Exemplo n.º 1
0
    def create_key_and_extra_args(self, order, name=None, modulus=None, names=None, impl=None, proof=None, **kwds):
        """
        EXAMPLES::

            sage: GF.create_key_and_extra_args(9, 'a')
            ((9, ('a',), 'conway', None, '{}', 3, 2, True), {})
            sage: GF.create_key_and_extra_args(9, 'a', foo='value')
            ((9, ('a',), 'conway', None, "{'foo': 'value'}", 3, 2, True), {'foo': 'value'})
        """
        from sage.structure.proof.all import WithProof, arithmetic

        if proof is None:
            proof = arithmetic()
        with WithProof("arithmetic", proof):
            order = int(order)
            if order <= 1:
                raise ValueError("the order of a finite field must be > 1.")

            if arith.is_prime(order):
                name = None
                modulus = None
                p = integer.Integer(order)
                n = integer.Integer(1)
            elif arith.is_prime_power(order):
                if not names is None:
                    name = names
                name = normalize_names(1, name)

                p, n = arith.factor(order)[0]

                if modulus is None or modulus == "default":
                    if exists_conway_polynomial(p, n):
                        modulus = "conway"
                    else:
                        if p == 2:
                            modulus = "minimal_weight"
                        else:
                            modulus = "random"
                elif modulus == "random":
                    modulus += str(random.randint(0, 1 << 128))

                if isinstance(modulus, (list, tuple)):
                    modulus = FiniteField(p)["x"](modulus)
                # some classes use 'random' as the modulus to
                # generate a random modulus, but we don't want
                # to cache it
                elif sage.rings.polynomial.polynomial_element.is_Polynomial(modulus):
                    modulus = modulus.change_variable_name("x")
                elif not isinstance(modulus, str):
                    raise ValueError("Modulus parameter not understood.")
            else:  # Neither a prime, nor a prime power
                raise ValueError("the order of a finite field must be a prime power.")

            return (order, name, modulus, impl, str(kwds), p, n, proof), kwds
Exemplo n.º 2
0
def find_q_x(k,n):
    r"""
    Find integers `q,x` such that the `q-x` construction yields an `OA(k,n)`.

    See the documentation of :func:`construction_q_x` to find out what
    hypotheses the integers `q,x` must satisfy.

    .. WARNING::

        For efficiency reasons, this function checks that Sage can build an
        `OA(k+1,q-x-1)` and an `OA(k+1,q-x+1)`, which is stronger than checking
        that Sage can build a `OA(k,q-x-1)-(q-x-1).OA(k,1)` and a
        `OA(k,q-x+1)-(q-x+1).OA(k,1)`. The latter would trigger a lot of
        independent set computations in
        :func:`sage.combinat.designs.orthogonal_arrays.incomplete_orthogonal_array`.

    INPUT:

    - ``k,n`` (integers)

    .. SEEALSO::

        :func:`construction_q_x`

    EXAMPLE::

        sage: from sage.combinat.designs.orthogonal_arrays_recursive import find_q_x
        sage: find_q_x(10,9)
        False
        sage: find_q_x(9,158)[1]
        (9, 16, 6)
    """
    from sage.rings.arith import is_prime_power
    # n = (q-1)*(q-x) + x + 2
    #   = q^2 - q*x - q + 2*x + 2

    for q in range(max(3,k+2),n):
        # n-q**2+q-2 = 2x-qx
        #            = x(2-q)
        x = (n-q**2+q-2)//(2-q)
        if (x < q and
            0 < x and
            n == (q-1)*(q-x)+x+2 and
            is_prime_power(q) and
            orthogonal_array(k+1,q-x-1,existence=True) and
            orthogonal_array(k+1,q-x+1,existence=True) and
            # The next is always True, because q is a prime power
            # orthogonal_array(k+1,q,existence=True) and
            orthogonal_array(k, x+2 ,existence=True)):
            return construction_q_x, (k,q,x)
    return False
Exemplo n.º 3
0
    def create_key_and_extra_args(self, order, name=None, modulus=None, names=None,
                                  impl=None, proof=None, **kwds):
        """
        EXAMPLES::

            sage: GF.create_key_and_extra_args(9, 'a')
            ((9, ('a',), x^2 + 2*x + 2, None, '{}', 3, 2, True), {})
            sage: GF.create_key_and_extra_args(9, 'a', foo='value')
            ((9, ('a',), x^2 + 2*x + 2, None, "{'foo': 'value'}", 3, 2, True), {'foo': 'value'})
        """
        from sage.structure.proof.all import WithProof, arithmetic
        if proof is None: proof = arithmetic()
        with WithProof('arithmetic', proof):
            order = int(order)
            if order <= 1:
                raise ValueError("the order of a finite field must be > 1.")

            if arith.is_prime(order):
                name = None
                modulus = None
                p = integer.Integer(order)
                n = integer.Integer(1)
            elif arith.is_prime_power(order):
                if not names is None: name = names
                name = normalize_names(1,name)

                p, n = arith.factor(order)[0]

                if modulus is None or isinstance(modulus, str):
                    # A string specifies an algorithm to find a suitable modulus.
                    if modulus == "default":    # for backward compatibility
                        modulus = None
                    modulus = GF(p)['x'].irreducible_element(n, algorithm=modulus)
                elif isinstance(modulus, (list, tuple)):
                    modulus = GF(p)['x'](modulus)
                elif sage.rings.polynomial.polynomial_element.is_Polynomial(modulus):
                    modulus = modulus.change_variable_name('x')
                else:
                    raise TypeError("wrong type for modulus parameter")
            else:
                raise ValueError("the order of a finite field must be a prime power.")

            return (order, name, modulus, impl, str(kwds), p, n, proof), kwds
Exemplo n.º 4
0
def BIBD_5q_5_for_q_prime_power(q):
    r"""
    Return a `(5q,5,1)`-BIBD with `q\equiv 1\pmod 4` a prime power.

    See Theorem 24 [ClaytonSmith]_.

    INPUT:

    - ``q`` (integer) -- a prime power such that `q\equiv 1\pmod 4`.

    EXAMPLES::

        sage: from sage.combinat.designs.bibd import BIBD_5q_5_for_q_prime_power
        sage: for q in [25, 45, 65, 85, 125, 145, 185, 205, 305, 405, 605]: # long time
        ....:     _ = BIBD_5q_5_for_q_prime_power(q/5)                      # long time
    """
    from sage.rings.arith import is_prime_power
    from sage.rings.finite_rings.constructor import FiniteField

    if q % 4 != 1 or not is_prime_power(q):
        raise ValueError("q is not a prime power or q%4!=1.")

    d = (q - 1) / 4
    B = []
    F = FiniteField(q, 'x')
    a = F.primitive_element()
    L = {b: i for i, b in enumerate(F)}
    for b in L:
        B.append([i * q + L[b] for i in range(5)])
        for i in range(5):
            for j in range(d):
                B.append([
                    i * q + L[b],
                    ((i + 1) % 5) * q + L[a**j + b],
                    ((i + 1) % 5) * q + L[-a**j + b],
                    ((i + 4) % 5) * q + L[a**(j + d) + b],
                    ((i + 4) % 5) * q + L[-a**(j + d) + b],
                ])

    return B
Exemplo n.º 5
0
def find_construction_3_6(k,n):
    r"""
    Finds a decomposition for construction 3.6 from [AC07]_

    INPUT:

    - ``k,n`` (integers)

    .. SEEALSO::

        :func:`construction_3_6`

    OUTPUT:

    A pair ``f,args`` such that ``f(*args)`` returns the requested OA.

    EXAMPLES::

        sage: from sage.combinat.designs.orthogonal_arrays_recursive import find_construction_3_6
        sage: find_construction_3_6(8,95)[1]
        (8, 13, 7, 4)
        sage: find_construction_3_6(8,98)
    """
    from sage.rings.arith import is_prime_power

    for mm in range(k-1,n//2+1):
        if (not orthogonal_array(k,mm+0,existence=True) or
            not orthogonal_array(k,mm+1,existence=True) or
            not orthogonal_array(k,mm+2,existence=True)):
            continue

        for nn in range(2,n//mm+1):
            i = n-nn*mm
            if i<=0:
                continue

            if (is_prime_power(nn) and
                orthogonal_array(k+i,nn,existence=True)):
                return construction_3_6, (k,nn,mm,i)
Exemplo n.º 6
0
Arquivo: bibd.py Projeto: Etn40ff/sage
def BIBD_5q_5_for_q_prime_power(q):
    r"""
    Return a `(5q,5,1)`-BIBD with `q\equiv 1\pmod 4` a prime power.

    See Theorem 24 [ClaytonSmith]_.

    INPUT:

    - ``q`` (integer) -- a prime power such that `q\equiv 1\pmod 4`.

    EXAMPLES::

        sage: from sage.combinat.designs.bibd import BIBD_5q_5_for_q_prime_power
        sage: for q in [25, 45, 65, 85, 125, 145, 185, 205, 305, 405, 605]: # long time
        ....:     _ = BIBD_5q_5_for_q_prime_power(q/5)                      # long time
    """
    from sage.rings.arith import is_prime_power
    from sage.rings.finite_rings.constructor import FiniteField

    if q%4 != 1 or not is_prime_power(q):
        raise ValueError("q is not a prime power or q%4!=1.")

    d = (q-1)/4
    B = []
    F = FiniteField(q,'x')
    a = F.primitive_element()
    L = {b:i for i,b in enumerate(F)}
    for b in L:
        B.append([i*q + L[b] for i in range(5)])
        for i in range(5):
            for j in range(d):
                B.append([        i*q + L[b          ],
                          ((i+1)%5)*q + L[ a**j+b    ],
                          ((i+1)%5)*q + L[-a**j+b    ],
                          ((i+4)%5)*q + L[ a**(j+d)+b],
                          ((i+4)%5)*q + L[-a**(j+d)+b],
                          ])

    return B
Exemplo n.º 7
0
def projective_plane(n, check=True, existence=False):
    r"""
    Returns a projective plane of order ``n`` as a 2-design.

    A finite projective plane is a 2-design with `n^2+n+1` lines (or blocks) and
    `n^2+n+1` points. For more information on finite projective planes, see the
    :wikipedia:`Projective_plane#Finite_projective_planes`.

    If no construction is possible, then the function raises a ``EmptySetError``
    whereas if no construction is available the function raises a
    ``NotImplementedError``.

    INPUT:

    - ``n`` -- the finite projective plane's order

    EXAMPLES::

        sage: designs.projective_plane(2)
        Incidence structure with 7 points and 7 blocks
        sage: designs.projective_plane(3)
        Incidence structure with 13 points and 13 blocks
        sage: designs.projective_plane(4)
        Incidence structure with 21 points and 21 blocks
        sage: designs.projective_plane(5)
        Incidence structure with 31 points and 31 blocks
        sage: designs.projective_plane(6)
        Traceback (most recent call last):
        ...
        EmptySetError: By the Ryser-Chowla theorem, no projective plane of order 6 exists.
        sage: designs.projective_plane(10)
        Traceback (most recent call last):
        ...
        EmptySetError: No projective plane of order 10 exists by C. Lam, L. Thiel and S. Swiercz "The nonexistence of finite projective planes of order 10" (1989), Canad. J. Math.
        sage: designs.projective_plane(12)
        Traceback (most recent call last):
        ...
        NotImplementedError: If such a projective plane exists, we do not know how to build it.
        sage: designs.projective_plane(14)
        Traceback (most recent call last):
        ...
        EmptySetError: By the Ryser-Chowla theorem, no projective plane of order 14 exists.

    TESTS::

        sage: designs.projective_plane(2197, existence=True)
        True
        sage: designs.projective_plane(6, existence=True)
        False
        sage: designs.projective_plane(10, existence=True)
        False
        sage: designs.projective_plane(12, existence=True)
        Unknown
    """
    from sage.rings.arith import is_prime_power, two_squares

    if n <= 1:
        if existence:
            return False
        raise EmptySetError("There is no projective plane of order <= 1")

    if n == 10:
        if existence:
            return False
        ref = ("C. Lam, L. Thiel and S. Swiercz \"The nonexistence of finite "
               "projective planes of order 10\" (1989), Canad. J. Math.")
        raise EmptySetError("No projective plane of order 10 exists by %s"%ref)

    if (n%4) in [1,2]:
        try:
            two_squares(n)
        except ValueError:
            if existence:
                return False
            raise EmptySetError("By the Ryser-Chowla theorem, no projective"
                             " plane of order "+str(n)+" exists.")

    if not is_prime_power(n):
        if existence:
            return Unknown
        raise NotImplementedError("If such a projective plane exists, we do "
                                  "not know how to build it.")

    if existence:
        return True
    else:
        return DesarguesianProjectivePlaneDesign(n, check=check)
def GDD_4_2(q,existence=False,check=True):
    r"""
    Return a `(2q,\{4\},\{2\})`-GDD for `q` a prime power with `q\equiv 1\pmod{6}`.

    This method implements Lemma VII.5.17 from [BJL99] (p.495).

    INPUT:

    - ``q`` (integer)

    - ``existence`` (boolean) -- instead of building the design, return:

        - ``True`` -- meaning that Sage knows how to build the design

        - ``Unknown`` -- meaning that Sage does not know how to build the
          design, but that the design may exist (see :mod:`sage.misc.unknown`).

        - ``False`` -- meaning that the design does not exist.

    - ``check`` -- (boolean) Whether to check that output is correct before
      returning it. As this is expected to be useless (but we are cautious
      guys), you may want to disable it whenever you want speed. Set to ``True``
      by default.

    EXAMPLE::

        sage: from sage.combinat.designs.group_divisible_designs import GDD_4_2
        sage: GDD_4_2(7,existence=True)
        True
        sage: GDD_4_2(7)
        Group Divisible Design on 14 points of type 2^7
        sage: GDD_4_2(8,existence=True)
        Unknown
        sage: GDD_4_2(8)
        Traceback (most recent call last):
        ...
        NotImplementedError
    """
    if q <=1 or q%6 != 1 or not is_prime_power(q):
        if existence:
            return Unknown
        raise NotImplementedError
    if existence:
        return True

    from sage.rings.finite_rings.constructor import FiniteField as GF
    G = GF(q,'x')
    w = G.primitive_element()
    e = w**((q-1)/3)

    # A first parallel class is defined. G acts on it, which yields all others.
    first_class = [[(0,0),(1,w**i),(1,e*w**i),(1,e*e*w**i)] for i in range((q-1)/6)]

    label = {p:i for i,p in enumerate(G)}
    classes = [[[2*label[x[1]+g]+(x[0]+j)%2 for x in S]
                for S in first_class]
               for g in G for j in range(2)]

    return GroupDivisibleDesign(2*q,
                                groups = [[i,i+1] for i in range(0,2*q,2)],
                                blocks = sum(classes,[]),
                                K      = [4],
                                G      = [2],
                                check  = check,
                                copy   = False)
Exemplo n.º 9
0
def NonisotropicUnitaryPolarGraph(m, q):
    r"""
    Returns the Graph `NU(m,q)`.

    Returns the graph on nonisotropic, with respect to a nondegenerate
    Hermitean form, points of the `(m-1)`-dimensional projective space over `F_q`,
    with points adjacent whenever they lie on a tangent (to the set of isotropic points)
    line.
    For more information, see Sect. 9.9 of [BH12]_ and series C14 in [Hu75]_.

    INPUT:

    - ``m,q`` (integers) -- `q` must be a prime power.

    EXAMPLES::

        sage: g=graphs.NonisotropicUnitaryPolarGraph(5,2); g
        NU(5, 2): Graph on 176 vertices
        sage: g.is_strongly_regular(parameters=True)
        (176, 135, 102, 108)

    TESTS::

        sage: graphs.NonisotropicUnitaryPolarGraph(4,2).is_strongly_regular(parameters=True)
        (40, 27, 18, 18)
        sage: graphs.NonisotropicUnitaryPolarGraph(4,3).is_strongly_regular(parameters=True) # long time
        (540, 224, 88, 96)
        sage: graphs.NonisotropicUnitaryPolarGraph(6,6)
        Traceback (most recent call last):
        ...
        ValueError: q must be a prime power

    REFERENCE:

    .. [Hu75] X. L. Hubaut.
      Strongly regular graphs.
      Disc. Math. 13(1975), pp 357--381.
      http://dx.doi.org/10.1016/0012-365X(75)90057-6
    """
    from sage.rings.arith import is_prime_power
    p, k = is_prime_power(q, get_data=True)
    if k == 0:
        raise ValueError('q must be a prime power')
    from sage.libs.gap.libgap import libgap
    from itertools import combinations
    F = libgap.GF(q**2)  # F_{q^2}
    W = libgap.FullRowSpace(F, m)  # F_{q^2}^m
    B = libgap.Elements(libgap.Basis(W))  # the standard basis of W
    if m % 2 != 0:
        point = B[(m - 1) / 2]
    else:
        if p == 2:
            point = B[m / 2] + F.PrimitiveRoot() * B[(m - 2) / 2]
        else:
            point = B[(m - 2) / 2] + B[m / 2]
    g = libgap.GeneralUnitaryGroup(m, q)
    V = libgap.Orbit(g, point, libgap.OnLines)  # orbit on nonisotropic points
    gp = libgap.Action(g, V, libgap.OnLines)  # make a permutation group

    s = libgap.Subspace(W, [point, point + B[0]])  # a tangent line on point

    # and the points there
    sp = [
        libgap.Elements(libgap.Basis(x))[0]
        for x in libgap.Elements(s.Subspaces(1))
    ]
    h = libgap.Set(
        map(lambda x: libgap.Position(V, x),
            libgap.Intersection(V, sp)))  # indices
    L = libgap.Orbit(gp, h, libgap.OnSets)  # orbit on the tangent lines
    G = Graph()
    for x in L:  # every pair of points in the subspace is adjacent to each other in G
        G.add_edges(combinations(x, 2))
    G.relabel()
    G.name("NU" + str((m, q)))
    return G
Exemplo n.º 10
0
def AhrensSzekeresGeneralizedQuadrangleGraph(q, dual=False):
    r"""
    Return the collinearity graph of the generalized quadrangle `AS(q)`, or of its dual

    Let `q` be an odd prime power.  `AS(q)` is a generalized quadrangle [GQwiki]_ of
    order `(q-1,q+1)`, see 3.1.5 in [PT09]_. Its points are elements
    of `F_q^3`, and lines are sets of size `q` of the form

    * `\{ (\sigma, a, b) \mid \sigma\in F_q \}`
    * `\{ (a, \sigma, b) \mid \sigma\in F_q \}`
    * `\{ (c \sigma^2 - b \sigma + a, -2 c \sigma + b, \sigma) \mid \sigma\in F_q \}`,

    where `a`, `b`, `c` are arbitrary elements of `F_q`.

    INPUT:

    - ``q`` -- a power of an odd prime number

    - ``dual`` -- if ``False`` (default), return the collinearity graph of `AS(q)`.
      Otherwise return the collinearity graph of the dual `AS(q)`.

    EXAMPLES::

        sage: g=graphs.AhrensSzekeresGeneralizedQuadrangleGraph(5); g
        AS(5); GQ(4, 6): Graph on 125 vertices
        sage: g.is_strongly_regular(parameters=True)
        (125, 28, 3, 7)
        sage: g=graphs.AhrensSzekeresGeneralizedQuadrangleGraph(5,dual=True); g
        AS(5)*; GQ(6, 4): Graph on 175 vertices
        sage: g.is_strongly_regular(parameters=True)
        (175, 30, 5, 5)

    REFERENCE:

    .. [GQwiki] `Generalized quadrangle
      <http://en.wikipedia.org/wiki/Generalized_quadrangle>`__

    .. [PT09] S. Payne, J. A. Thas.
      Finite generalized quadrangles.
      European Mathematical Society,
      2nd edition, 2009.
    """
    from sage.combinat.designs.incidence_structures import IncidenceStructure
    p, k = is_prime_power(q,get_data=True)
    if k==0 or p==2:
       raise ValueError('q must be an odd prime power')
    F = FiniteField(q, 'a')
    L = []
    for a in F:
        for b in F:
            L.append(tuple(map(lambda s: (s, a, b), F)))
            L.append(tuple(map(lambda s: (a, s, b), F)))
            for c in F:
                L.append(tuple(map(lambda s: (c*s**2 - b*s + a, -2*c*s + b, s), F)))
    if dual:
        G = IncidenceStructure(L).intersection_graph()
        G.name('AS('+str(q)+')*; GQ'+str((q+1,q-1)))
    else:
        G = IncidenceStructure(L).dual().intersection_graph()
        G.name('AS('+str(q)+'); GQ'+str((q-1,q+1)))
    return G
Exemplo n.º 11
0
def projective_plane(n, check=True, existence=False):
    r"""
    Return a projective plane of order ``n`` as a 2-design.

    A finite projective plane is a 2-design with `n^2+n+1` lines (or blocks) and
    `n^2+n+1` points. For more information on finite projective planes, see the
    :wikipedia:`Projective_plane#Finite_projective_planes`.

