +
           beta[1]*tensor(identity(2),Sz))
     H_c = [tensor(Sz,Sz)]
     
     q1_0 = q2_0 = Qobj([[1], [0]])
     q1_T = q2_T = Qobj([[0], [1]])
     
     psi_0 = tensor(q1_0, q2_0)
     psi_T = tensor(q1_T, q2_T)
     
     n_ts = 10
     evo_time = 18
     
     # Run the optimisation
     result = cpo.optimize_pulse_unitary(H_d, H_c, psi_0, psi_T, 
                     n_ts, evo_time, 
                     fid_err_targ=1e-10, 
                     init_pulse_type='LIN', 
                     gen_stats=True)
     assert_(result.goal_achieved, msg="State-to-state goal not achieved. "
                 "Terminated due to: {}, with infidelity: {}".format(
                 result.termination_reason, result.fid_err))
     assert_almost_equal(result.fid_err, 0.0, decimal=10, 
                         err_msg="Hadamard infidelity too high")
                         
     #Try with Qobj propagation
     result = cpo.optimize_pulse_unitary(H_d, H_c, psi_0, psi_T, 
                     n_ts, evo_time, 
                     fid_err_targ=1e-10, 
                     init_pulse_type='LIN', 
                     dyn_params={'oper_dtype':Qobj},
                     gen_stats=True)
     assert_(result.goal_achieved, msg="State-to-state goal not achieved "
                 "(Qobj propagation)"
                 "Terminated due to: {}, with infidelity: {}".format(
                 result.termination_reason, result.fid_err))