    If no construction is possible, then the function raises a ``EmptySetError``
    whereas if no construction is available the function raises a
    ``NotImplementedError``.

    INPUT:

    - ``n`` -- the finite projective plane's order

    EXAMPLES::

        sage: designs.projective_plane(2)
        (7,3,1)-Balanced Incomplete Block Design
        sage: designs.projective_plane(3)
        (13,4,1)-Balanced Incomplete Block Design
        sage: designs.projective_plane(4)
        (21,5,1)-Balanced Incomplete Block Design
        sage: designs.projective_plane(5)
        (31,6,1)-Balanced Incomplete Block Design
        sage: designs.projective_plane(6)
        Traceback (most recent call last):
        ...
        EmptySetError: By the Bruck-Ryser theorem, no projective plane of order 6 exists.
        sage: designs.projective_plane(10)
        Traceback (most recent call last):
        ...
        EmptySetError: No projective plane of order 10 exists by C. Lam, L. Thiel and S. Swiercz "The nonexistence of finite projective planes of order 10" (1989), Canad. J. Math.
        sage: designs.projective_plane(12)
        Traceback (most recent call last):
        ...
        NotImplementedError: If such a projective plane exists, we do not know how to build it.
        sage: designs.projective_plane(14)
        Traceback (most recent call last):
        ...
        EmptySetError: By the Bruck-Ryser theorem, no projective plane of order 14 exists.

    TESTS::

        sage: designs.projective_plane(2197, existence=True)
        True
        sage: designs.projective_plane(6, existence=True)
        False
        sage: designs.projective_plane(10, existence=True)
        False
        sage: designs.projective_plane(12, existence=True)
        Unknown
    """
    from sage.rings.arith import is_prime_power
    from sage.rings.sum_of_squares import is_sum_of_two_squares_pyx

    if n <= 1:
        if existence:
            return False
        raise EmptySetError("There is no projective plane of order <= 1")

    if n == 10:
        if existence:
            return False
        ref = ("C. Lam, L. Thiel and S. Swiercz \"The nonexistence of finite "
               "projective planes of order 10\" (1989), Canad. J. Math.")
        raise EmptySetError("No projective plane of order 10 exists by %s" %
                            ref)

    if (n % 4) in [1, 2] and not is_sum_of_two_squares_pyx(n):
        if existence:
            return False
        raise EmptySetError("By the Bruck-Ryser theorem, no projective"
                            " plane of order {} exists.".format(n))

    if not is_prime_power(n):
        if existence:
            return Unknown
        raise NotImplementedError("If such a projective plane exists, we do "
                                  "not know how to build it.")

    if existence:
        return True
    else:
        return DesarguesianProjectivePlaneDesign(n, check=check)
Exemplo n.º 12
0
def kirkman_triple_system(v,existence=False):
    r"""
    Return a Kirkman Triple System on `v` points.

    A Kirkman Triple System `KTS(v)` is a resolvable Steiner Triple System. It
    exists if and only if `v\equiv 3\pmod{6}`.

    INPUT:

    - `n` (integer)

    - ``existence`` (boolean; ``False`` by default) -- whether to build the
      `KTS(n)` or only answer whether it exists.

    .. SEEALSO::

        :meth:`IncidenceStructure.is_resolvable`

    EXAMPLES:

    A solution to Kirkmman's original problem::

        sage: kts = designs.kirkman_triple_system(15)
        sage: classes = kts.is_resolvable(1)[1]
        sage: names = '0123456789abcde'
        sage: to_name = lambda (r,s,t): ' '+names[r]+names[s]+names[t]+' '
        sage: rows = [join(('Day {}'.format(i) for i in range(1,8)), '   ')]
        sage: rows.extend(join(map(to_name,row), '   ') for row in zip(*classes))
        sage: print join(rows,'\n')
        Day 1   Day 2   Day 3   Day 4   Day 5   Day 6   Day 7
         07e     18e     29e     3ae     4be     5ce     6de
         139     24a     35b     46c     05d     167     028
         26b     03c     14d     257     368     049     15a
         458     569     06a     01b     12c     23d     347
         acd     7bd     78c     89d     79a     8ab     9bc

    TESTS::

        sage: for i in range(3,300,6):
        ....:     _ = designs.kirkman_triple_system(i)
    """
    if v%6 != 3:
        if existence:
            return False
        raise ValueError("There is no KTS({}) as v!=3 mod(6)".format(v))

    if existence:
        return False

    elif v == 3:
        return BalancedIncompleteBlockDesign(3,[[0,1,2]],k=3,lambd=1)

    elif v == 9:
        classes = [[[0, 1, 5], [2, 6, 7], [3, 4, 8]],
                   [[1, 6, 8], [3, 5, 7], [0, 2, 4]],
                   [[1, 4, 7], [0, 3, 6], [2, 5, 8]],
                   [[4, 5, 6], [0, 7, 8], [1, 2, 3]]]
        KTS = BalancedIncompleteBlockDesign(v,[tr for cl in classes for tr in cl],k=3,lambd=1,copy=False)
        KTS._classes = classes
        return KTS

    # Construction 1.1 from [Stinson91] (originally Theorem 6 from [RCW71])
    #
    # For all prime powers q=1 mod 6, there exists a KTS(2q+1)
    elif ((v-1)//2)%6 == 1 and is_prime_power((v-1)//2):
        from sage.rings.finite_rings.constructor import FiniteField as GF
        q = (v-1)//2
        K = GF(q,'x')
        a = K.primitive_element()
        t = (q-1)/6

        # m is the solution of a^m=(a^t+1)/2
        from sage.groups.generic import discrete_log
        m = discrete_log((a**t+1)/2, a)
        assert 2*a**m == a**t+1

        # First parallel class
        first_class = [[(0,1),(0,2),'inf']]
        b0 = K.one(); b1 = a**t; b2 = a**m
        first_class.extend([(b0*a**i,1),(b1*a**i,1),(b2*a**i,2)]
                            for i in range(t)+range(2*t,3*t)+range(4*t,5*t))
        b0 = a**(m+t); b1=a**(m+3*t); b2=a**(m+5*t)
        first_class.extend([[(b0*a**i,2),(b1*a**i,2),(b2*a**i,2)]
                            for i in range(t)])

        # Action of K on the points
        action = lambda v,x : (v+x[0],x[1]) if len(x) == 2 else x

        # relabel to integer
        relabel = {(p,x): i+(x-1)*q
                   for i,p in enumerate(K)
                   for x in [1,2]}
        relabel['inf'] = 2*q

        classes = [[[relabel[action(p,x)] for x in tr] for tr in first_class]
                   for p in K]

        KTS = BalancedIncompleteBlockDesign(v,[tr for cl in classes for tr in cl],k=3,lambd=1,copy=False)

        KTS._classes = classes
        return KTS

    # Construction 1.2 from [Stinson91] (originally Theorem 5 from [RCW71])
    #
    # For all prime powers q=1 mod 6, there exists a KTS(3q)
    elif (v//3)%6 == 1 and is_prime_power(v//3):
        from sage.rings.finite_rings.constructor import FiniteField as GF
        q = v//3
        K = GF(q,'x')
        a = K.primitive_element()
        t = (q-1)/6
        A0 = [(0,0),(0,1),(0,2)]
        B  = [[(a**i,j),(a**(i+2*t),j),(a**(i+4*t),j)] for j in range(3)
              for i in range(t)]
        A  = [[(a**i,0),(a**(i+2*t),1),(a**(i+4*t),2)] for i in range(6*t)]

        # Action of K on the points
        action = lambda v,x: (v+x[0],x[1])

        # relabel to integer
        relabel = {(p,j): i+j*q
                   for i,p in enumerate(K)
                   for j in range(3)}

        B0  = [A0] + B + A[t:2*t] + A[3*t:4*t] + A[5*t:6*t]

        # Classes
        classes = [[[relabel[action(p,x)] for x in tr] for tr in B0]
                   for p in K]

        for i in range(t)+range(2*t,3*t)+range(4*t,5*t):
            classes.append([[relabel[action(p,x)] for x in A[i]] for p in K])

        KTS = BalancedIncompleteBlockDesign(v,[tr for cl in classes for tr in cl],k=3,lambd=1,copy=False)
        KTS._classes = classes
        return KTS

    else:
        # This is Lemma IX.6.4 from [BJL99].
        #
        # This construction takes a (v,{4,7})-PBD. All points are doubled (x has
        # a copy x'), and an infinite point \infty is added.
        #
        # On all blocks of 2*4 points we "paste" a KTS(2*4+1) using the infinite
        # point, in such a way that all {x,x',infty} are set of the design. We
        # do the same for blocks with 2*7 points using a KTS(2*7+1).
        #
        # Note that the triples of points equal to {x,x',\infty} will be added
        # several times.
        #
        # As all those subdesigns are resolvable, each class of the KTS(n) is
        # obtained by considering a set {x,x',\infty} and all sets of all
        # parallel classes of the subdesign which contain this set.

        # We create the small KTS(n') we need, and relabel them such that
        # 01(n'-1),23(n'-1),... are blocks of the design.
        gdd4 = kirkman_triple_system(9)
        gdd7 = kirkman_triple_system(15)

        X = [B for B in gdd4 if 8 in B]
        for b in X:
            b.remove(8)
        X = sum(X, []) + [8]
        gdd4.relabel({v:i for i,v in enumerate(X)})
        gdd4 = gdd4.is_resolvable(True)[1] # the relabeled classes

        X = [B for B in gdd7 if 14 in B]
        for b in X:
            b.remove(14)
        X = sum(X, []) + [14]
        gdd7.relabel({v:i for i,v in enumerate(X)})
        gdd7 = gdd7.is_resolvable(True)[1] # the relabeled classes

        # The first parallel class contains 01(n'-1), the second contains
        # 23(n'-1), etc..
        # Then remove the blocks containing (n'-1)
        for B in gdd4:
            for i,b in enumerate(B):
                if 8 in b: j = min(b); del B[i]; B.insert(0,j); break
        gdd4.sort()
        for B in gdd4:
            B.pop(0)

        for B in gdd7:
            for i,b in enumerate(B):
                if 14 in b: j = min(b); del B[i]; B.insert(0,j); break
        gdd7.sort()
        for B in gdd7:
            B.pop(0)

        # Pasting the KTS(n') without {x,x',\infty} blocks
        classes = [[] for i in range((v-1)/2)]
        gdd = {4:gdd4, 7: gdd7}
        for B in PBD_4_7((v-1)//2,check=False):
            for i,classs in enumerate(gdd[len(B)]):
                classes[B[i]].extend([[2*B[x//2]+x%2 for x in BB] for BB in classs])

        # The {x,x',\infty} blocks
        for i,classs in enumerate(classes):
            classs.append([2*i,2*i+1,v-1])

        KTS = BalancedIncompleteBlockDesign(v,
                                            blocks = [tr for cl in classes for tr in cl],
                                            k=3,
                                            lambd=1,
                                            check=True,
                                            copy =False)
        KTS._classes = classes
        assert KTS.is_resolvable()

        return KTS
Exemplo n.º 13
0
def skew_hadamard_matrix(n,existence=False, skew_normalize=True, check=True):
    r"""
    Tries to construct a skew Hadamard matrix

    A Hadamard matrix `H` is called skew if `H=S-I`, for `I` the identity matrix
    and `-S=S^\top`. Currently constructions from Section 14.1 of [Ha83]_ and few
    more exotic ones are implemented.

    INPUT:

    - ``n`` (integer) -- dimension of the matrix

    - ``existence`` (boolean) -- whether to build the matrix or merely query if
      a construction is available in Sage. When set to ``True``, the function
      returns:

        - ``True`` -- meaning that Sage knows how to build the matrix

        - ``Unknown`` -- meaning that Sage does not know how to build the
          matrix, but that the design may exist (see :mod:`sage.misc.unknown`).

        - ``False`` -- meaning that the matrix does not exist.

    - ``skew_normalize`` (boolean) -- whether to make the 1st row all-one, and
      adjust the 1st column accordingly. Set to ``True`` by default.

    - ``check`` (boolean) -- whether to check that output is correct before
      returning it. As this is expected to be useless (but we are cautious
      guys), you may want to disable it whenever you want speed. Set to ``True``
      by default.

    EXAMPLES::

        sage: from sage.combinat.matrices.hadamard_matrix import skew_hadamard_matrix
        sage: skew_hadamard_matrix(12).det()
        2985984
        sage: 12^6
        2985984
        sage: skew_hadamard_matrix(1)
        [1]
        sage: skew_hadamard_matrix(2)
        [ 1  1]
        [-1  1]

    TESTS::

        sage: skew_hadamard_matrix(10,existence=True)
        False
        sage: skew_hadamard_matrix(12,existence=True)
        True
        sage: skew_hadamard_matrix(784,existence=True)
        True
        sage: skew_hadamard_matrix(10)
        Traceback (most recent call last):
        ...
        ValueError: A skew Hadamard matrix of order 10 does not exist
        sage: skew_hadamard_matrix(36)
        36 x 36 dense matrix over Integer Ring...
        sage: skew_hadamard_matrix(36)==skew_hadamard_matrix(36,skew_normalize=False)
        False
        sage: skew_hadamard_matrix(52)
        52 x 52 dense matrix over Integer Ring...
        sage: skew_hadamard_matrix(92)
        92 x 92 dense matrix over Integer Ring...
        sage: skew_hadamard_matrix(816)     # long time
        816 x 816 dense matrix over Integer Ring...
        sage: skew_hadamard_matrix(100)
        Traceback (most recent call last):
        ...
        ValueError: A skew Hadamard matrix of order 100 is not yet implemented.
        sage: skew_hadamard_matrix(100,existence=True)
        Unknown

    REFERENCES:

    .. [Ha83] M. Hall,
      Combinatorial Theory,
      2nd edition,
      Wiley, 1983
    """
    def true():
        _skew_had_cache[n]=True
        return True
    M = None
    if existence and n in _skew_had_cache:
        return True
    if not(n % 4 == 0) and (n > 2):
        if existence:
            return False
        raise ValueError("A skew Hadamard matrix of order %s does not exist" % n)
    if n == 2:
        if existence:
            return true()
        M = matrix([[1, 1], [-1, 1]])
    elif n == 1:
        if existence:
            return true()
        M = matrix([1])
    elif is_prime_power(n - 1) and ((n - 1) % 4 == 3):
        if existence:
            return true()
        M = hadamard_matrix_paleyI(n, normalize=False)

    elif n % 8 == 0:
        if skew_hadamard_matrix(n//2,existence=True): # (Lemma 14.1.6 in [Ha83]_)
            if existence:
                return true()
            H = skew_hadamard_matrix(n//2,check=False)
            M = block_matrix([[H,H], [-H.T,H.T]])

        else: # try Williamson construction (Lemma 14.1.5 in [Ha83]_)
            for d in divisors(n)[2:-2]: # skip 1, 2, n/2, and n
                n1 = n//d
                if is_prime_power(d - 1) and (d % 4 == 0) and (n1 % 4 == 0)\
                    and skew_hadamard_matrix(n1,existence=True):
                    if existence:
                        return true()
                    H = skew_hadamard_matrix(n1, check=False)-I(n1)
                    U = matrix(ZZ, d, lambda i, j: -1 if i==j==0 else\
                                        1 if i==j==1 or (i>1 and j-1==d-i)\
                                          else 0)
                    A = block_matrix([[matrix([0]), matrix(ZZ,1,d-1,[1]*(d-1))],
                                      [ matrix(ZZ,d-1,1,[-1]*(d-1)),
                                        _helper_payley_matrix(d-1,zero_position=0)]])+I(d)
                    M = A.tensor_product(I(n1))+(U*A).tensor_product(H)
                    break
    if M is None: # try Williamson-Goethals-Seidel construction
        if GS_skew_hadamard_smallcases(n, existence=True):
            if existence:
                return true()
            M = GS_skew_hadamard_smallcases(n)

        else:
            if existence:
                return Unknown
            raise ValueError("A skew Hadamard matrix of order %s is not yet implemented." % n)
    if skew_normalize:
        dd = diagonal_matrix(M[0])
        M = dd*M*dd
    if check:
        assert is_hadamard_matrix(M, normalized=False, skew=True)
        if skew_normalize:
            from sage.modules.free_module_element import vector
            assert M[0]==vector([1]*n)
    _skew_had_cache[n]=True
    return M
Exemplo n.º 14
0
def BalancedIncompleteBlockDesign(v,k,existence=False,use_LJCR=False):
    r"""
    Returns a BIBD of parameters `v,k`.

    A Balanced Incomplete Block Design of parameters `v,k` is a collection
    `\mathcal C` of `k`-subsets of `V=\{0,\dots,v-1\}` such that for any two
    distinct elements `x,y\in V` there is a unique element `S\in \mathcal C`
    such that `x,y\in S`.

    More general definitions sometimes involve a `\lambda` parameter, and we
    assume here that `\lambda=1`.

    For more information on BIBD, see the
    :wikipedia:`corresponding Wikipedia entry <Block_design#Definition_of_a_BIBD_.28or_2-design.29>`.

    INPUT:

    - ``v,k`` (integers)

    - ``existence`` (boolean) -- instead of building the design, returns:

        - ``True`` -- meaning that Sage knows how to build the design

        - ``Unknown`` -- meaning that Sage does not know how to build the
          design, but that the design may exist (see :mod:`sage.misc.unknown`).

        - ``False`` -- meaning that the design does not exist.

    - ``use_LJCR`` (boolean) -- whether to query the La Jolla Covering
      Repository for the design when Sage does not know how to build it (see
      :meth:`~sage.combinat.designs.covering_design.best_known_covering_design_www`). This
      requires internet.

    .. SEEALSO::

        * :func:`steiner_triple_system`
        * :func:`v_4_1_BIBD`
        * :func:`v_5_1_BIBD`

    TODO:

        * Implement other constructions from the Handbook of Combinatorial
          Designs.

    EXAMPLES::

        sage: designs.BalancedIncompleteBlockDesign(7,3).blocks()
        [[0, 1, 3], [0, 2, 4], [0, 5, 6], [1, 2, 6], [1, 4, 5], [2, 3, 5], [3, 4, 6]]
        sage: B = designs.BalancedIncompleteBlockDesign(21,5, use_LJCR=True) # optional - internet
        sage: B                                                              # optional - internet
        Incidence structure with 21 points and 21 blocks
        sage: B.blocks()                                                     # optional - internet
        [[0, 1, 2, 3, 20], [0, 4, 8, 12, 16], [0, 5, 10, 15, 19],
         [0, 6, 11, 13, 17], [0, 7, 9, 14, 18], [1, 4, 11, 14, 19],
         [1, 5, 9, 13, 16], [1, 6, 8, 15, 18], [1, 7, 10, 12, 17],
         [2, 4, 9, 15, 17], [2, 5, 11, 12, 18], [2, 6, 10, 14, 16],
         [2, 7, 8, 13, 19], [3, 4, 10, 13, 18], [3, 5, 8, 14, 17],
         [3, 6, 9, 12, 19], [3, 7, 11, 15, 16], [4, 5, 6, 7, 20],
         [8, 9, 10, 11, 20], [12, 13, 14, 15, 20], [16, 17, 18, 19, 20]]
        sage: designs.BalancedIncompleteBlockDesign(20,5, use_LJCR=True) # optional - internet
        Traceback (most recent call last):
        ...
        ValueError: No such design exists !
        sage: designs.BalancedIncompleteBlockDesign(16,6)
        Traceback (most recent call last):
        ...
        NotImplementedError: I don't know how to build this design.

    TESTS::

        sage: designs.BalancedIncompleteBlockDesign(85,5,existence=True)
        True
        sage: _ = designs.BalancedIncompleteBlockDesign(85,5)

    A BIBD from a Finite Projective Plane::

        sage: _ = designs.BalancedIncompleteBlockDesign(21,5)

    Some trivial BIBD::

        sage: designs.BalancedIncompleteBlockDesign(10,10)
        Incidence structure with 10 points and 1 blocks
        sage: designs.BalancedIncompleteBlockDesign(1,10)
        Incidence structure with 1 points and 0 blocks

    Existence of BIBD with `k=3,4,5`::

        sage: [v for v in xrange(50) if designs.BalancedIncompleteBlockDesign(v,3,existence=True)]
        [1, 3, 7, 9, 13, 15, 19, 21, 25, 27, 31, 33, 37, 39, 43, 45, 49]
        sage: [v for v in xrange(100) if designs.BalancedIncompleteBlockDesign(v,4,existence=True)]
        [1, 4, 13, 16, 25, 28, 37, 40, 49, 52, 61, 64, 73, 76, 85, 88, 97]
        sage: [v for v in xrange(150) if designs.BalancedIncompleteBlockDesign(v,5,existence=True)]
        [1, 5, 21, 25, 41, 45, 61, 65, 81, 85, 101, 105, 121, 125, 141, 145]

    For `k > 5` there are currently very few constructions::

        sage: [v for v in xrange(150) if designs.BalancedIncompleteBlockDesign(v,6,existence=True) is True]
        [1, 6, 31]
        sage: [v for v in xrange(150) if designs.BalancedIncompleteBlockDesign(v,6,existence=True) is Unknown]
        [16, 21, 36, 46, 51, 61, 66, 76, 81, 91, 96, 106, 111, 121, 126, 136, 141]
    """
    if v == 1:
        if existence:
            return True
        return BlockDesign(v, [], test=False)

    if k == v:
        if existence:
            return True
        return BlockDesign(v, [range(v)], test=False)

    if v < k or k < 2 or (v-1) % (k-1) != 0 or (v*(v-1)) % (k*(k-1)) != 0:
        if existence:
            return False
        raise EmptySetError("No such design exists !")

    if k == 2:
        if existence:
            return True
        from itertools import combinations
        return BlockDesign(v, combinations(range(v),2), test = False)
    if k == 3:
        if existence:
            return v%6 == 1 or v%6 == 3
        return steiner_triple_system(v)
    if k == 4:
        if existence:
            return v%12 == 1 or v%12 == 4
        return BlockDesign(v, v_4_1_BIBD(v), test = False)
    if k == 5:
        if existence:
            return v%20 == 1 or v%20 == 5
        return BlockDesign(v, v_5_1_BIBD(v), test = False)

    if BIBD_from_TD(v,k,existence=True):
        if existence:
            return True
        return BlockDesign(v, BIBD_from_TD(v,k))
    if v == (k-1)**2+k and is_prime_power(k-1):
        if existence:
            return True
        from block_design import projective_plane
        return projective_plane(k-1)
    if use_LJCR:
        from covering_design import best_known_covering_design_www
        B = best_known_covering_design_www(v,k,2)

        # Is it a BIBD or just a good covering ?
        expected_n_of_blocks = binomial(v,2)/binomial(k,2)
        if B.low_bd() > expected_n_of_blocks:
            if existence:
                return False
            raise EmptySetError("No such design exists !")
        B = B.incidence_structure()
        if len(B.blcks) == expected_n_of_blocks:
            if existence:
                return True
            else:
                return B

    if existence:
        return Unknown
    else:
        raise NotImplementedError("I don't know how to build this design.")
Exemplo n.º 15
0
def BIBD_from_arc_in_desarguesian_projective_plane(n,k,existence=False):
    r"""
    Returns a `(n,k,1)`-BIBD from a maximal arc in a projective plane.

    This function implements a construction from Denniston [Denniston69]_, who
    describes a maximal :meth:`arc
    <sage.combinat.designs.bibd.BalancedIncompleteBlockDesign.arc>` in a
    :func:`Desarguesian Projective Plane
    <sage.combinat.designs.block_design.DesarguesianProjectivePlaneDesign>` of
    order `2^k`. From two powers of two `n,q` with `n<q`, it produces a
    `((n-1)(q+1)+1,n,1)`-BIBD.

    INPUT:

    - ``n,k`` (integers) -- must be powers of two (among other restrictions).

    - ``existence`` (boolean) -- whether to return the BIBD obtained through
      this construction (default), or to merely indicate with a boolean return
      value whether this method *can* build the requested BIBD.

    EXAMPLES:

    A `(232,8,1)`-BIBD::

        sage: from sage.combinat.designs.bibd import BIBD_from_arc_in_desarguesian_projective_plane
        sage: from sage.combinat.designs.bibd import BalancedIncompleteBlockDesign
        sage: D = BIBD_from_arc_in_desarguesian_projective_plane(232,8)
        sage: BalancedIncompleteBlockDesign(232,D)
        (232,8,1)-Balanced Incomplete Block Design

    A `(120,8,1)`-BIBD::

        sage: D = BIBD_from_arc_in_desarguesian_projective_plane(120,8)
        sage: BalancedIncompleteBlockDesign(120,D)
        (120,8,1)-Balanced Incomplete Block Design

    Other parameters::

        sage: all(BIBD_from_arc_in_desarguesian_projective_plane(n,k,existence=True)
        ....:     for n,k in
        ....:       [(120, 8), (232, 8), (456, 8), (904, 8), (496, 16),
        ....:        (976, 16), (1936, 16), (2016, 32), (4000, 32), (8128, 64)])
        True

    Of course, not all can be built this way::

        sage: BIBD_from_arc_in_desarguesian_projective_plane(7,3,existence=True)
        False
        sage: BIBD_from_arc_in_desarguesian_projective_plane(7,3)
        Traceback (most recent call last):
        ...
        ValueError: This function cannot produce a (7,3,1)-BIBD

    REFERENCE:

    .. [Denniston69] R. H. F. Denniston,
       Some maximal arcs in finite projective planes.
       Journal of Combinatorial Theory 6, no. 3 (1969): 317-319.
       http://dx.doi.org/10.1016/S0021-9800(69)80095-5

    """
    q = (n-1)//(k-1)-1
    if (k % 2                 or
        q % 2                 or
        q <= k                or
        n != (k-1)*(q+1)+1    or
        not is_prime_power(k) or
        not is_prime_power(q)):
        if existence:
            return False
        raise ValueError("This function cannot produce a ({},{},1)-BIBD".format(n,k))

    if existence:
        return True

    n = k

    # From now on, the code assumes the notations of [Denniston69] for n,q, so
    # that the BIBD returned by the method will have the requested parameters.

    from sage.rings.finite_rings.constructor import FiniteField as GF
    from sage.libs.gap.libgap import libgap
    from sage.matrix.constructor import Matrix

    K   = GF(q,'a')
    one = K.one()

    # An irreducible quadratic form over K[X,Y]
    GO = libgap.GeneralOrthogonalGroup(-1,2,q)
    M  = libgap.InvariantQuadraticForm(GO)['matrix']
    M  = Matrix(M)
    M  = M.change_ring(K)
    Q  = lambda xx,yy : M[0,0]*xx**2+(M[0,1]+M[1,0])*xx*yy+M[1,1]*yy**2

    # Here, the additive subgroup H (of order n) of K mentioned in
    # [Denniston69] is the set of all elements of K of degree < log_n
    # (seeing elements of K as polynomials in 'a')

    K_iter = list(K) # faster iterations
    log_n = is_prime_power(n,get_data=True)[1]
    C = [(x,y,one)
         for x in K_iter
         for y in K_iter
         if Q(x,y).polynomial().degree() < log_n]

    from sage.combinat.designs.block_design import DesarguesianProjectivePlaneDesign
    return DesarguesianProjectivePlaneDesign(q).trace(C)._blocks
Exemplo n.º 16
0
def v_5_1_BIBD(v, check=True):
    r"""
    Returns a `(v,5,1)`-BIBD.

    This method follows the constuction from [ClaytonSmith]_.

    INPUT:

    - ``v`` (integer)

    .. SEEALSO::

        * :meth:`BalancedIncompleteBlockDesign`

    EXAMPLES::

        sage: from sage.combinat.designs.bibd import v_5_1_BIBD
        sage: i = 0
        sage: while i<200:
        ....:    i += 20
        ....:    _ = v_5_1_BIBD(i+1)
        ....:    _ = v_5_1_BIBD(i+5)
    """
    v = int(v)

    assert (v > 1)
    assert (v % 20 == 5 or v % 20 == 1
            )  # note: equivalent to (v-1)%4 == 0 and (v*(v-1))%20 == 0

    # Lemma 27
    if v % 5 == 0 and (v // 5) % 4 == 1 and is_prime_power(v // 5):
        bibd = BIBD_5q_5_for_q_prime_power(v // 5)
    # Lemma 28
    elif v == 21:
        from sage.rings.finite_rings.integer_mod_ring import Zmod
        bibd = BIBD_from_difference_family(Zmod(21), [[0, 1, 4, 14, 16]],
                                           check=False)
    elif v == 41:
        from sage.rings.finite_rings.integer_mod_ring import Zmod
        bibd = BIBD_from_difference_family(
            Zmod(41), [[0, 1, 4, 11, 29], [0, 2, 8, 17, 22]], check=False)
    elif v == 61:
        from sage.rings.finite_rings.integer_mod_ring import Zmod
        bibd = BIBD_from_difference_family(
            Zmod(61),
            [[0, 1, 3, 13, 34], [0, 4, 9, 23, 45], [0, 6, 17, 24, 32]],
            check=False)
    elif v == 81:
        from sage.groups.additive_abelian.additive_abelian_group import AdditiveAbelianGroup
        D = [[(0, 0, 0, 1), (2, 0, 0, 1), (0, 0, 2, 1), (1, 2, 0, 2),
              (0, 1, 1, 1)],
             [(0, 0, 1, 0), (1, 1, 0, 2), (0, 2, 1, 0), (1, 2, 0, 1),
              (1, 1, 1, 0)],
             [(2, 2, 1, 1), (1, 2, 2, 2), (2, 0, 1, 2), (0, 1, 2, 1),
              (1, 1, 0, 0)],
             [(0, 2, 0, 2), (1, 1, 0, 1), (1, 2, 1, 2), (1, 2, 1, 0),
              (0, 2, 1, 1)]]
        bibd = BIBD_from_difference_family(AdditiveAbelianGroup([3] * 4),
                                           D,
                                           check=False)
    elif v == 161:
        # VI.16.16 of the Handbook of Combinatorial Designs, Second Edition
        D = [(0, 19, 34, 73, 80), (0, 16, 44, 71, 79), (0, 12, 33, 74, 78),
             (0, 13, 30, 72, 77), (0, 11, 36, 67, 76), (0, 18, 32, 69, 75),
             (0, 10, 48, 68, 70), (0, 3, 29, 52, 53)]
        from sage.rings.finite_rings.integer_mod_ring import Zmod
        bibd = BIBD_from_difference_family(Zmod(161), D, check=False)
    elif v == 281:
        from sage.rings.finite_rings.integer_mod_ring import Zmod
        D = [[3**(2 * a + 56 * b) for b in range(5)] for a in range(14)]
        bibd = BIBD_from_difference_family(Zmod(281), D, check=False)
    # Lemma 29
    elif v == 165:
        bibd = BIBD_from_PBD(v_5_1_BIBD(41, check=False), 165, 5, check=False)
    elif v == 181:
        bibd = BIBD_from_PBD(v_5_1_BIBD(45, check=False), 181, 5, check=False)
    elif v in (201, 285, 301, 401, 421, 425):
        # Call directly the BIBD_from_TD function
        bibd = BIBD_from_TD(v, 5)
    # Lemma 30
    elif v == 141:
        # VI.16.16 of the Handbook of Combinatorial Designs, Second Edition
        from sage.rings.finite_rings.integer_mod_ring import Zmod
        D = [(0, 33, 60, 92, 97), (0, 3, 45, 88, 110), (0, 18, 39, 68, 139),
             (0, 12, 67, 75, 113), (0, 1, 15, 84, 94), (0, 7, 11, 24, 30),
             (0, 36, 90, 116, 125)]
        bibd = BIBD_from_difference_family(Zmod(141), D, check=False)

    # Theorem 31.2
    elif (v - 1) // 4 in [
            80, 81, 85, 86, 90, 91, 95, 96, 110, 111, 115, 116, 120, 121, 250,
            251, 255, 256, 260, 261, 265, 266, 270, 271
    ]:
        r = (v - 1) // 4
        if r <= 96:
            k, t, u = 5, 16, r - 80
        elif r <= 121:
            k, t, u = 10, 11, r - 110
        else:
            k, t, u = 10, 25, r - 250
        bibd = BIBD_from_PBD(PBD_from_TD(k, t, u), v, 5, check=False)

    else:
        r, s, t, u = _get_r_s_t_u(v)
        bibd = BIBD_from_PBD(PBD_from_TD(5, t, u), v, 5, check=False)

    if check:
        _check_pbd(bibd, v, [5])

    return bibd
Exemplo n.º 17
0
def BalancedIncompleteBlockDesign(v, k, existence=False, use_LJCR=False):
    r"""
    Returns a BIBD of parameters `v,k`.

    A Balanced Incomplete Block Design of parameters `v,k` is a collection
    `\mathcal C` of `k`-subsets of `V=\{0,\dots,v-1\}` such that for any two
    distinct elements `x,y\in V` there is a unique element `S\in \mathcal C`
    such that `x,y\in S`.

    More general definitions sometimes involve a `\lambda` parameter, and we
    assume here that `\lambda=1`.

    For more information on BIBD, see the
    :wikipedia:`corresponding Wikipedia entry <Block_design#Definition_of_a_BIBD_.28or_2-design.29>`.

    INPUT:

    - ``v,k`` (integers)

    - ``existence`` (boolean) -- instead of building the design, returns:

        - ``True`` -- meaning that Sage knows how to build the design

        - ``Unknown`` -- meaning that Sage does not know how to build the
          design, but that the design may exist (see :mod:`sage.misc.unknown`).

        - ``False`` -- meaning that the design does not exist.

    - ``use_LJCR`` (boolean) -- whether to query the La Jolla Covering
      Repository for the design when Sage does not know how to build it (see
      :meth:`~sage.combinat.designs.covering_design.best_known_covering_design_www`). This
      requires internet.

    .. SEEALSO::

        * :func:`steiner_triple_system`
        * :func:`v_4_1_BIBD`
        * :func:`v_5_1_BIBD`

    TODO:

        * Implement other constructions from the Handbook of Combinatorial
          Designs.

    EXAMPLES::

        sage: designs.BalancedIncompleteBlockDesign(7,3).blocks()
        [[0, 1, 3], [0, 2, 4], [0, 5, 6], [1, 2, 6], [1, 4, 5], [2, 3, 5], [3, 4, 6]]
        sage: B = designs.BalancedIncompleteBlockDesign(21,5, use_LJCR=True) # optional - internet
        sage: B                                                              # optional - internet
        Incidence structure with 21 points and 21 blocks
        sage: B.blocks()                                                     # optional - internet
        [[0, 1, 2, 3, 20], [0, 4, 8, 12, 16], [0, 5, 10, 15, 19],
         [0, 6, 11, 13, 17], [0, 7, 9, 14, 18], [1, 4, 11, 14, 19],
         [1, 5, 9, 13, 16], [1, 6, 8, 15, 18], [1, 7, 10, 12, 17],
         [2, 4, 9, 15, 17], [2, 5, 11, 12, 18], [2, 6, 10, 14, 16],
         [2, 7, 8, 13, 19], [3, 4, 10, 13, 18], [3, 5, 8, 14, 17],
         [3, 6, 9, 12, 19], [3, 7, 11, 15, 16], [4, 5, 6, 7, 20],
         [8, 9, 10, 11, 20], [12, 13, 14, 15, 20], [16, 17, 18, 19, 20]]
        sage: designs.BalancedIncompleteBlockDesign(20,5, use_LJCR=True) # optional - internet
        Traceback (most recent call last):
        ...
        ValueError: No such design exists !
        sage: designs.BalancedIncompleteBlockDesign(16,6)
        Traceback (most recent call last):
        ...
        NotImplementedError: I don't know how to build this design.

    TESTS::

        sage: designs.BalancedIncompleteBlockDesign(85,5,existence=True)
        True
        sage: _ = designs.BalancedIncompleteBlockDesign(85,5)

    A BIBD from a Finite Projective Plane::

        sage: _ = designs.BalancedIncompleteBlockDesign(21,5)

    Some trivial BIBD::

        sage: designs.BalancedIncompleteBlockDesign(10,10)
        Incidence structure with 10 points and 1 blocks
        sage: designs.BalancedIncompleteBlockDesign(1,10)
        Incidence structure with 1 points and 0 blocks

    Existence of BIBD with `k=3,4,5`::

        sage: [v for v in xrange(50) if designs.BalancedIncompleteBlockDesign(v,3,existence=True)]
        [1, 3, 7, 9, 13, 15, 19, 21, 25, 27, 31, 33, 37, 39, 43, 45, 49]
        sage: [v for v in xrange(100) if designs.BalancedIncompleteBlockDesign(v,4,existence=True)]
        [1, 4, 13, 16, 25, 28, 37, 40, 49, 52, 61, 64, 73, 76, 85, 88, 97]
        sage: [v for v in xrange(150) if designs.BalancedIncompleteBlockDesign(v,5,existence=True)]
        [1, 5, 21, 25, 41, 45, 61, 65, 81, 85, 101, 105, 121, 125, 141, 145]

    For `k > 5` there are currently very few constructions::

        sage: [v for v in xrange(150) if designs.BalancedIncompleteBlockDesign(v,6,existence=True) is True]
        [1, 6, 31]
        sage: [v for v in xrange(150) if designs.BalancedIncompleteBlockDesign(v,6,existence=True) is Unknown]
        [16, 21, 36, 46, 51, 61, 66, 76, 81, 91, 96, 106, 111, 121, 126, 136, 141]
    """
    if v == 1:
        if existence:
            return True
        return BlockDesign(v, [], test=False)

    if k == v:
        if existence:
            return True
        return BlockDesign(v, [range(v)], test=False)

    if v < k or k < 2 or (v - 1) % (k - 1) != 0 or (v *
                                                    (v - 1)) % (k *
                                                                (k - 1)) != 0:
        if existence:
            return False
        raise EmptySetError("No such design exists !")

    if k == 2:
        if existence:
            return True
        from itertools import combinations
        return BlockDesign(v, combinations(range(v), 2), test=False)
    if k == 3:
        if existence:
            return v % 6 == 1 or v % 6 == 3
        return steiner_triple_system(v)
    if k == 4:
        if existence:
            return v % 12 == 1 or v % 12 == 4
        return BlockDesign(v, v_4_1_BIBD(v), test=False)
    if k == 5:
        if existence:
            return v % 20 == 1 or v % 20 == 5
        return BlockDesign(v, v_5_1_BIBD(v), test=False)

    if BIBD_from_TD(v, k, existence=True):
        if existence:
            return True
        return BlockDesign(v, BIBD_from_TD(v, k))
    if v == (k - 1)**2 + k and is_prime_power(k - 1):
        if existence:
            return True
        from block_design import projective_plane
        return projective_plane(k - 1)
    if use_LJCR:
        from covering_design import best_known_covering_design_www
        B = best_known_covering_design_www(v, k, 2)

        # Is it a BIBD or just a good covering ?
        expected_n_of_blocks = binomial(v, 2) / binomial(k, 2)
        if B.low_bd() > expected_n_of_blocks:
            if existence:
                return False
            raise EmptySetError("No such design exists !")
        B = B.incidence_structure()
        if len(B.blcks) == expected_n_of_blocks:
            if existence:
                return True
            else:
                return B

    if existence:
        return Unknown
    else:
        raise NotImplementedError("I don't know how to build this design.")
Exemplo n.º 18
0
def projective_plane(n, check=True, existence=False):
    r"""
    Returns a projective plane of order ``n`` as a 2-design.

    A finite projective plane is a 2-design with `n^2+n+1` lines (or blocks) and
    `n^2+n+1` points. For more information on finite projective planes, see the
    :wikipedia:`Projective_plane#Finite_projective_planes`.

    If no construction is possible, then the function raises a ``EmptySetError``
    whereas if no construction is available the function raises a
    ``NotImplementedError``.

    INPUT:

    - ``n`` -- the finite projective plane's order

    EXAMPLES::

        sage: designs.projective_plane(2)
        Incidence structure with 7 points and 7 blocks
        sage: designs.projective_plane(3)
        Incidence structure with 13 points and 13 blocks
        sage: designs.projective_plane(4)
        Incidence structure with 21 points and 21 blocks
        sage: designs.projective_plane(5)
        Incidence structure with 31 points and 31 blocks
        sage: designs.projective_plane(6)
        Traceback (most recent call last):
        ...
        EmptySetError: By the Ryser-Chowla theorem, no projective plane of order 6 exists.
        sage: designs.projective_plane(10)
        Traceback (most recent call last):
        ...
        EmptySetError: No projective plane of order 10 exists by C. Lam, L. Thiel and S. Swiercz "The nonexistence of finite projective planes of order 10" (1989), Canad. J. Math.
        sage: designs.projective_plane(12)
        Traceback (most recent call last):
        ...
        NotImplementedError: If such a projective plane exists, we do not know how to build it.
        sage: designs.projective_plane(14)
        Traceback (most recent call last):
        ...
        EmptySetError: By the Ryser-Chowla theorem, no projective plane of order 14 exists.

    TESTS::

        sage: designs.projective_plane(2197, existence=True)
        True
        sage: designs.projective_plane(6, existence=True)
        False
        sage: designs.projective_plane(10, existence=True)
        False
        sage: designs.projective_plane(12, existence=True)
        Unknown
    """
    from sage.rings.arith import is_prime_power, two_squares

    if n <= 1:
        if existence:
            return False
        raise EmptySetError("There is no projective plane of order <= 1")

    if n == 10:
        if existence:
            return False
        ref = ("C. Lam, L. Thiel and S. Swiercz \"The nonexistence of finite "
               "projective planes of order 10\" (1989), Canad. J. Math.")
        raise EmptySetError("No projective plane of order 10 exists by %s" %
                            ref)

    if (n % 4) in [1, 2]:
        try:
            two_squares(n)
        except ValueError:
            if existence:
                return False
            raise EmptySetError("By the Ryser-Chowla theorem, no projective"
                                " plane of order " + str(n) + " exists.")

    if not is_prime_power(n):
        if existence:
            return Unknown
        raise NotImplementedError("If such a projective plane exists, we do "
                                  "not know how to build it.")

    if existence:
        return True
    else:
        return DesarguesianProjectivePlaneDesign(n, check=check)
Exemplo n.º 19
0
def OA_and_oval(q):
    r"""
    Return a `OA(q+1,q)` whose blocks contains `\leq 2` zeroes in the last `q`
    columns.

    This `OA` is build from a projective plane of order `q`, in which there
    exists an oval `O` of size `q+1` (i.e. a set of `q+1` points no three of which
    are [colinear/contained in a common set of the projective plane]).

    Removing an element `x\in O` and all sets that contain it, we obtain a
    `TD(q+1,q)` in which `O` intersects all columns except one. As `O` is an
    oval, no block of the `TD` intersects it more than twice.

    INPUT:

    - ``q`` -- a prime power

    .. NOTE::

            This function is called by :func:`construction_3_6`, an
            implementation of Construction 3.6 from [AC07]_.

    EXAMPLES::

        sage: from sage.combinat.designs.orthogonal_arrays_recursive import OA_and_oval
        sage: _ = OA_and_oval

    """
    from sage.rings.arith import is_prime_power
    from sage.combinat.designs.block_design import projective_plane
    from orthogonal_arrays import OA_relabel

    assert is_prime_power(q)
    B = projective_plane(q, check=False)

    # We compute the oval with a linear program
    from sage.numerical.mip import MixedIntegerLinearProgram
    p = MixedIntegerLinearProgram()
    b = p.new_variable(binary=True)
    V = B.ground_set()
    p.add_constraint(p.sum([b[i] for i in V]) == q+1)
    for bl in B:
        p.add_constraint(p.sum([b[i] for i in bl]) <= 2)
    p.solve()
    b = p.get_values(b)
    oval = [x for x,i in b.items() if i]
    assert len(oval) == q+1

    # We remove one element from the oval
    x = oval.pop()
    oval.sort()

    # We build the TD by relabelling the point set, and removing those which
    # contain x.
    r = {}
    B = list(B)
    # (this is to make sure that the first set containing x in B is the one
    # which contains no other oval point)

    B.sort(key=lambda b:int(any([xx in oval for xx in b])))
    BB = []
    for b in B:
        if x in b:
            for xx in b:
                if xx == x:
                    continue
                r[xx] = len(r)
        else:
            BB.append(b)

    assert len(r) == (q+1)*q # all points except x have an image
    assert len(set(r.values())) == len(r) # the images are different

    # Relabelling/sorting the blocks and the oval
    BB = [[r[xx] for xx in b] for b in BB]
    oval = [r[xx] for xx in oval]

    for b in BB:
        b.sort()
    oval.sort()

    # Turning the TD into an OA
    BB = [[xx%q for xx in b] for b in BB]
    oval = [xx%q for xx in oval]
    assert len(oval) == q

    # We relabel the "oval" as relabelled as [0,...,0]
    OA = OA_relabel(BB+([[0]+oval]),q+1,q,blocks=[[0]+oval])
    OA = [[(x+1)%q for x in B] for B in OA]
    OA.remove([0]*(q+1))

    assert all(sum([xx == 0 for xx in b[1:]]) <= 2 for b in OA)
    return OA
Exemplo n.º 20
0
def T2starGeneralizedQuadrangleGraph(q, dual=False, hyperoval=None, field=None, check_hyperoval=True):
    r"""
    Return the collinearity graph of the generalized quadrangle `T_2^*(q)`, or of its dual

    Let `q=2^k` and `\Theta=PG(3,q)`.  `T_2^*(q)` is a generalized quadrangle [GQwiki]_
    of order `(q-1,q+1)`, see 3.1.3 in [PT09]_. Fix a plane `\Pi \subset \Theta` and a
    `hyperoval <http://en.wikipedia.org/wiki/Oval_(projective_plane)#Even_q>`__
    `O \subset \Pi`. The points of `T_2^*(q):=T_2^*(O)` are the points of `\Theta`
    outside `\Pi`, and the lines are the lines of `\Theta` outside `\Pi`
    that meet `\Pi` in a point of `O`.

    INPUT:

    - ``q`` -- a power of two

    - ``dual`` -- if ``False`` (default), return the graph of `T_2^*(O)`.
      Otherwise return the graph of the dual `T_2^*(O)`.

    - ``hyperoval`` -- a hyperoval (i.e. a complete 2-arc; a set of points in the plane
      meeting every line in 0 or 2 points) in the plane of points with 0th coordinate
      0 in `PG(3,q)` over the field ``field``. Each point of ``hyperoval`` must be a length 4
      vector over ``field`` with 1st non-0 coordinate equal to 1. By default, ``hyperoval`` and
      ``field`` are not specified, and constructed on the fly. In particular, ``hyperoval``
      we build is the classical one, i.e. a conic with the point of intersection of its
      tangent lines.

    - ``field`` -- an instance of a finite field of order `q`, must be provided
      if ``hyperoval`` is provided.

    - ``check_hyperoval`` -- (default: ``True``) if ``True``,
      check ``hyperoval`` for correctness.


    EXAMPLES:

    using the built-in construction::

        sage: g=graphs.T2starGeneralizedQuadrangleGraph(4); g
        T2*(O,4); GQ(3, 5): Graph on 64 vertices
        sage: g.is_strongly_regular(parameters=True)
        (64, 18, 2, 6)
        sage: g=graphs.T2starGeneralizedQuadrangleGraph(4,dual=True); g
        T2*(O,4)*; GQ(5, 3): Graph on 96 vertices
        sage: g.is_strongly_regular(parameters=True)
        (96, 20, 4, 4)

    supplying your own hyperoval::

        sage: F=GF(4,'b')
        sage: O=[vector(F,(0,0,0,1)),vector(F,(0,0,1,0))]+map(lambda x: vector(F, (0,1,x^2,x)),F)
        sage: g=graphs.T2starGeneralizedQuadrangleGraph(4, hyperoval=O, field=F); g
        T2*(O,4); GQ(3, 5): Graph on 64 vertices
        sage: g.is_strongly_regular(parameters=True)
        (64, 18, 2, 6)

    TESTS::

        sage: F=GF(4,'b') # repeating a point...
        sage: O=[vector(F,(0,1,0,0)),vector(F,(0,0,1,0))]+map(lambda x: vector(F, (0,1,x^2,x)),F)
        sage: graphs.T2starGeneralizedQuadrangleGraph(4, hyperoval=O, field=F)
        Traceback (most recent call last):
        ...
        RuntimeError: incorrect hyperoval size
        sage: O=[vector(F,(0,1,1,0)),vector(F,(0,0,1,0))]+map(lambda x: vector(F, (0,1,x^2,x)),F)
        sage: graphs.T2starGeneralizedQuadrangleGraph(4, hyperoval=O, field=F)
        Traceback (most recent call last):
        ...
        RuntimeError: incorrect hyperoval
    """
    from sage.combinat.designs.incidence_structures import IncidenceStructure
    from sage.combinat.designs.block_design import ProjectiveGeometryDesign as PG
    from sage.modules.free_module_element import free_module_element as vector

    p, k = is_prime_power(q,get_data=True)
    if k==0 or p!=2:
       raise ValueError('q must be a power of 2')
    if field is None:
        F = FiniteField(q, 'a')
    else:
        F = field

    Theta = PG(3, 1, F, point_coordinates=1)
    Pi = set(filter(lambda x: x[0]==F.zero(), Theta.ground_set()))
    if hyperoval is None:
        O = filter(lambda x: x[1]+x[2]*x[3]==0 or (x[1]==1 and x[2]==0 and x[3]==0), Pi)
        O = set(O)
    else:
        map(lambda x: x.set_immutable(), hyperoval)
        O = set(hyperoval)
        if check_hyperoval:
            if len(O) != q+2:
                raise RuntimeError("incorrect hyperoval size")
            for L in Theta.blocks():
                if set(L).issubset(Pi):
                    if not len(O.intersection(L)) in [0,2]:
                        raise RuntimeError("incorrect hyperoval")
    L = map(lambda z: filter(lambda y: not y in O, z),
            filter(lambda x: len(O.intersection(x)) == 1, Theta.blocks()))
    if dual:
        G = IncidenceStructure(L).intersection_graph()
        G.name('T2*(O,'+str(q)+')*; GQ'+str((q+1,q-1)))
    else:
        G = IncidenceStructure(L).dual().intersection_graph()
        G.name('T2*(O,'+str(q)+'); GQ'+str((q-1,q+1)))
    return G
Exemplo n.º 21
0
def BalancedIncompleteBlockDesign(v, k, use_LJCR=False):
    r"""
    Returns a BIBD of parameters `v,k`.

    A Balanced Incomplete Block Design of parameters `v,k` is a collection
    `\mathcal C` of `k`-subsets of `V=\{0,\dots,v-1\}` such that for any two
    distinct elements `x,y\in V` there is a unique element `S\in \mathcal C`
    such that `x,y\in S`.

    More general definitions sometimes involve a `\lambda` parameter, and we
    assume here that `\lambda=1`.

    For more information on BIBD, see the
    :wikipedia:`corresponding Wikipedia entry <Block_design#Definition_of_a_BIBD_.28or_2-design.29>`.

    INPUT:

    - ``v,k`` (integers)

    - ``use_LJCR`` (boolean) -- whether to query the La Jolla Covering
      Repository for the design when Sage does not know how to build it (see
      :meth:`~sage.combinat.designs.covering_design.best_known_covering_design_www`). This
      requires internet.

    .. SEEALSO::

        * :meth:`steiner_triple_system`
        * :meth:`v_4_1_BIBD`

    TODO:

        * Implement `(v,5,1)`-BIBD using `this text <http://www.argilo.net/files/bibd.pdf>`_.
        * Implement other constructions from the Handbook of Combinatorial
          Designs.

    EXAMPLES::

        sage: designs.BalancedIncompleteBlockDesign(7,3).blocks()
        [[0, 1, 3], [0, 2, 4], [0, 5, 6], [1, 2, 6], [1, 4, 5], [2, 3, 5], [3, 4, 6]]
        sage: B = designs.BalancedIncompleteBlockDesign(21,5, use_LJCR=True) # optional - internet
        sage: B                                                              # optional - internet
        Incidence structure with 21 points and 21 blocks
        sage: B.blocks()                                                     # optional - internet
        [[0, 1, 2, 3, 20], [0, 4, 8, 12, 16], [0, 5, 10, 15, 19],
         [0, 6, 11, 13, 17], [0, 7, 9, 14, 18], [1, 4, 11, 14, 19],
         [1, 5, 9, 13, 16], [1, 6, 8, 15, 18], [1, 7, 10, 12, 17],
         [2, 4, 9, 15, 17], [2, 5, 11, 12, 18], [2, 6, 10, 14, 16],
         [2, 7, 8, 13, 19], [3, 4, 10, 13, 18], [3, 5, 8, 14, 17],
         [3, 6, 9, 12, 19], [3, 7, 11, 15, 16], [4, 5, 6, 7, 20],
         [8, 9, 10, 11, 20], [12, 13, 14, 15, 20], [16, 17, 18, 19, 20]]
        sage: designs.BalancedIncompleteBlockDesign(20,5, use_LJCR=True) # optional - internet
        Traceback (most recent call last):
        ...
        ValueError: No such design exists !

    TESTS:

    A BIBD from a Finite Projective Plane::

        sage: _ = designs.BalancedIncompleteBlockDesign(21,5)
    """
    if ((binomial(v, 2) % binomial(k, 2) != 0) or (v - 1) % (k - 1) != 0):
        raise ValueError("No such design exists !")

    if k == 2:
        from itertools import combinations
        return BlockDesign(v, combinations(range(v), 2), test=False)
    if k == 3:
        return steiner_triple_system(v)
    if k == 4:
        return BlockDesign(v, v_4_1_BIBD(v), test=False)
    if v == (k - 1)**2 + k and is_prime_power(k - 1):
        from block_design import ProjectivePlaneDesign
        return ProjectivePlaneDesign(k - 1)
    if use_LJCR:
        from covering_design import best_known_covering_design_www
        B = best_known_covering_design_www(v, k, 2)

        # Is it a BIBD or just a good covering ?
        expected_n_of_blocks = binomial(v, 2) / binomial(k, 2)
        if B.low_bd() > expected_n_of_blocks:
            raise ValueError("No such design exists !")
        B = B.incidence_structure()
        if len(B.blcks) == expected_n_of_blocks:
            return B

    raise ValueError("I don't know how to build this design.")
Exemplo n.º 22
0
def v_5_1_BIBD(v, check=True):
    r"""
    Return a `(v,5,1)`-BIBD.

    This method follows the constuction from [ClaytonSmith]_.

    INPUT:

    - ``v`` (integer)

    .. SEEALSO::

        * :func:`balanced_incomplete_block_design`

    EXAMPLES::

        sage: from sage.combinat.designs.bibd import v_5_1_BIBD
        sage: i = 0
        sage: while i<200:
        ....:    i += 20
        ....:    _ = v_5_1_BIBD(i+1)
        ....:    _ = v_5_1_BIBD(i+5)

    TESTS:

    Check that the needed difference families are there::

        sage: for v in [21,41,61,81,141,161,281]:
        ....:     assert designs.difference_family(v,5,existence=True)
        ....:     _ = designs.difference_family(v,5)
    """
    v = int(v)

    assert (v > 1)
    assert (v%20 == 5 or v%20 == 1)  # note: equivalent to (v-1)%4 == 0 and (v*(v-1))%20 == 0

    # Lemma 27
    if v%5 == 0 and (v//5)%4 == 1 and is_prime_power(v//5):
        bibd = BIBD_5q_5_for_q_prime_power(v//5)
    # Lemma 28
    elif v in [21,41,61,81,141,161,281]:
        from difference_family import difference_family
        G,D = difference_family(v,5)
        bibd = BIBD_from_difference_family(G, D, check=False)
    # Lemma 29
    elif v == 165:
        bibd = BIBD_from_PBD(v_5_1_BIBD(41,check=False),165,5,check=False)
    elif v == 181:
        bibd = BIBD_from_PBD(v_5_1_BIBD(45,check=False),181,5,check=False)
    elif v in (201,285,301,401,421,425):
        # Call directly the BIBD_from_TD function
        # note: there are (201,5,1) and (421,5)-difference families that can be
        # obtained from the general constructor
        bibd = BIBD_from_TD(v,5)
    # Theorem 31.2
    elif (v-1)//4 in [80, 81, 85, 86, 90, 91, 95, 96, 110, 111, 115, 116, 120, 121, 250, 251, 255, 256, 260, 261, 265, 266, 270, 271]:
        r = (v-1)//4
        if r <= 96:
            k,t,u = 5, 16, r-80
        elif r <= 121:
            k,t,u = 10, 11, r-110
        else:
            k,t,u = 10, 25, r-250
        bibd = BIBD_from_PBD(PBD_from_TD(k,t,u),v,5,check=False)

    else:
        r,s,t,u = _get_r_s_t_u(v)
        bibd = BIBD_from_PBD(PBD_from_TD(5,t,u),v,5,check=False)

    if check:
        assert is_pairwise_balanced_design(bibd,v,[5])

    return bibd
Exemplo n.º 23
0
def kirkman_triple_system(v, existence=False):
    r"""
    Return a Kirkman Triple System on `v` points.

    A Kirkman Triple System `KTS(v)` is a resolvable Steiner Triple System. It
    exists if and only if `v\equiv 3\pmod{6}`.

    INPUT:

    - `n` (integer)

    - ``existence`` (boolean; ``False`` by default) -- whether to build the
      `KTS(n)` or only answer whether it exists.

    .. SEEALSO::

        :meth:`IncidenceStructure.is_resolvable`

    EXAMPLES:

    A solution to Kirkmman's original problem::

        sage: kts = designs.kirkman_triple_system(15)
        sage: classes = kts.is_resolvable(1)[1]
        sage: names = '0123456789abcde'
        sage: to_name = lambda (r,s,t): ' '+names[r]+names[s]+names[t]+' '
        sage: rows = [join(('Day {}'.format(i) for i in range(1,8)), '   ')]
        sage: rows.extend(join(map(to_name,row), '   ') for row in zip(*classes))
        sage: print join(rows,'\n')
        Day 1   Day 2   Day 3   Day 4   Day 5   Day 6   Day 7
         07e     18e     29e     3ae     4be     5ce     6de
         139     24a     35b     46c     05d     167     028
         26b     03c     14d     257     368     049     15a
         458     569     06a     01b     12c     23d     347
         acd     7bd     78c     89d     79a     8ab     9bc

    TESTS::

        sage: for i in range(3,300,6):
        ....:     _ = designs.kirkman_triple_system(i)
    """
    if v % 6 != 3:
        if existence:
            return False
        raise ValueError("There is no KTS({}) as v!=3 mod(6)".format(v))

    if existence:
        return False

    elif v == 3:
        return BalancedIncompleteBlockDesign(3, [[0, 1, 2]], k=3, lambd=1)

    elif v == 9:
        classes = [[[0, 1, 5], [2, 6, 7], [3, 4, 8]],
                   [[1, 6, 8], [3, 5, 7], [0, 2, 4]],
                   [[1, 4, 7], [0, 3, 6], [2, 5, 8]],
                   [[4, 5, 6], [0, 7, 8], [1, 2, 3]]]
        KTS = BalancedIncompleteBlockDesign(
            v, [tr for cl in classes for tr in cl], k=3, lambd=1, copy=False)
        KTS._classes = classes
        return KTS

    # Construction 1.1 from [Stinson91] (originally Theorem 6 from [RCW71])
    #
    # For all prime powers q=1 mod 6, there exists a KTS(2q+1)
    elif ((v - 1) // 2) % 6 == 1 and is_prime_power((v - 1) // 2):
        from sage.rings.finite_rings.constructor import FiniteField as GF
        q = (v - 1) // 2
        K = GF(q, 'x')
        a = K.primitive_element()
        t = (q - 1) / 6

        # m is the solution of a^m=(a^t+1)/2
        from sage.groups.generic import discrete_log
        m = discrete_log((a**t + 1) / 2, a)
        assert 2 * a**m == a**t + 1

        # First parallel class
        first_class = [[(0, 1), (0, 2), 'inf']]
        b0 = K.one()
        b1 = a**t
        b2 = a**m
        first_class.extend([(b0 * a**i, 1), (b1 * a**i, 1), (b2 * a**i, 2)]
                           for i in range(t) + range(2 * t, 3 * t) +
                           range(4 * t, 5 * t))
        b0 = a**(m + t)
        b1 = a**(m + 3 * t)
        b2 = a**(m + 5 * t)
        first_class.extend([[(b0 * a**i, 2), (b1 * a**i, 2), (b2 * a**i, 2)]
                            for i in range(t)])

        # Action of K on the points
        action = lambda v, x: (v + x[0], x[1]) if len(x) == 2 else x

        # relabel to integer
        relabel = {(p, x): i + (x - 1) * q
                   for i, p in enumerate(K) for x in [1, 2]}
        relabel['inf'] = 2 * q

        classes = [[[relabel[action(p, x)] for x in tr] for tr in first_class]
                   for p in K]

        KTS = BalancedIncompleteBlockDesign(
            v, [tr for cl in classes for tr in cl], k=3, lambd=1, copy=False)

        KTS._classes = classes
        return KTS

    # Construction 1.2 from [Stinson91] (originally Theorem 5 from [RCW71])
    #
    # For all prime powers q=1 mod 6, there exists a KTS(3q)
    elif (v // 3) % 6 == 1 and is_prime_power(v // 3):
        from sage.rings.finite_rings.constructor import FiniteField as GF
        q = v // 3
        K = GF(q, 'x')
        a = K.primitive_element()
        t = (q - 1) / 6
        A0 = [(0, 0), (0, 1), (0, 2)]
        B = [[(a**i, j), (a**(i + 2 * t), j), (a**(i + 4 * t), j)]
             for j in range(3) for i in range(t)]
        A = [[(a**i, 0), (a**(i + 2 * t), 1), (a**(i + 4 * t), 2)]
             for i in range(6 * t)]

        # Action of K on the points
        action = lambda v, x: (v + x[0], x[1])

        # relabel to integer
        relabel = {(p, j): i + j * q
                   for i, p in enumerate(K) for j in range(3)}

        B0 = [A0] + B + A[t:2 * t] + A[3 * t:4 * t] + A[5 * t:6 * t]

        # Classes
        classes = [[[relabel[action(p, x)] for x in tr] for tr in B0]
                   for p in K]

        for i in range(t) + range(2 * t, 3 * t) + range(4 * t, 5 * t):
            classes.append([[relabel[action(p, x)] for x in A[i]] for p in K])

        KTS = BalancedIncompleteBlockDesign(
            v, [tr for cl in classes for tr in cl], k=3, lambd=1, copy=False)
        KTS._classes = classes
        return KTS

    else:
        # This is Lemma IX.6.4 from [BJL99].
        #
        # This construction takes a (v,{4,7})-PBD. All points are doubled (x has
        # a copy x'), and an infinite point \infty is added.
        #
        # On all blocks of 2*4 points we "paste" a KTS(2*4+1) using the infinite
        # point, in such a way that all {x,x',infty} are set of the design. We
        # do the same for blocks with 2*7 points using a KTS(2*7+1).
        #
        # Note that the triples of points equal to {x,x',\infty} will be added
        # several times.
        #
        # As all those subdesigns are resolvable, each class of the KTS(n) is
        # obtained by considering a set {x,x',\infty} and all sets of all
        # parallel classes of the subdesign which contain this set.

        # We create the small KTS(n') we need, and relabel them such that
        # 01(n'-1),23(n'-1),... are blocks of the design.
        gdd4 = kirkman_triple_system(9)
        gdd7 = kirkman_triple_system(15)

        X = [B for B in gdd4 if 8 in B]
        for b in X:
            b.remove(8)
        X = sum(X, []) + [8]
        gdd4.relabel({v: i for i, v in enumerate(X)})
        gdd4 = gdd4.is_resolvable(True)[1]  # the relabeled classes

        X = [B for B in gdd7 if 14 in B]
        for b in X:
            b.remove(14)
        X = sum(X, []) + [14]
        gdd7.relabel({v: i for i, v in enumerate(X)})
        gdd7 = gdd7.is_resolvable(True)[1]  # the relabeled classes

        # The first parallel class contains 01(n'-1), the second contains
        # 23(n'-1), etc..
        # Then remove the blocks containing (n'-1)
        for B in gdd4:
            for i, b in enumerate(B):
                if 8 in b:
                    j = min(b)
                    del B[i]
                    B.insert(0, j)
                    break
        gdd4.sort()
        for B in gdd4:
            B.pop(0)

        for B in gdd7:
            for i, b in enumerate(B):
                if 14 in b:
                    j = min(b)
                    del B[i]
                    B.insert(0, j)
                    break
        gdd7.sort()
        for B in gdd7:
            B.pop(0)

        # Pasting the KTS(n') without {x,x',\infty} blocks
        classes = [[] for i in range((v - 1) / 2)]
        gdd = {4: gdd4, 7: gdd7}
        for B in PBD_4_7((v - 1) // 2, check=False):
            for i, classs in enumerate(gdd[len(B)]):
                classes[B[i]].extend([[2 * B[x // 2] + x % 2 for x in BB]
                                      for BB in classs])

        # The {x,x',\infty} blocks
        for i, classs in enumerate(classes):
            classs.append([2 * i, 2 * i + 1, v - 1])

        KTS = BalancedIncompleteBlockDesign(
            v,
            blocks=[tr for cl in classes for tr in cl],
            k=3,
            lambd=1,
            check=True,
            copy=False)
        KTS._classes = classes
        assert KTS.is_resolvable()

        return KTS
def mutually_orthogonal_latin_squares(n, k=None, partitions=False):
    r"""
    Returns `k` Mutually Orthogonal `n\times n` Latin Squares (MOLS).

    For more information on Latin Squares and MOLS, see
    :mod:`~sage.combinat.designs.latin_squares` or the :wikipedia:`Latin_square`,
    or even the
    :wikipedia:`Wikipedia entry on MOLS <Graeco-Latin_square#Mutually_orthogonal_Latin_squares>`.

    INPUT:

    - ``n`` (integer) -- size of the latin square.

    - ``k`` (integer) -- returns `k` MOLS. If set to ``None`` (default), returns
      the maximum number of MOLS that Sage can build.

      .. WARNING::

          This has no reason to be the maximum number of `n\times n` MOLS, just
          the best Sage can do !

    - ``partition`` (boolean) -- a Latin Square can be seen as 3 partitions of
      the `n^2` cells of the array into `n` sets of size `n`, respectively :

      * The partition of rows
      * The partition of columns
      * The partition of number (cells numbered with 0, cells numbered with 1,
        ...)

      These partitions have the additional property that any two sets from
      different partitions intersect on exactly one element.

      When ``partition`` is set to ``True``, this function returns a list of `k+2`
      partitions satisfying this intersection property instead of the `k+2` MOLS
      (though the data is exactly the same in both cases).

    EXAMPLES::

        sage: designs.mutually_orthogonal_latin_squares(5)
        [
        [0 1 2 3 4]  [0 1 2 3 4]  [0 1 2 3 4]  [0 1 2 3 4]
        [3 0 1 4 2]  [4 3 0 2 1]  [1 2 4 0 3]  [2 4 3 1 0]
        [4 3 0 2 1]  [1 2 4 0 3]  [2 4 3 1 0]  [3 0 1 4 2]
        [1 2 4 0 3]  [2 4 3 1 0]  [3 0 1 4 2]  [4 3 0 2 1]
        [2 4 3 1 0], [3 0 1 4 2], [4 3 0 2 1], [1 2 4 0 3]
        ]
        sage: designs.mutually_orthogonal_latin_squares(7,3)
        [
        [0 1 2 3 4 5 6]  [0 1 2 3 4 5 6]  [0 1 2 3 4 5 6]
        [4 0 3 1 6 2 5]  [5 6 0 4 2 1 3]  [6 4 1 0 5 3 2]
        [5 6 0 4 2 1 3]  [6 4 1 0 5 3 2]  [1 3 5 2 0 6 4]
        [6 4 1 0 5 3 2]  [1 3 5 2 0 6 4]  [2 5 4 6 3 0 1]
        [1 3 5 2 0 6 4]  [2 5 4 6 3 0 1]  [3 2 6 5 1 4 0]
        [2 5 4 6 3 0 1]  [3 2 6 5 1 4 0]  [4 0 3 1 6 2 5]
        [3 2 6 5 1 4 0], [4 0 3 1 6 2 5], [5 6 0 4 2 1 3]
        ]
        sage: designs.mutually_orthogonal_latin_squares(5,2,partitions=True)
        [[[0, 1, 2, 3, 4],
          [5, 6, 7, 8, 9],
          [10, 11, 12, 13, 14],
          [15, 16, 17, 18, 19],
          [20, 21, 22, 23, 24]],
         [[0, 5, 10, 15, 20],
          [1, 6, 11, 16, 21],
          [2, 7, 12, 17, 22],
          [3, 8, 13, 18, 23],
          [4, 9, 14, 19, 24]],
        [[0, 6, 12, 18, 24],
          [1, 7, 14, 15, 23],
          [2, 9, 13, 16, 20],
          [3, 5, 11, 19, 22],
          [4, 8, 10, 17, 21]],
        [[0, 7, 13, 19, 21],
          [1, 9, 10, 18, 22],
          [2, 8, 11, 15, 24],
          [3, 6, 14, 17, 20],
          [4, 5, 12, 16, 23]]]

    TESTS::

        sage: designs.mutually_orthogonal_latin_squares(5,5)
        Traceback (most recent call last):
        ...
        ValueError: There exist at most n-1 MOLS of size n.
    """
    from sage.rings.finite_rings.constructor import FiniteField
    from sage.combinat.designs.block_design import AffineGeometryDesign
    from sage.rings.arith import is_prime_power
    from sage.matrix.constructor import Matrix
    from sage.rings.arith import factor

    if k is not None and k >= n:
        raise ValueError("There exist at most n-1 MOLS of size n.")

    if is_prime_power(n):
        if k is None:
            k = n - 1
        # Section 6.4.1 of [Stinson2004]
        Fp = FiniteField(n, 'x')
        B = AffineGeometryDesign(2, 1, Fp).blocks()
        parallel_classes = [[] for _ in range(k + 2)]
        for b in B:
            for p in parallel_classes:
                if (not p) or all(i not in p[0] for i in b):
                    p.append(b)
                    break

        if partitions:
            return parallel_classes

        coord = {v: i for i, L in enumerate(parallel_classes[0]) for v in L}
        coord = {
            v: (coord[v], i)
            for i, L in enumerate(parallel_classes[1]) for v in L
        }

        matrices = []
        for P in parallel_classes[2:]:
            matrices.append(
                Matrix({coord[v]: i
                        for i, L in enumerate(P) for v in L}))
        return matrices
    else:
        # Theorem 6.33 of [Stinson2004], MacNeish's theorem.
        subcases = [p**i for p, i in factor(n)]
        s = min(subcases) - 1
        if k is None:
            k = s
        elif k > s:
            raise NotImplementedError("I don't know how to build these MOLS.")
        subcalls = [mutually_orthogonal_latin_squares(p, k) for p in subcases]
        matrices = [
            latin_square_product(*[sc[i] for sc in subcalls]) for i in range(k)
        ]

        if partitions:
            partitions = [[[i * n + j for j in range(n)] for i in range(n)],
                          [[j * n + i for j in range(n)] for i in range(n)]]
            for m in matrices:
                partition = [[] for i in range(n)]
                for i in range(n):
                    for j in range(n):
                        partition[m[i, j]].append(i * n + j)
                partitions.append(partition)

            return partitions

        else:
            return matrices
Exemplo n.º 25
0
def regular_symmetric_hadamard_matrix_with_constant_diagonal(n,e,existence=False):
    r"""
    Return a Regular Symmetric Hadamard Matrix with Constant Diagonal.

    A Hadamard matrix is said to be *regular* if its rows all sum to the same
    value.

    When `\epsilon\in\{-1,+1\}`, we say that `M` is a `(n,\epsilon)-RSHCD` if
    `M` is a regular symmetric Hadamard matrix with constant diagonal
    `\delta\in\{-1,+1\}` and row values all equal to `\delta \epsilon
    \sqrt(n)`. For more information, see [HX10]_ or 10.5.1 in
    [BH12]_.

    INPUT:

    - ``n`` (integer) -- side of the matrix

    - ``e`` -- one of `-1` or `+1`, equal to the value of `\epsilon`

    EXAMPLES::

        sage: from sage.combinat.matrices.hadamard_matrix import regular_symmetric_hadamard_matrix_with_constant_diagonal
        sage: regular_symmetric_hadamard_matrix_with_constant_diagonal(4,1)
        [ 1  1  1 -1]
        [ 1  1 -1  1]
        [ 1 -1  1  1]
        [-1  1  1  1]
        sage: regular_symmetric_hadamard_matrix_with_constant_diagonal(4,-1)
        [ 1 -1 -1 -1]
        [-1  1 -1 -1]
        [-1 -1  1 -1]
        [-1 -1 -1  1]

    Other hardcoded values::

        sage: for n,e in [(36,1),(36,-1),(100,1),(100,-1),(196, 1)]:
        ....:     print regular_symmetric_hadamard_matrix_with_constant_diagonal(n,e)
        36 x 36 dense matrix over Integer Ring
        36 x 36 dense matrix over Integer Ring
        100 x 100 dense matrix over Integer Ring
        100 x 100 dense matrix over Integer Ring
        196 x 196 dense matrix over Integer Ring

    From two close prime powers::

        sage: print regular_symmetric_hadamard_matrix_with_constant_diagonal(64,-1)
        64 x 64 dense matrix over Integer Ring

    Recursive construction::

        sage: print regular_symmetric_hadamard_matrix_with_constant_diagonal(144,-1)
        144 x 144 dense matrix over Integer Ring

    REFERENCE:

    .. [BH12] A. Brouwer and W. Haemers,
      Spectra of graphs,
      Springer, 2012,
      http://homepages.cwi.nl/~aeb/math/ipm/ipm.pdf

    .. [HX10] W. Haemers and Q. Xiang,
      Strongly regular graphs with parameters `(4m^4,2m^4+m^2,m^4+m^2,m^4+m^2)` exist for all `m>1`,
      European Journal of Combinatorics,
      Volume 31, Issue 6, August 2010, Pages 1553-1559,
      http://dx.doi.org/10.1016/j.ejc.2009.07.009.
    """
    if existence and (n,e) in _rshcd_cache:
        return _rshcd_cache[n,e]

    from sage.graphs.strongly_regular_db import strongly_regular_graph

    def true():
        _rshcd_cache[n,e] = True
        return True

    M = None
    if abs(e) != 1:
        raise ValueError
    if n<0:
        if existence:
            return False
        raise ValueError
    elif n == 4:
        if existence:
            return true()
        if e == 1:
            M = J(4)-2*matrix(4,[[int(i+j == 3) for i in range(4)] for j in range(4)])
        else:
            M = -J(4)+2*I(4)
    elif n ==  36:
        if existence:
            return true()
        if e == 1:
            M = strongly_regular_graph(36, 15, 6, 6).adjacency_matrix()
            M = J(36) - 2*M
        else:
            M = strongly_regular_graph(36,14,4,6).adjacency_matrix()
            M =  -J(36) + 2*M + 2*I(36)
    elif n == 100:
        if existence:
            return true()
        if e == -1:
            M = strongly_regular_graph(100,44,18,20).adjacency_matrix()
            M = 2*M - J(100) + 2*I(100)
        else:
            M = strongly_regular_graph(100,45,20,20).adjacency_matrix()
            M = J(100) - 2*M
    elif n == 196 and e == 1:
        if existence:
            return true()
        M = strongly_regular_graph(196,91,42,42).adjacency_matrix()
        M = J(196) - 2*M
    elif (  e  == 1                 and
          n%16 == 0                 and
          is_square(n)              and
          is_prime_power(sqrt(n)-1) and
          is_prime_power(sqrt(n)+1)):
        if existence:
            return true()
        M = -rshcd_from_close_prime_powers(int(sqrt(n)))

    # Recursive construction: the kronecker product of two RSHCD is a RSHCD
    else:
        from itertools import product
        for n1,e1 in product(divisors(n)[1:-1],[-1,1]):
            e2 = e1*e
            n2 = n//n1
            if (regular_symmetric_hadamard_matrix_with_constant_diagonal(n1,e1,existence=True) and
                regular_symmetric_hadamard_matrix_with_constant_diagonal(n2,e2,existence=True)):
                if existence:
                    return true()
                M1 = regular_symmetric_hadamard_matrix_with_constant_diagonal(n1,e1)
                M2 = regular_symmetric_hadamard_matrix_with_constant_diagonal(n2,e2)
                M  = M1.tensor_product(M2)
                break

    if M is None:
        from sage.misc.unknown import Unknown
        _rshcd_cache[n,e] = Unknown
        if existence:
            return Unknown
        raise ValueError("I do not know how to build a {}-RSHCD".format((n,e)))

    assert M*M.transpose() == n*I(n)
    assert set(map(sum,M)) == {e*sqrt(n)}

    return M
Exemplo n.º 26
0
    def create_key_and_extra_args(self,
                                  order,
                                  name=None,
                                  modulus=None,
                                  names=None,
                                  impl=None,
                                  proof=None,
                                  **kwds):
        """
        EXAMPLES::

            sage: GF.create_key_and_extra_args(9, 'a')
            ((9, ('a',), x^2 + 2*x + 2, None, '{}', 3, 2, True), {})
            sage: GF.create_key_and_extra_args(9, 'a', foo='value')
            ((9, ('a',), x^2 + 2*x + 2, None, "{'foo': 'value'}", 3, 2, True), {'foo': 'value'})
        """
        from sage.structure.proof.all import WithProof, arithmetic
        if proof is None: proof = arithmetic()
        with WithProof('arithmetic', proof):
            order = int(order)
            if order <= 1:
                raise ValueError("the order of a finite field must be > 1.")

            if arith.is_prime(order):
                name = None
                modulus = None
                p = integer.Integer(order)
                n = integer.Integer(1)
            elif arith.is_prime_power(order):
                if not names is None: name = names
                name = normalize_names(1, name)

                p, n = arith.factor(order)[0]

                # The following is a temporary solution that allows us
                # to construct compatible systems of finite fields
                # until algebraic closures of finite fields are
                # implemented in Sage.  It requires the user to
                # specify two parameters:
                #
                # - `conway` -- boolean; if True, this field is
                #   constructed to fit in a compatible system using
                #   a Conway polynomial.
                # - `prefix` -- a string used to generate names for
                #   automatically constructed finite fields
                #
                # See the docstring of FiniteFieldFactory for examples.
                #
                # Once algebraic closures of finite fields are
                # implemented, this syntax should be superseded by
                # something like the following:
                #
                #     sage: Fpbar = GF(5).algebraic_closure('z')
                #     sage: F, e = Fpbar.subfield(3)  # e is the embedding into Fpbar
                #     sage: F
                #     Finite field in z3 of size 5^3
                #
                # This temporary solution only uses actual Conway
                # polynomials (no pseudo-Conway polynomials), since
                # pseudo-Conway polynomials are not unique, and until
                # we have algebraic closures of finite fields, there
                # is no good place to store a specific choice of
                # pseudo-Conway polynomials.
                if name is None:
                    if not (kwds.has_key('conway') and kwds['conway']):
                        raise ValueError(
                            "parameter 'conway' is required if no name given")
                    if not kwds.has_key('prefix'):
                        raise ValueError(
                            "parameter 'prefix' is required if no name given")
                    name = kwds['prefix'] + str(n)

                if kwds.has_key('conway') and kwds['conway']:
                    from conway_polynomials import conway_polynomial
                    if not kwds.has_key('prefix'):
                        raise ValueError(
                            "a prefix must be specified if conway=True")
                    if modulus is not None:
                        raise ValueError(
                            "no modulus may be specified if conway=True")
                    # The following raises a RuntimeError if no polynomial is found.
                    modulus = conway_polynomial(p, n)

                if modulus is None or isinstance(modulus, str):
                    # A string specifies an algorithm to find a suitable modulus.
                    if modulus == "default":  # for backward compatibility
                        modulus = None
                    modulus = GF(p)['x'].irreducible_element(n,
                                                             algorithm=modulus)
                elif isinstance(modulus, (list, tuple)):
                    modulus = GF(p)['x'](modulus)
                elif sage.rings.polynomial.polynomial_element.is_Polynomial(
                        modulus):
                    modulus = modulus.change_variable_name('x')
                else:
                    raise TypeError("wrong type for modulus parameter")
            else:
                raise ValueError(
                    "the order of a finite field must be a prime power.")

            return (order, name, modulus, impl, str(kwds), p, n, proof), kwds
Exemplo n.º 27
0
def v_5_1_BIBD(v, check=True):
    r"""
    Returns a `(v,5,1)`-BIBD.

    This method follows the constuction from [ClaytonSmith]_.

    INPUT:

    - ``v`` (integer)

    .. SEEALSO::

        * :meth:`BalancedIncompleteBlockDesign`

    EXAMPLES::

        sage: from sage.combinat.designs.bibd import v_5_1_BIBD
        sage: i = 0
        sage: while i<200:
        ....:    i += 20
        ....:    _ = v_5_1_BIBD(i+1)
        ....:    _ = v_5_1_BIBD(i+5)
    """
    v = int(v)

    assert (v > 1)
    assert (v%20 == 5 or v%20 == 1)  # note: equivalent to (v-1)%4 == 0 and (v*(v-1))%20 == 0

    # Lemma 27
    if v%5 == 0 and (v//5)%4 == 1 and is_prime_power(v//5):
        bibd = BIBD_5q_5_for_q_prime_power(v//5)
    # Lemma 28
    elif v == 21:
        from sage.rings.finite_rings.integer_mod_ring import Zmod
        bibd = BIBD_from_difference_family(Zmod(21), [[0,1,4,14,16]], check=False)
    elif v == 41:
        from sage.rings.finite_rings.integer_mod_ring import Zmod
        bibd = BIBD_from_difference_family(Zmod(41), [[0,1,4,11,29],[0,2,8,17,22]], check=False)
    elif v == 61:
        from sage.rings.finite_rings.integer_mod_ring import Zmod
        bibd = BIBD_from_difference_family(Zmod(61), [[0,1,3,13,34],[0,4,9,23,45],[0,6,17,24,32]], check=False)
    elif v == 81:
        from sage.groups.additive_abelian.additive_abelian_group import AdditiveAbelianGroup
        D = [[(0, 0, 0, 1), (2, 0, 0, 1), (0, 0, 2, 1), (1, 2, 0, 2), (0, 1, 1, 1)],
             [(0, 0, 1, 0), (1, 1, 0, 2), (0, 2, 1, 0), (1, 2, 0, 1), (1, 1, 1, 0)],
             [(2, 2, 1, 1), (1, 2, 2, 2), (2, 0, 1, 2), (0, 1, 2, 1), (1, 1, 0, 0)],
             [(0, 2, 0, 2), (1, 1, 0, 1), (1, 2, 1, 2), (1, 2, 1, 0), (0, 2, 1, 1)]]
        bibd = BIBD_from_difference_family(AdditiveAbelianGroup([3]*4), D, check=False)
    elif v == 161:
        # VI.16.16 of the Handbook of Combinatorial Designs, Second Edition
        D = [(0, 19, 34, 73, 80), (0, 16, 44, 71, 79), (0, 12, 33, 74, 78), (0, 13, 30, 72, 77), (0, 11, 36, 67, 76), (0, 18, 32, 69, 75), (0, 10, 48, 68, 70), (0, 3, 29, 52, 53)]
        from sage.rings.finite_rings.integer_mod_ring import Zmod
        bibd = BIBD_from_difference_family(Zmod(161), D, check=False)
    elif v == 281:
        from sage.rings.finite_rings.integer_mod_ring import Zmod
        D = [[3**(2*a+56*b) for b in range(5)] for a in range(14)]
        bibd = BIBD_from_difference_family(Zmod(281), D, check=False)
    # Lemma 29
    elif v == 165:
        bibd = BIBD_from_PBD(v_5_1_BIBD(41,check=False),165,5,check=False)
    elif v == 181:
        bibd = BIBD_from_PBD(v_5_1_BIBD(45,check=False),181,5,check=False)
    elif v in (201,285,301,401,421,425):
        # Call directly the BIBD_from_TD function
        bibd = BIBD_from_TD(v,5)
    # Lemma 30
    elif v == 141:
        # VI.16.16 of the Handbook of Combinatorial Designs, Second Edition
        from sage.rings.finite_rings.integer_mod_ring import Zmod
        D = [(0, 33, 60, 92, 97), (0, 3, 45, 88, 110), (0, 18, 39, 68, 139), (0, 12, 67, 75, 113), (0, 1, 15, 84, 94), (0, 7, 11, 24, 30), (0, 36, 90, 116, 125)]
        bibd = BIBD_from_difference_family(Zmod(141), D, check=False)

    # Theorem 31.2
    elif (v-1)//4 in [80, 81, 85, 86, 90, 91, 95, 96, 110, 111, 115, 116, 120, 121, 250, 251, 255, 256, 260, 261, 265, 266, 270, 271]:
        r = (v-1)//4
        if r <= 96:
            k,t,u = 5, 16, r-80
        elif r <= 121:
            k,t,u = 10, 11, r-110
        else:
            k,t,u = 10, 25, r-250
        bibd = BIBD_from_PBD(PBD_from_TD(k,t,u),v,5,check=False)

    else:
        r,s,t,u = _get_r_s_t_u(v)
        bibd = BIBD_from_PBD(PBD_from_TD(5,t,u),v,5,check=False)

    if check:
        _check_pbd(bibd,v,[5])

    return bibd
Exemplo n.º 28
0
def HaemersGraph(q, hyperoval=None, hyperoval_matching=None, field=None, check_hyperoval=True):
    r"""
    Return the Haemers graph obtained from `T_2^*(q)^*`

    Let `q` be a power of 2. In Sect. 8.A of [BvL84]_ one finds a construction
    of a strongly regular graph with parameters `(q^2(q+2),q^2+q-1,q-2,q)` from
    the graph of `T_2^*(q)^*`, constructed by
    :func:`~sage.graphs.graph_generators.GraphGenerators.T2starGeneralizedQuadrangleGraph`,
    by redefining adjacencies in the way specified by an arbitrary ``hyperoval_matching``
    of the the points (i.e. partitioning into size two parts) of ``hyperoval`` defining
    `T_2^*(q)^*`.

    While [BvL84]_ gives the construction in geometric terms, it can be formulated,
    and is implemented, in graph-theoretic ones, of re-adjusting the edges.
    Namely, `G=T_2^*(q)^*` has a partition
    into `q+2` independent sets `I_k` of size `q^2` each. Each vertex in `I_j` is
    adajcent to `q` vertices from `I_k`. Each `I_k` is paired to some `I_{k'}`,
    according to ``hyperoval_matching``. One adds edges `(s,t)` for `s,t \in I_k` whenever
    `s` and `t` are adjacent to some `u \in I_{k'}`, and removes all the edges
    between `I_k` and `I_{k'}`.

    INPUT:

    - ``q`` -- a power of two

    - ``hyperoval_matching`` -- if ``None`` (default), pair each `i`-th point of
      ``hyperoval`` with `(i+1)`-th. Otherwise, specifies the pairing
      in the format `((i_1,i'_1),(i_2,i'_2),...)`.

    - ``hyperoval`` -- a hyperoval defining `T_2^*(q)^*`. If ``None`` (default),
      the classical hyperoval obtained from a conic is used. See the
      documentation of
      :func:`~sage.graphs.graph_generators.GraphGenerators.T2starGeneralizedQuadrangleGraph`,
      for more information.

    - ``field`` -- an instance of a finite field of order `q`, must be provided
      if ``hyperoval`` is provided.

    - ``check_hyperoval`` -- (default: ``True``) if ``True``, check
      ``hyperoval`` for correctness.

    EXAMPLES:

    using the built-in constructions::

        sage: g=graphs.HaemersGraph(4); g
        Haemers(4): Graph on 96 vertices
        sage: g.is_strongly_regular(parameters=True)
        (96, 19, 2, 4)

    supplying your own hyperoval_matching::

        sage: g=graphs.HaemersGraph(4,hyperoval_matching=((0,5),(1,4),(2,3))); g
        Haemers(4): Graph on 96 vertices
        sage: g.is_strongly_regular(parameters=True)
        (96, 19, 2, 4)

    TESTS::

        sage: F=GF(4,'b') # repeating a point...
        sage: O=[vector(F,(0,1,0,0)),vector(F,(0,0,1,0))]+map(lambda x: vector(F, (0,1,x^2,x)),F)
        sage: graphs.HaemersGraph(4, hyperoval=O, field=F)
        Traceback (most recent call last):
        ...
        RuntimeError: incorrect hyperoval size
        sage: O=[vector(F,(0,1,1,0)),vector(F,(0,0,1,0))]+map(lambda x: vector(F, (0,1,x^2,x)),F)
        sage: graphs.HaemersGraph(4, hyperoval=O, field=F)
        Traceback (most recent call last):
        ...
        RuntimeError: incorrect hyperoval

        sage: g=graphs.HaemersGraph(8); g               # not tested (long time)
        Haemers(8): Graph on 640 vertices
        sage: g.is_strongly_regular(parameters=True)    # not tested (long time)
        (640, 71, 6, 8)

    """
    from sage.modules.free_module_element import free_module_element as vector
    from sage.rings.finite_rings.constructor import GF
    from itertools import combinations

    p, k = is_prime_power(q,get_data=True)
    if k==0 or p!=2:
        raise ValueError('q must be a power of 2')

    if hyperoval_matching is None:
        hyperoval_matching = map(lambda k: (2*k+1,2*k), xrange(1+q/2))
    if field is None:
        F = GF(q,'a')
    else:
        F = field

    # for q=8, 95% of CPU time taken by this function is spent in the follwing call
    G = T2starGeneralizedQuadrangleGraph(q, field=F, dual=True, hyperoval=hyperoval, check_hyperoval=check_hyperoval)

    def normalize(v):  # make sure the 1st non-0 coordinate is 1.
        d=next(x for x in v if x!=F.zero())
        return vector(map(lambda x: x/d, v))

    # build the partition into independent sets
    P = map(lambda x: normalize(x[0]-x[1]), G.vertices())
    O = list(set(map(tuple,P)))
    I_ks = {x:[] for x in range(q+2)} # the partition into I_k's
    for i in xrange(len(P)):
        I_ks[O.index(tuple(P[i]))].append(i)

    # perform the adjustment of the edges, as described.
    G.relabel()
    cliques = []
    for i,j in hyperoval_matching:
        Pij = set(I_ks[i]+I_ks[j])
        for v in Pij:
            cliques.append(Pij.intersection(G.neighbors(v)))
        G.delete_edges(G.edge_boundary(I_ks[i],I_ks[j])) # edges on (I_i,I_j)
    G.add_edges(e for c in cliques for e in combinations(c,2))
    G.name('Haemers('+str(q)+')')
    return G
Exemplo n.º 29
0
def balanced_incomplete_block_design(v, k, existence=False, use_LJCR=False):
    r"""
    Return a BIBD of parameters `v,k`.

    A Balanced Incomplete Block Design of parameters `v,k` is a collection
    `\mathcal C` of `k`-subsets of `V=\{0,\dots,v-1\}` such that for any two
    distinct elements `x,y\in V` there is a unique element `S\in \mathcal C`
    such that `x,y\in S`.

    More general definitions sometimes involve a `\lambda` parameter, and we
    assume here that `\lambda=1`.

    For more information on BIBD, see the
    :wikipedia:`corresponding Wikipedia entry <Block_design#Definition_of_a_BIBD_.28or_2-design.29>`.

    INPUT:

    - ``v,k`` (integers)

    - ``existence`` (boolean) -- instead of building the design, return:

        - ``True`` -- meaning that Sage knows how to build the design

        - ``Unknown`` -- meaning that Sage does not know how to build the
          design, but that the design may exist (see :mod:`sage.misc.unknown`).

        - ``False`` -- meaning that the design does not exist.

    - ``use_LJCR`` (boolean) -- whether to query the La Jolla Covering
      Repository for the design when Sage does not know how to build it (see
      :func:`~sage.combinat.designs.covering_design.best_known_covering_design_www`). This
      requires internet.

    .. SEEALSO::

        * :func:`steiner_triple_system`
        * :func:`v_4_1_BIBD`
        * :func:`v_5_1_BIBD`

    TODO:

        * Implement other constructions from the Handbook of Combinatorial
          Designs.

    EXAMPLES::

        sage: designs.balanced_incomplete_block_design(7, 3).blocks()
        [[0, 1, 3], [0, 2, 4], [0, 5, 6], [1, 2, 6], [1, 4, 5], [2, 3, 5], [3, 4, 6]]
        sage: B = designs.balanced_incomplete_block_design(66, 6, use_LJCR=True) # optional - internet
        sage: B                                                              # optional - internet
        Incidence structure with 66 points and 143 blocks
        sage: B.blocks()                                                     # optional - internet
        [[0, 1, 2, 3, 4, 65], [0, 5, 24, 25, 39, 57], [0, 6, 27, 38, 44, 55], ...
        sage: designs.balanced_incomplete_block_design(66, 6, use_LJCR=True)  # optional - internet
        Incidence structure with 66 points and 143 blocks
        sage: designs.balanced_incomplete_block_design(216, 6)
        Traceback (most recent call last):
        ...
        NotImplementedError: I don't know how to build a (216,6,1)-BIBD!

    TESTS::

        sage: designs.balanced_incomplete_block_design(85,5,existence=True)
        True
        sage: _ = designs.balanced_incomplete_block_design(85,5)

    A BIBD from a Finite Projective Plane::

        sage: _ = designs.balanced_incomplete_block_design(21,5)

    Some trivial BIBD::

        sage: designs.balanced_incomplete_block_design(10,10)
        (10,10,1)-Balanced Incomplete Block Design
        sage: designs.balanced_incomplete_block_design(1,10)
        (1,0,1)-Balanced Incomplete Block Design

    Existence of BIBD with `k=3,4,5`::

        sage: [v for v in xrange(50) if designs.balanced_incomplete_block_design(v,3,existence=True)]
        [1, 3, 7, 9, 13, 15, 19, 21, 25, 27, 31, 33, 37, 39, 43, 45, 49]
        sage: [v for v in xrange(100) if designs.balanced_incomplete_block_design(v,4,existence=True)]
        [1, 4, 13, 16, 25, 28, 37, 40, 49, 52, 61, 64, 73, 76, 85, 88, 97]
        sage: [v for v in xrange(150) if designs.balanced_incomplete_block_design(v,5,existence=True)]
        [1, 5, 21, 25, 41, 45, 61, 65, 81, 85, 101, 105, 121, 125, 141, 145]

    For `k > 5` there are currently very few constructions::

        sage: [v for v in xrange(300) if designs.balanced_incomplete_block_design(v,6,existence=True) is True]
        [1, 6, 31, 66, 76, 91, 96, 106, 111, 121, 126, 136, 141, 151, 156, 171, 181, 186, 196, 201, 211, 241, 271]
        sage: [v for v in xrange(300) if designs.balanced_incomplete_block_design(v,6,existence=True) is Unknown]
        [51, 61, 81, 166, 216, 226, 231, 246, 256, 261, 276, 286, 291]

    Here are some constructions with `k \geq 7` and `v` a prime power::

        sage: designs.balanced_incomplete_block_design(169,7)
        (169,7,1)-Balanced Incomplete Block Design
        sage: designs.balanced_incomplete_block_design(617,8)
        (617,8,1)-Balanced Incomplete Block Design
        sage: designs.balanced_incomplete_block_design(433,9)
        (433,9,1)-Balanced Incomplete Block Design
        sage: designs.balanced_incomplete_block_design(1171,10)
        (1171,10,1)-Balanced Incomplete Block Design

    And we know some inexistence results::

        sage: designs.balanced_incomplete_block_design(21,6,existence=True)
        False
    """
    lmbd = 1

    # Trivial BIBD
    if v == 1:
        if existence:
            return True
        return BalancedIncompleteBlockDesign(v, [], check=False)

    if k == v:
        if existence:
            return True
        return BalancedIncompleteBlockDesign(v, [range(v)], check=False, copy=False)

    # Non-existence of BIBD
    if (v < k or
        k < 2 or
        (v-1) % (k-1) != 0 or
        (v*(v-1)) % (k*(k-1)) != 0 or
        # From the Handbook of combinatorial designs:
        #
        # With lambda>1 other exceptions are
        # (15,5,2),(21,6,2),(22,7,2),(22,8,4).
        (k==6 and v in [36,46]) or
        (k==7 and v == 43) or
        # Fisher's inequality
        (v*(v-1))/(k*(k-1)) < v):
        if existence:
            return False
        raise EmptySetError("There exists no ({},{},{})-BIBD".format(v,k,lmbd))

    if k == 2:
        if existence:
            return True
        from itertools import combinations
        return BalancedIncompleteBlockDesign(v, combinations(range(v),2), check=False, copy=True)
    if k == 3:
        if existence:
            return v%6 == 1 or v%6 == 3
        return steiner_triple_system(v)
    if k == 4:
        if existence:
            return v%12 == 1 or v%12 == 4
        return BalancedIncompleteBlockDesign(v, v_4_1_BIBD(v), copy=False)
    if k == 5:
        if existence:
            return v%20 == 1 or v%20 == 5
        return BalancedIncompleteBlockDesign(v, v_5_1_BIBD(v), copy=False)

    from difference_family import difference_family
    from database import BIBD_constructions

    if (v,k,1) in BIBD_constructions:
        if existence:
            return True
        return BlockDesign(v,BIBD_constructions[(v,k,1)](), copy=False)
    if BIBD_from_arc_in_desarguesian_projective_plane(v,k,existence=True):
        if existence:
            return True
        B = BIBD_from_arc_in_desarguesian_projective_plane(v,k)
        return BalancedIncompleteBlockDesign(v, B, copy=False)
    if BIBD_from_TD(v,k,existence=True):
        if existence:
            return True
        return BalancedIncompleteBlockDesign(v, BIBD_from_TD(v,k), copy=False)
    if v == (k-1)**2+k and is_prime_power(k-1):
        if existence:
            return True
        from block_design import projective_plane
        return BalancedIncompleteBlockDesign(v, projective_plane(k-1),copy=False)
    if difference_family(v,k,existence=True):
        if existence:
            return True
        G,D = difference_family(v,k)
        return BalancedIncompleteBlockDesign(v, BIBD_from_difference_family(G,D,check=False), copy=False)
    if use_LJCR:
        from covering_design import best_known_covering_design_www
        B = best_known_covering_design_www(v,k,2)

        # Is it a BIBD or just a good covering ?
        expected_n_of_blocks = binomial(v,2)/binomial(k,2)
        if B.low_bd() > expected_n_of_blocks:
            if existence:
                return False
            raise EmptySetError("There exists no ({},{},{})-BIBD".format(v,k,lmbd))
        B = B.incidence_structure()
        if B.num_blocks() == expected_n_of_blocks:
            if existence:
                return True
            else:
                return B

    if existence:
        return Unknown
    else:
        raise NotImplementedError("I don't know how to build a ({},{},1)-BIBD!".format(v,k))
Exemplo n.º 30
0
def v_5_1_BIBD(v, check=True):
    r"""
    Return a `(v,5,1)`-BIBD.

    This method follows the constuction from [ClaytonSmith]_.

    INPUT:

    - ``v`` (integer)

    .. SEEALSO::

        * :func:`balanced_incomplete_block_design`

    EXAMPLES::

        sage: from sage.combinat.designs.bibd import v_5_1_BIBD
        sage: i = 0
        sage: while i<200:
        ....:    i += 20
        ....:    _ = v_5_1_BIBD(i+1)
        ....:    _ = v_5_1_BIBD(i+5)

    TESTS:

    Check that the needed difference families are there::

        sage: for v in [21,41,61,81,141,161,281]:
        ....:     assert designs.difference_family(v,5,existence=True)
        ....:     _ = designs.difference_family(v,5)
    """
    v = int(v)

    assert (v > 1)
    assert (v % 20 == 5 or v % 20 == 1
            )  # note: equivalent to (v-1)%4 == 0 and (v*(v-1))%20 == 0

    # Lemma 27
    if v % 5 == 0 and (v // 5) % 4 == 1 and is_prime_power(v // 5):
        bibd = BIBD_5q_5_for_q_prime_power(v // 5)
    # Lemma 28
    elif v in [21, 41, 61, 81, 141, 161, 281]:
        from difference_family import difference_family
        G, D = difference_family(v, 5)
        bibd = BIBD_from_difference_family(G, D, check=False)
    # Lemma 29
    elif v == 165:
        bibd = BIBD_from_PBD(v_5_1_BIBD(41, check=False), 165, 5, check=False)
    elif v == 181:
        bibd = BIBD_from_PBD(v_5_1_BIBD(45, check=False), 181, 5, check=False)
    elif v in (201, 285, 301, 401, 421, 425):
        # Call directly the BIBD_from_TD function
        # note: there are (201,5,1) and (421,5)-difference families that can be
        # obtained from the general constructor
        bibd = BIBD_from_TD(v, 5)
    # Theorem 31.2
    elif (v - 1) // 4 in [
            80, 81, 85, 86, 90, 91, 95, 96, 110, 111, 115, 116, 120, 121, 250,
            251, 255, 256, 260, 261, 265, 266, 270, 271
    ]:
        r = (v - 1) // 4
        if r <= 96:
            k, t, u = 5, 16, r - 80
        elif r <= 121:
            k, t, u = 10, 11, r - 110
        else:
            k, t, u = 10, 25, r - 250
        bibd = BIBD_from_PBD(PBD_from_TD(k, t, u), v, 5, check=False)

    else:
        r, s, t, u = _get_r_s_t_u(v)
        bibd = BIBD_from_PBD(PBD_from_TD(5, t, u), v, 5, check=False)

    if check:
        assert is_pairwise_balanced_design(bibd, v, [5])

    return bibd
Exemplo n.º 31
0
def difference_matrix(g,k,lmbda=1,existence=False,check=True):
    r"""
    Return a `(g,k,\lambda)`-difference matrix

    A matrix `M` is a `(g,k,\lambda)`-difference matrix if it has size `\lambda
    g\times k`, its entries belong to the group `G` of cardinality `g`, and
    for any two rows `R,R'` of `M` and `x\in G` there are exactly `\lambda`
    values `i` such that `R_i-R'_i=x`.

    INPUT:

    - ``k`` -- (integer) number of columns. If ``k=None`` it is set to the
      largest value available.

    - ``g`` -- (integer) cardinality of the group `G`

    - ``lmbda`` -- (integer; default: 1) -- number of times each element of `G`
      appears as a difference.

    - ``check`` -- (boolean) Whether to check that output is correct before
      returning it. As this is expected to be useless (but we are cautious
      guys), you may want to disable it whenever you want speed. Set to
      ``True`` by default.

    - ``existence`` (boolean) -- instead of building the design, return:

        - ``True`` -- meaning that Sage knows how to build the design

        - ``Unknown`` -- meaning that Sage does not know how to build the
          design, but that the design may exist (see :mod:`sage.misc.unknown`).

        - ``False`` -- meaning that the design does not exist.

      .. NOTE::

          When ``k=None`` and ``existence=True`` the function returns an
          integer, i.e. the largest `k` such that we can build a
          `(g,k,\lambda)`-DM.

    EXAMPLES::

        sage: G,M = designs.difference_matrix(25,10); G
        Finite Field in x of size 5^2
        sage: designs.difference_matrix(993,None,existence=1)
        32

    Here we print for each `g` the maximum possible `k` for which Sage knows
    how to build a `(g,k,1)`-difference matrix::

        sage: for g in range(2,30):
        ....:     k_max = designs.difference_matrix(g=g,k=None,existence=True)
        ....:     print "{:2} {}".format(g, k_max)
        ....:     _ = designs.difference_matrix(g,k_max)
         2 2
         3 3
         4 4
         5 5
         6 2
         7 7
         8 8
         9 9
        10 2
        11 11
        12 6
        13 13
        14 2
        15 3
        16 16
        17 17
        18 2
        19 19
        20 4
        21 6
        22 2
        23 23
        24 8
        25 25
        26 2
        27 27
        28 6
        29 29

    TESTS::

        sage: designs.difference_matrix(10,12,1,existence=True)
        False
        sage: designs.difference_matrix(10,12,1)
        Traceback (most recent call last):
        ...
        EmptySetError: No (10,12,1)-Difference Matrix exists as k(=12)>g(=10)
        sage: designs.difference_matrix(10,9,1,existence=True)
        Unknown
        sage: designs.difference_matrix(10,9,1)
        Traceback (most recent call last):
        ...
        NotImplementedError: I don't know how to build a (10,9,1)-Difference Matrix!
    """

    if lmbda == 1 and k is not None and k>g:
        if existence:
            return False
        raise EmptySetError("No ({},{},{})-Difference Matrix exists as k(={})>g(={})".format(g,k,lmbda,k,g))

    # Prime powers
    elif lmbda == 1 and is_prime_power(g):
        if k is None:
            if existence:
                return g
            else:
                k = g
        elif existence:
            return True
        F       = FiniteField(g,'x')
        F_set   = list(F)
        F_k_set = F_set[:k]

        G = F
        M = [[x*y for y in F_k_set] for x in F_set]

    # Treat the case k=None
    # (find the max k such that there exists a DM)
    elif k is None:
        i = 2
        while difference_matrix(g=g,k=i,lmbda=lmbda,existence=True):
            i += 1
        return i-1

    # From the database
    elif (g,lmbda) in DM_constructions and DM_constructions[g,lmbda][0]>=k:
        if existence:
            return True
        _,f = DM_constructions[g,lmbda]
        G, M = f()
        M = [R[:k] for R in M]

    # Product construction
    elif find_product_decomposition(g,k,lmbda):
        if existence:
            return True
        (g1,lmbda1),(g2,lmbda2) = find_product_decomposition(g,k,lmbda)
        G1,M1 = difference_matrix(g1,k,lmbda1)
        G2,M2 = difference_matrix(g2,k,lmbda2)
        G,M = difference_matrix_product(k,M1,G1,lmbda1,M2,G2,lmbda2,check=False)

    else:
        if existence:
            return Unknown
        raise NotImplementedError("I don't know how to build a ({},{},{})-Difference Matrix!".format(g,k,lmbda))

    if check and not is_difference_matrix(M,G,k,lmbda,1):
        raise RuntimeError("Sage built something which is not a ({},{},{})-DM!".format(g,k,lmbda))

    return G,M
Exemplo n.º 32
0
def balanced_incomplete_block_design(v, k, existence=False, use_LJCR=False):
    r"""
    Return a BIBD of parameters `v,k`.

    A Balanced Incomplete Block Design of parameters `v,k` is a collection
    `\mathcal C` of `k`-subsets of `V=\{0,\dots,v-1\}` such that for any two
    distinct elements `x,y\in V` there is a unique element `S\in \mathcal C`
    such that `x,y\in S`.

    More general definitions sometimes involve a `\lambda` parameter, and we
    assume here that `\lambda=1`.

    For more information on BIBD, see the
    :wikipedia:`corresponding Wikipedia entry <Block_design#Definition_of_a_BIBD_.28or_2-design.29>`.

    INPUT:

    - ``v,k`` (integers)

    - ``existence`` (boolean) -- instead of building the design, return:

        - ``True`` -- meaning that Sage knows how to build the design

        - ``Unknown`` -- meaning that Sage does not know how to build the
          design, but that the design may exist (see :mod:`sage.misc.unknown`).

        - ``False`` -- meaning that the design does not exist.

    - ``use_LJCR`` (boolean) -- whether to query the La Jolla Covering
      Repository for the design when Sage does not know how to build it (see
      :func:`~sage.combinat.designs.covering_design.best_known_covering_design_www`). This
      requires internet.

    .. SEEALSO::

        * :func:`steiner_triple_system`
        * :func:`v_4_1_BIBD`
        * :func:`v_5_1_BIBD`

    TODO:

        * Implement other constructions from the Handbook of Combinatorial
          Designs.

    EXAMPLES::

        sage: designs.balanced_incomplete_block_design(7, 3).blocks()
        [[0, 1, 3], [0, 2, 4], [0, 5, 6], [1, 2, 6], [1, 4, 5], [2, 3, 5], [3, 4, 6]]
        sage: B = designs.balanced_incomplete_block_design(66, 6, use_LJCR=True) # optional - internet
        sage: B                                                              # optional - internet
        Incidence structure with 66 points and 143 blocks
        sage: B.blocks()                                                     # optional - internet
        [[0, 1, 2, 3, 4, 65], [0, 5, 24, 25, 39, 57], [0, 6, 27, 38, 44, 55], ...
        sage: designs.balanced_incomplete_block_design(66, 6, use_LJCR=True)  # optional - internet
        Incidence structure with 66 points and 143 blocks
        sage: designs.balanced_incomplete_block_design(141, 6)
        Traceback (most recent call last):
        ...
        NotImplementedError: I don't know how to build a (141,6,1)-BIBD!

    TESTS::

        sage: designs.balanced_incomplete_block_design(85,5,existence=True)
        True
        sage: _ = designs.balanced_incomplete_block_design(85,5)

    A BIBD from a Finite Projective Plane::

        sage: _ = designs.balanced_incomplete_block_design(21,5)

    Some trivial BIBD::

        sage: designs.balanced_incomplete_block_design(10,10)
        (10,10,1)-Balanced Incomplete Block Design
        sage: designs.balanced_incomplete_block_design(1,10)
        (1,0,1)-Balanced Incomplete Block Design

    Existence of BIBD with `k=3,4,5`::

        sage: [v for v in xrange(50) if designs.balanced_incomplete_block_design(v,3,existence=True)]
        [1, 3, 7, 9, 13, 15, 19, 21, 25, 27, 31, 33, 37, 39, 43, 45, 49]
        sage: [v for v in xrange(100) if designs.balanced_incomplete_block_design(v,4,existence=True)]
        [1, 4, 13, 16, 25, 28, 37, 40, 49, 52, 61, 64, 73, 76, 85, 88, 97]
        sage: [v for v in xrange(150) if designs.balanced_incomplete_block_design(v,5,existence=True)]
        [1, 5, 21, 25, 41, 45, 61, 65, 81, 85, 101, 105, 121, 125, 141, 145]

    For `k > 5` there are currently very few constructions::

        sage: [v for v in xrange(150) if designs.balanced_incomplete_block_design(v,6,existence=True) is True]
        [1, 6, 31, 91, 121]
        sage: [v for v in xrange(150) if designs.balanced_incomplete_block_design(v,6,existence=True) is Unknown]
        [51, 61, 66, 76, 81, 96, 106, 111, 126, 136, 141]

    Here are some constructions with `k \geq 7` and `v` a prime power::

        sage: designs.balanced_incomplete_block_design(169,7)
        (169,7,1)-Balanced Incomplete Block Design
        sage: designs.balanced_incomplete_block_design(617,8)
        (617,8,1)-Balanced Incomplete Block Design
        sage: designs.balanced_incomplete_block_design(433,9)
        (433,9,1)-Balanced Incomplete Block Design
        sage: designs.balanced_incomplete_block_design(1171,10)
        (1171,10,1)-Balanced Incomplete Block Design

    And we know some inexistence results::

        sage: designs.balanced_incomplete_block_design(21,6,existence=True)
        False
    """
    lmbd = 1

    # Trivial BIBD
    if v == 1:
        if existence:
            return True
        return BalancedIncompleteBlockDesign(v, [], check=False)

    if k == v:
        if existence:
            return True
        return BalancedIncompleteBlockDesign(v, [range(v)],
                                             check=False,
                                             copy=False)

    # Non-existence of BIBD
    if (v < k or k < 2 or (v - 1) % (k - 1) != 0
            or (v * (v - 1)) % (k * (k - 1)) != 0 or
            # From the Handbook of combinatorial designs:
            #
            # With lambda>1 other exceptions are
            # (15,5,2),(21,6,2),(22,7,2),(22,8,4).
        (k == 6 and v in [36, 46]) or (k == 7 and v == 43) or
            # Fisher's inequality
        (v * (v - 1)) / (k * (k - 1)) < v):
        if existence:
            return False
        raise EmptySetError("There exists no ({},{},{})-BIBD".format(
            v, k, lmbd))

    if k == 2:
        if existence:
            return True
        from itertools import combinations
        return BalancedIncompleteBlockDesign(v,
                                             combinations(range(v), 2),
                                             check=False,
                                             copy=True)
    if k == 3:
        if existence:
            return v % 6 == 1 or v % 6 == 3
        return steiner_triple_system(v)
    if k == 4:
        if existence:
            return v % 12 == 1 or v % 12 == 4
        return BalancedIncompleteBlockDesign(v, v_4_1_BIBD(v), copy=False)
    if k == 5:
        if existence:
            return v % 20 == 1 or v % 20 == 5
        return BalancedIncompleteBlockDesign(v, v_5_1_BIBD(v), copy=False)

    from difference_family import difference_family
    from database import BIBD_constructions

    if (v, k, 1) in BIBD_constructions:
        if existence:
            return True
        return BlockDesign(v, BIBD_constructions[(v, k, 1)](), copy=False)
    if BIBD_from_TD(v, k, existence=True):
        if existence:
            return True
        return BalancedIncompleteBlockDesign(v, BIBD_from_TD(v, k), copy=False)
    if v == (k - 1)**2 + k and is_prime_power(k - 1):
        if existence:
            return True
        from block_design import projective_plane
        return BalancedIncompleteBlockDesign(v,
                                             projective_plane(k - 1),
                                             copy=False)
    if difference_family(v, k, existence=True):
        if existence:
            return True
        G, D = difference_family(v, k)
        return BalancedIncompleteBlockDesign(v,
                                             BIBD_from_difference_family(
                                                 G, D, check=False),
                                             copy=False)
    if use_LJCR:
        from covering_design import best_known_covering_design_www
        B = best_known_covering_design_www(v, k, 2)

        # Is it a BIBD or just a good covering ?
        expected_n_of_blocks = binomial(v, 2) / binomial(k, 2)
        if B.low_bd() > expected_n_of_blocks:
            if existence:
                return False
            raise EmptySetError("There exists no ({},{},{})-BIBD".format(
                v, k, lmbd))
        B = B.incidence_structure()
        if B.num_blocks() == expected_n_of_blocks:
            if existence:
                return True
            else:
                return B

    if existence:
        return Unknown
    else:
        raise NotImplementedError(
            "I don't know how to build a ({},{},1)-BIBD!".format(v, k))
Exemplo n.º 33
0
def projective_plane(n, check=True, existence=False):
    r"""
    Return a projective plane of order ``n`` as a 2-design.

    A finite projective plane is a 2-design with `n^2+n+1` lines (or blocks) and
    `n^2+n+1` points. For more information on finite projective planes, see the
    :wikipedia:`Projective_plane#Finite_projective_planes`.

    If no construction is possible, then the function raises a ``EmptySetError``
    whereas if no construction is available the function raises a
    ``NotImplementedError``.

    INPUT:

    - ``n`` -- the finite projective plane's order

    EXAMPLES::

        sage: designs.projective_plane(2)
        (7,3,1)-Balanced Incomplete Block Design
        sage: designs.projective_plane(3)
        (13,4,1)-Balanced Incomplete Block Design
        sage: designs.projective_plane(4)
        (21,5,1)-Balanced Incomplete Block Design
        sage: designs.projective_plane(5)
        (31,6,1)-Balanced Incomplete Block Design
        sage: designs.projective_plane(6)
        Traceback (most recent call last):
        ...
        EmptySetError: By the Bruck-Ryser theorem, no projective plane of order 6 exists.
        sage: designs.projective_plane(10)
        Traceback (most recent call last):
        ...
        EmptySetError: No projective plane of order 10 exists by C. Lam, L. Thiel and S. Swiercz "The nonexistence of finite projective planes of order 10" (1989), Canad. J. Math.
        sage: designs.projective_plane(12)
        Traceback (most recent call last):
        ...
        NotImplementedError: If such a projective plane exists, we do not know how to build it.
        sage: designs.projective_plane(14)
        Traceback (most recent call last):
        ...
        EmptySetError: By the Bruck-Ryser theorem, no projective plane of order 14 exists.

    TESTS::

        sage: designs.projective_plane(2197, existence=True)
        True
        sage: designs.projective_plane(6, existence=True)
        False
        sage: designs.projective_plane(10, existence=True)
        False
        sage: designs.projective_plane(12, existence=True)
        Unknown
    """
    from sage.rings.arith import is_prime_power
    from sage.rings.sum_of_squares import is_sum_of_two_squares_pyx

    if n <= 1:
        if existence:
            return False
        raise EmptySetError("There is no projective plane of order <= 1")

    if n == 10:
        if existence:
            return False
        ref = ("C. Lam, L. Thiel and S. Swiercz \"The nonexistence of finite "
               "projective planes of order 10\" (1989), Canad. J. Math.")
        raise EmptySetError("No projective plane of order 10 exists by %s"%ref)

    if (n%4) in [1,2] and not is_sum_of_two_squares_pyx(n):
        if existence:
            return False
        raise EmptySetError("By the Bruck-Ryser theorem, no projective"
                         " plane of order {} exists.".format(n))

    if not is_prime_power(n):
        if existence:
            return Unknown
        raise NotImplementedError("If such a projective plane exists, we do "
                                  "not know how to build it.")

    if existence:
        return True
    else:
        return DesarguesianProjectivePlaneDesign(n, point_coordinates=False, check=check)
Exemplo n.º 34
0
def NonisotropicOrthogonalPolarGraph(m, q, sign="+", perp=None):
    r"""
    Returns the Graph `NO^{\epsilon,\perp}_{m}(q)`

    Let the vectorspace of dimension `m` over `F_q` be
    endowed with a nondegenerate quadratic form `F`, of type ``sign`` for `m` even.

    * `m` even: assume further that `q=2` or `3`. Returns the graph of the
      points (in the underlying projective space) `x` satisfying `F(x)=1`, with adjacency
      given by orthogonality w.r.t. `F`. Parameter ``perp`` is ignored.

    * `m` odd: if ``perp`` is not ``None``, then we assume that `q=5` and
      return the graph of the points `x` satisfying `F(x)=\pm 1` if ``sign="+"``,
      respectively `F(x) \in \{2,3\}` if ``sign="-"``, with adjacency
      given by orthogonality w.r.t. `F` (cf. Sect 7.D of [BvL84]_).
      Otherwise return the graph
      of nongenerate hyperplanes of type ``sign``, adjacent whenever the intersection
      is degenerate (cf. Sect. 7.C of [BvL84]_).
      Note that for `q=2` one will get a complete graph.

    For more information, see Sect. 9.9 of [BH12]_ and [BvL84]_. Note that the `page of
    Andries Brouwer's website <http://www.win.tue.nl/~aeb/graphs/srghub.html>`_
    uses different notation.

    INPUT:

    - ``m``  - integer,  half the dimension of the underlying vectorspace

    - ``q``  - a power of a prime number, the size of the underlying field

    - ``sign`` -- ``"+"`` (default) or ``"-"``.

    EXAMPLES:

    `NO^-(4,2)` is isomorphic to Petersen graph::

        sage: g=graphs.NonisotropicOrthogonalPolarGraph(4,2,'-'); g
        NO^-(4, 2): Graph on 10 vertices
        sage: g.is_strongly_regular(parameters=True)
        (10, 3, 0, 1)

    `NO^-(6,2)` and `NO^+(6,2)`::

        sage: g=graphs.NonisotropicOrthogonalPolarGraph(6,2,'-')
        sage: g.is_strongly_regular(parameters=True)
        (36, 15, 6, 6)
        sage: g=graphs.NonisotropicOrthogonalPolarGraph(6,2,'+'); g
        NO^+(6, 2): Graph on 28 vertices
        sage: g.is_strongly_regular(parameters=True)
        (28, 15, 6, 10)

    `NO^+(8,2)`::

        sage: g=graphs.NonisotropicOrthogonalPolarGraph(8,2,'+')
        sage: g.is_strongly_regular(parameters=True)
        (120, 63, 30, 36)

    Wilbrink's graphs for `q=5`::

        sage: graphs.NonisotropicOrthogonalPolarGraph(5,5,perp=1).is_strongly_regular(parameters=True) # long time
        (325, 60, 15, 10)
        sage: graphs.NonisotropicOrthogonalPolarGraph(5,5,'-',perp=1).is_strongly_regular(parameters=True) # long time
        (300, 65, 10, 15)

    Wilbrink's graphs::

        sage: g=graphs.NonisotropicOrthogonalPolarGraph(5,4,'+')
        sage: g.is_strongly_regular(parameters=True)
        (136, 75, 42, 40)
        sage: g=graphs.NonisotropicOrthogonalPolarGraph(5,4,'-') 
        sage: g.is_strongly_regular(parameters=True)
        (120, 51, 18, 24)
        sage: g=graphs.NonisotropicOrthogonalPolarGraph(7,4,'+'); g # not tested (long time)
        NO^+(7, 4): Graph on 2080 vertices
        sage: g.is_strongly_regular(parameters=True) # not tested (long time)
        (2080, 1071, 558, 544)

    TESTS::

        sage: g=graphs.NonisotropicOrthogonalPolarGraph(4,2); g
        NO^+(4, 2): Graph on 6 vertices
        sage: graphs.NonisotropicOrthogonalPolarGraph(4,3,'-').is_strongly_regular(parameters=True)
        (15, 6, 1, 3)
        sage: g=graphs.NonisotropicOrthogonalPolarGraph(3,5,'-',perp=1); g
        NO^-,perp(3, 5): Graph on 10 vertices
        sage: g.is_strongly_regular(parameters=True)
        (10, 3, 0, 1)
        sage: g=graphs.NonisotropicOrthogonalPolarGraph(6,3,'+')   # long time
        sage: g.is_strongly_regular(parameters=True)               # long time
        (117, 36, 15, 9)
        sage: g=graphs.NonisotropicOrthogonalPolarGraph(6,3,'-'); g # long time
        NO^-(6, 3): Graph on 126 vertices
        sage: g.is_strongly_regular(parameters=True)                # long time
        (126, 45, 12, 18)
        sage: g=graphs.NonisotropicOrthogonalPolarGraph(5,5,'-')    # long time
        sage: g.is_strongly_regular(parameters=True)                # long time
        (300, 104, 28, 40)
        sage: g=graphs.NonisotropicOrthogonalPolarGraph(5,5,'+')    # long time
        sage: g.is_strongly_regular(parameters=True)                # long time
        (325, 144, 68, 60)
        sage: g=graphs.NonisotropicOrthogonalPolarGraph(6,4,'+')
        Traceback (most recent call last):
        ...
        ValueError: for m even q must be 2 or 3 

    """
    from sage.graphs.generators.classical_geometries import _orthogonal_polar_graph
    from sage.rings.arith import is_prime_power
    p, k = is_prime_power(q,get_data=True)
    if k==0:
        raise ValueError('q must be a prime power')
    dec = ''
    if m % 2 == 0:
        if q in [2,3]:
            G = _orthogonal_polar_graph(m, q, sign=sign, point_type=[1])
        else:
            raise ValueError("for m even q must be 2 or 3")
    elif not perp is None:
        if q == 5:
            G = _orthogonal_polar_graph(m, q, point_type=\
                [-1,1] if sign=='+' else [2,3] if sign=='-' else [])
            dec = ",perp"
        else:
            raise ValueError("for perp not None q must be 5")
    else:
        if not sign in ['+','-']:
            raise ValueError("sign must be '+' or '-'")
        from sage.libs.gap.libgap import libgap
        g0 = libgap.GeneralOrthogonalGroup(m,q)
        g = libgap.Group(libgap.List(g0.GeneratorsOfGroup(),libgap.TransposedMat))
        F=libgap.GF(q)  # F_q
        W=libgap.FullRowSpace(F, m)  # F_q^m
        e = 1 if sign=='+' else -1
        n = (m-1)/2
        # we build (q^n(q^n+e)/2, (q^n-e)(q^(n-1)+e), 2(q^(2n-2)-1)+eq^(n-1)(q-1),
        #                                          2q^(n-1)(q^(n-1)+e))-srg
        # **use** v and k to select appropriate orbit and orbital
        nvert = (q**n)*(q**n+e)/2     # v
        deg = (q**n-e)*(q**(n-1)+e)   # k
        S=map(lambda x: libgap.Elements(libgap.Basis(x))[0], \
            libgap.Elements(libgap.Subspaces(W,1)))
        V = filter(lambda x: len(x)==nvert, libgap.Orbits(g,S,libgap.OnLines))
        assert len(V)==1
        V = V[0]
        gp = libgap.Action(g,V,libgap.OnLines)  # make a permutation group
        h = libgap.Stabilizer(gp,1)
        Vh = filter(lambda x: len(x)==deg, libgap.Orbits(h,libgap.Orbit(gp,1)))
        assert len(Vh)==1
        Vh = Vh[0][0]
        L = libgap.Orbit(gp, [1, Vh], libgap.OnSets)
        G = Graph()
        G.add_edges(L)
    G.name("NO^" + sign + dec + str((m, q)))
    return G
Exemplo n.º 35
0
def difference_matrix(g, k, lmbda=1, existence=False, check=True):
    r"""
    Return a `(g,k,\lambda)`-difference matrix

    A matrix `M` is a `(g,k,\lambda)`-difference matrix if it has size `\lambda
    g\times k`, its entries belong to the group `G` of cardinality `g`, and
    for any two rows `R,R'` of `M` and `x\in G` there are exactly `\lambda`
    values `i` such that `R_i-R'_i=x`.

    INPUT:

    - ``k`` -- (integer) number of columns. If ``k=None`` it is set to the
      largest value available.

    - ``g`` -- (integer) cardinality of the group `G`

    - ``lmbda`` -- (integer; default: 1) -- number of times each element of `G`
      appears as a difference.

    - ``check`` -- (boolean) Whether to check that output is correct before
      returning it. As this is expected to be useless (but we are cautious
      guys), you may want to disable it whenever you want speed. Set to
      ``True`` by default.

    - ``existence`` (boolean) -- instead of building the design, return:

        - ``True`` -- meaning that Sage knows how to build the design

        - ``Unknown`` -- meaning that Sage does not know how to build the
          design, but that the design may exist (see :mod:`sage.misc.unknown`).

        - ``False`` -- meaning that the design does not exist.

      .. NOTE::

          When ``k=None`` and ``existence=True`` the function returns an
          integer, i.e. the largest `k` such that we can build a
          `(g,k,\lambda)`-DM.

    EXAMPLES::

        sage: G,M = designs.difference_matrix(25,10); G
        Finite Field in x of size 5^2
        sage: designs.difference_matrix(993,None,existence=1)
        32

    Here we print for each `g` the maximum possible `k` for which Sage knows
    how to build a `(g,k,1)`-difference matrix::

        sage: for g in range(2,30):
        ....:     k_max = designs.difference_matrix(g=g,k=None,existence=True)
        ....:     print "{:2} {}".format(g, k_max)
        ....:     _ = designs.difference_matrix(g,k_max)
         2 2
         3 3
         4 4
         5 5
         6 2
         7 7
         8 8
         9 9
        10 2
        11 11
        12 6
        13 13
        14 2
        15 3
        16 16
        17 17
        18 2
        19 19
        20 4
        21 6
        22 2
        23 23
        24 8
        25 25
        26 2
        27 27
        28 6
        29 29

    TESTS::

        sage: designs.difference_matrix(10,12,1,existence=True)
        False
        sage: designs.difference_matrix(10,12,1)
        Traceback (most recent call last):
        ...
        EmptySetError: No (10,12,1)-Difference Matrix exists as k(=12)>g(=10)
        sage: designs.difference_matrix(10,9,1,existence=True)
        Unknown
        sage: designs.difference_matrix(10,9,1)
        Traceback (most recent call last):
        ...
        NotImplementedError: I don't know how to build a (10,9,1)-Difference Matrix!
    """

    if lmbda == 1 and k is not None and k > g:
        if existence:
            return False
        raise EmptySetError(
            "No ({},{},{})-Difference Matrix exists as k(={})>g(={})".format(
                g, k, lmbda, k, g))

    # Prime powers
    elif lmbda == 1 and is_prime_power(g):
        if k is None:
            if existence:
                return g
            else:
                k = g
        elif existence:
            return True
        F = FiniteField(g, 'x')
        F_set = list(F)
        F_k_set = F_set[:k]

        G = F
        M = [[x * y for y in F_k_set] for x in F_set]

    # Treat the case k=None
    # (find the max k such that there exists a DM)
    elif k is None:
        i = 2
        while difference_matrix(g=g, k=i, lmbda=lmbda, existence=True):
            i += 1
        return i - 1

    # From the database
    elif (g, lmbda) in DM_constructions and DM_constructions[g, lmbda][0] >= k:
        if existence:
            return True
        _, f = DM_constructions[g, lmbda]
        G, M = f()
        M = [R[:k] for R in M]

    # Product construction
    elif find_product_decomposition(g, k, lmbda):
        if existence:
            return True
        (g1, lmbda1), (g2, lmbda2) = find_product_decomposition(g, k, lmbda)
        G1, M1 = difference_matrix(g1, k, lmbda1)
        G2, M2 = difference_matrix(g2, k, lmbda2)
        G, M = difference_matrix_product(k,
                                         M1,
                                         G1,
                                         lmbda1,
                                         M2,
                                         G2,
                                         lmbda2,
                                         check=False)

    else:
        if existence:
            return Unknown
        raise NotImplementedError(
            "I don't know how to build a ({},{},{})-Difference Matrix!".format(
                g, k, lmbda))

    if check and not is_difference_matrix(M, G, k, lmbda, 1):
        raise RuntimeError(
            "Sage built something which is not a ({},{},{})-DM!".format(
                g, k, lmbda))

    return G, M
Exemplo n.º 36
0
def NonisotropicUnitaryPolarGraph(m, q):
    r"""
    Returns the Graph `NU(m,q)`.

    Returns the graph on nonisotropic, with respect to a nondegenerate
    Hermitean form, points of the `(m-1)`-dimensional projective space over `F_q`,
    with points adjacent whenever they lie on a tangent (to the set of isotropic points)
    line.
    For more information, see Sect. 9.9 of [BH12]_ and series C14 in [Hu75]_.

    INPUT:

    - ``m,q`` (integers) -- `q` must be a prime power.

    EXAMPLES::

        sage: g=graphs.NonisotropicUnitaryPolarGraph(5,2); g
        NU(5, 2): Graph on 176 vertices
        sage: g.is_strongly_regular(parameters=True)
        (176, 135, 102, 108)

    TESTS::

        sage: graphs.NonisotropicUnitaryPolarGraph(4,2).is_strongly_regular(parameters=True)
        (40, 27, 18, 18)
        sage: graphs.NonisotropicUnitaryPolarGraph(4,3).is_strongly_regular(parameters=True) # long time
        (540, 224, 88, 96)
        sage: graphs.NonisotropicUnitaryPolarGraph(6,6)
        Traceback (most recent call last):
        ...
        ValueError: q must be a prime power

    REFERENCE:

    .. [Hu75] X. L. Hubaut.
      Strongly regular graphs.
      Disc. Math. 13(1975), pp 357--381.
      http://dx.doi.org/10.1016/0012-365X(75)90057-6
    """
    from sage.rings.arith import is_prime_power
    p, k = is_prime_power(q,get_data=True)
    if k==0:
       raise ValueError('q must be a prime power')
    from sage.libs.gap.libgap import libgap
    from itertools import combinations
    F=libgap.GF(q**2)  # F_{q^2}
    W=libgap.FullRowSpace(F, m)  # F_{q^2}^m
    B=libgap.Elements(libgap.Basis(W))      # the standard basis of W
    if m % 2 != 0:
        point = B[(m-1)/2]
    else:
        if p==2:
            point = B[m/2] + F.PrimitiveRoot()*B[(m-2)/2]
        else:
            point = B[(m-2)/2] + B[m/2]
    g = libgap.GeneralUnitaryGroup(m,q)
    V = libgap.Orbit(g,point,libgap.OnLines) # orbit on nonisotropic points
    gp = libgap.Action(g,V,libgap.OnLines)  # make a permutation group

    s = libgap.Subspace(W,[point, point+B[0]]) # a tangent line on point

    # and the points there
    sp = [libgap.Elements(libgap.Basis(x))[0] for x in libgap.Elements(s.Subspaces(1))]
    h = libgap.Set(map(lambda x: libgap.Position(V, x), libgap.Intersection(V,sp))) # indices
    L = libgap.Orbit(gp, h, libgap.OnSets) # orbit on the tangent lines
    G = Graph()
    for x in L: # every pair of points in the subspace is adjacent to each other in G
        G.add_edges(combinations(x, 2))
    G.relabel()
    G.name("NU" + str((m, q)))
    return G
Exemplo n.º 37
0
def difference_family(v, k, l=1, existence=False, check=True):
    r"""
    Return a (``k``, ``l``)-difference family on an Abelian group of size ``v``.

    Let `G` be a finite Abelian group. For a given subset `D` of `G`, we define
    `\Delta D` to be the multi-set of differences `\Delta D = \{x - y; x \in D,
    y \in D, x \not= y\}`. A `(G,k,\lambda)`-*difference family* is a collection
    of `k`-subsets of `G`, `D = \{D_1, D_2, \ldots, D_b\}` such that the union
    of the difference sets `\Delta D_i` for `i=1,...b`, seen as a multi-set,
    contains each element of `G \backslash \{0\}` exactly `\lambda`-times.

    When there is only one block, i.e. `\lambda(v - 1) = k(k-1)`, then a
    `(G,k,\lambda)`-difference family is also called a *difference set*.

    See also :wikipedia:`Difference_set`.

    If there is no such difference family, an ``EmptySetError`` is raised and if
    there is no construction at the moment ``NotImplementedError`` is raised.

    EXAMPLES::

        sage: K,D = designs.difference_family(73,4)
        sage: D
        [[0, 1, 8, 64],
         [0, 25, 54, 67],
         [0, 41, 36, 69],
         [0, 3, 24, 46],
         [0, 2, 16, 55],
         [0, 50, 35, 61]]

        sage: K,D = designs.difference_family(337,7)
        sage: D
        [[1, 175, 295, 64, 79, 8, 52],
         [326, 97, 125, 307, 142, 249, 102],
         [121, 281, 310, 330, 123, 294, 226],
         [17, 279, 297, 77, 332, 136, 210],
         [150, 301, 103, 164, 55, 189, 49],
         [35, 59, 215, 218, 69, 280, 135],
         [289, 25, 331, 298, 252, 290, 200],
         [191, 62, 66, 92, 261, 180, 159]]

    For `k=6,7` we look at the set of small prime powers for which a
    construction is available::

        sage: def prime_power_mod(r,m):
        ....:     k = m+r
        ....:     while True:
        ....:         if is_prime_power(k):
        ....:             yield k
        ....:         k += m

        sage: from itertools import islice
        sage: l6 = {True:[], False: [], Unknown: []}
        sage: for q in islice(prime_power_mod(1,30), 60):
        ....:     l6[designs.difference_family(q,6,existence=True)].append(q)
        sage: l6[True]
        [31, 151, 181, 211, ...,  3061, 3121, 3181]
        sage: l6[Unknown]
        [61, 121]
        sage: l6[False]
        []

        sage: l7 = {True: [], False: [], Unknown: []}
        sage: for q in islice(prime_power_mod(1,42), 60):
        ....:     l7[designs.difference_family(q,7,existence=True)].append(q)
        sage: l7[True]
        [337, 421, 463, 883, 1723, 3067, 3319, 3529, 3823, 3907, 4621, 4957, 5167]
        sage: l7[Unknown]
        [43, 127, 169, 211, ..., 4999, 5041, 5209]
        sage: l7[False]
        []

    Other constructions for `\lambda > 1`::

        sage: for v in xrange(2,100):
        ....:     constructions = []
        ....:     for k in xrange(2,10):
        ....:         for l in xrange(2,10):
        ....:             if designs.difference_family(v,k,l,existence=True):
        ....:                 constructions.append((k,l))
        ....:                 _ = designs.difference_family(v,k,l)
        ....:     if constructions:
        ....:         print "%2d: %s"%(v, ', '.join('(%d,%d)'%(k,l) for k,l in constructions))
         4: (3,2)
         5: (4,3)
         7: (3,2), (6,5)
         8: (7,6)
         9: (4,3), (8,7)
        11: (5,2), (5,4)
        13: (3,2), (4,3), (6,5)
        15: (7,3)
        16: (3,2), (5,4)
        17: (4,3), (8,7)
        19: (3,2), (6,5), (9,4), (9,8)
        25: (3,2), (4,3), (6,5), (8,7)
        29: (4,3), (7,6)
        31: (3,2), (5,4), (6,5)
        37: (3,2), (4,3), (6,5), (9,2), (9,8)
        41: (4,3), (5,4), (8,7)
        43: (3,2), (6,5), (7,6)
        49: (3,2), (4,3), (6,5), (8,7)
        53: (4,3)
        61: (3,2), (4,3), (5,4), (6,5)
        64: (3,2), (7,6), (9,8)
        67: (3,2), (6,5)
        71: (5,4), (7,6)
        73: (3,2), (4,3), (6,5), (8,7), (9,8)
        79: (3,2), (6,5)
        81: (4,3), (5,4), (8,7)
        89: (4,3), (8,7)
        97: (3,2), (4,3), (6,5), (8,7)

    TESTS:

    Check more of the Wilson constructions from [Wi72]_::

        sage: Q5 = [241, 281,421,601,641, 661, 701, 821,881]
        sage: Q9 = [73, 1153, 1873, 2017]
        sage: Q15 = [76231]
        sage: Q4 = [13, 73, 97, 109, 181, 229, 241, 277, 337, 409, 421, 457]
        sage: Q8 = [1009, 3137, 3697]
        sage: for Q,k in [(Q4,4),(Q5,5),(Q8,8),(Q9,9),(Q15,15)]:
        ....:     for q in Q:
        ....:         assert designs.difference_family(q,k,1,existence=True) is True
        ....:         _ = designs.difference_family(q,k,1)

    Check Singer difference sets::

        sage: sgp = lambda q,d: ((q**(d+1)-1)//(q-1), (q**d-1)//(q-1), (q**(d-1)-1)//(q-1))

        sage: for q in range(2,10):
        ....:     if is_prime_power(q):
        ....:         for d in [2,3,4]:
        ....:           v,k,l = sgp(q,d)
        ....:           assert designs.difference_family(v,k,l,existence=True) is True
        ....:           _ = designs.difference_family(v,k,l)

    .. TODO::

        There is a slightly more general version of difference families where
        the stabilizers of the blocks are taken into account. A block is *short*
        if the stabilizer is not trivial. The more general version is called a
        *partial difference family*. It is still possible to construct BIBD from
        this more general version (see the chapter 16 in the Handbook
        [DesignHandbook]_).

        Implement recursive constructions from Buratti "Recursive for difference
        matrices and relative difference families" (1998) and Jungnickel
        "Composition theorems for difference families and regular planes" (1978)
    """
    if (l * (v - 1)) % (k * (k - 1)) != 0:
        if existence:
            return False
        raise EmptySetError(
            "A (v,%d,%d)-difference family may exist only if %d*(v-1) = mod %d"
            % (k, l, l, k * (k - 1)))

    from block_design import are_hyperplanes_in_projective_geometry_parameters
    from database import DF_constructions
    if (v, k, l) in DF_constructions:
        if existence:
            return True
        return DF_constructions[(v, k, l)]()

    e = k * (k - 1)
    t = l * (v - 1) // e  # number of blocks

    D = None

    if arith.is_prime_power(v):
        from sage.rings.finite_rings.constructor import GF
        G = K = GF(v, 'z')
        x = K.multiplicative_generator()

        if l == (k - 1):
            if existence:
                return True
            return K, K.cyclotomic_cosets(x**((v - 1) // k))[1:]

        if t == 1:
            # some of the difference set constructions VI.18.48 from the
            # Handbook of combinatorial designs
            # q = 3 mod 4
            if v % 4 == 3 and k == (v - 1) // 2:
                if existence:
                    return True
                D = K.cyclotomic_cosets(x**2, [1])

            # q = 4t^2 + 1, t odd
            elif v % 8 == 5 and k == (v - 1) // 4 and arith.is_square(
                (v - 1) // 4):
                if existence:
                    return True
                D = K.cyclotomic_cosets(x**4, [1])

            # q = 4t^2 + 9, t odd
            elif v % 8 == 5 and k == (v + 3) // 4 and arith.is_square(
                (v - 9) // 4):
                if existence:
                    return True
                D = K.cyclotomic_cosets(x**4, [1])
                D[0].insert(0, K.zero())

        if D is None and l == 1:
            one = K.one()

            # Wilson (1972), Theorem 9
            if k % 2 == 1:
                m = (k - 1) // 2
                xx = x**m
                to_coset = {
                    x**i * xx**j: i
                    for i in xrange(m) for j in xrange((v - 1) / m)
                }
                r = x**((v - 1) // k)  # primitive k-th root of unity
                if len(set(to_coset[r**j - one]
                           for j in xrange(1, m + 1))) == m:
                    if existence:
                        return True
                    B = [r**j for j in xrange(k)
                         ]  # = H^((k-1)t) whose difference is
                    # H^(mt) (r^i - 1, i=1,..,m)
                    # Now pick representatives a translate of R for by a set of
                    # representatives of H^m / H^(mt)
                    D = [[x**(i * m) * b for b in B] for i in xrange(t)]

            # Wilson (1972), Theorem 10
            else:
                m = k // 2
                xx = x**m
                to_coset = {
                    x**i * xx**j: i
                    for i in xrange(m) for j in xrange((v - 1) / m)
                }
                r = x**((v - 1) // (k - 1))  # primitive (k-1)-th root of unity
                if (all(to_coset[r**j - one] != 0 for j in xrange(1, m))
                        and len(set(to_coset[r**j - one]
                                    for j in xrange(1, m))) == m - 1):
                    if existence:
                        return True
                    B = [K.zero()] + [r**j for j in xrange(k - 1)]
                    D = [[x**(i * m) * b for b in B] for i in xrange(t)]

            # Wilson (1972), Theorem 11
            if D is None and k == 6:
                r = x**((v - 1) // 3)  # primitive cube root of unity
                r2 = r * r
                xx = x**5
                to_coset = {
                    x**i * xx**j: i
                    for i in xrange(5) for j in xrange((v - 1) / 5)
                }
                for c in to_coset:
                    if c == 1 or c == r or c == r2:
                        continue
                    if len(
                            set(to_coset[elt]
                                for elt in (r - 1, c * (r - 1), c - 1, c - r,
                                            c - r**2))) == 5:
                        if existence:
                            return True
                        B = [one, r, r**2, c, c * r, c * r**2]
                        D = [[x**(i * 5) * b for b in B] for i in xrange(t)]
                        break

    if D is None and are_hyperplanes_in_projective_geometry_parameters(
            v, k, l):
        _, (q, d) = are_hyperplanes_in_projective_geometry_parameters(
            v, k, l, True)
        if existence:
            return True
        else:
            G, D = singer_difference_set(q, d)

    if D is None:
        if existence:
            return Unknown
        raise NotImplementedError("No constructions for these parameters")

    if check and not is_difference_family(G, D, verbose=False):
        raise RuntimeError

    return G, D
Exemplo n.º 38
0
def TaylorTwographDescendantSRG(q, clique_partition=None):
    r"""
    constructing the descendant graph of the Taylor's two-graph for `U_3(q)`, `q` odd

    This is a strongly regular graph with parameters
    `(v,k,\lambda,\mu)=(q^3, (q^2+1)(q-1)/2, (q-1)^3/4-1, (q^2+1)(q-1)/4)`
    obtained as a two-graph descendant of the
    :func:`Taylor's two-graph <sage.combinat.designs.twographs.taylor_twograph>` `T`.
    This graph admits a partition into cliques of size `q`, which are useful in
    :func:`TaylorTwographSRG <sage.graphs.generators.classical_geometries.TaylorTwographSRG>`,
    a strongly regular graph on `q^3+1` vertices in the
    Seidel switching class of `T`, for which we need `(q^2+1)/2` cliques.
    The cliques are the `q^2` lines on `v_0` of the projective plane containing the unital
    for `U_3(q)`, and intersecting the unital (i.e. the vertices of the graph and the point
    we remove) in `q+1` points. This is all taken from §7E of [BvL84]_.

    INPUT:

    - ``q`` -- a power of an odd prime number

    - ``clique_partition`` -- if ``True``, return `q^2-1` cliques of size `q`
      with empty pairwise intersection. (Removing all of them leaves a clique, too),
      and the point removed from the unital.

    EXAMPLES::

        sage: g=graphs.TaylorTwographDescendantSRG(3); g
        Taylor two-graph descendant SRG: Graph on 27 vertices
        sage: g.is_strongly_regular(parameters=True)
        (27, 10, 1, 5)
        sage: from sage.combinat.designs.twographs import taylor_twograph
        sage: T = taylor_twograph(3)                           # long time
        sage: g.is_isomorphic(T.descendant(T.ground_set()[1])) # long time
        True
        sage: g=graphs.TaylorTwographDescendantSRG(5)    # not tested (long time)
        sage: g.is_strongly_regular(parameters=True)  # not tested (long time)
        (125, 52, 15, 26)

    TESTS::

        sage: g,l,_=graphs.TaylorTwographDescendantSRG(3,clique_partition=True)
        sage: all(map(lambda x: g.is_clique(x), l))
        True
        sage: graphs.TaylorTwographDescendantSRG(4)
        Traceback (most recent call last):
        ...
        ValueError: q must be an odd prime power
        sage: graphs.TaylorTwographDescendantSRG(6)
        Traceback (most recent call last):
        ...
        ValueError: q must be an odd prime power
    """
    from sage.rings.arith import is_prime_power
    p, k = is_prime_power(q,get_data=True)
    if k==0 or p==2:
       raise ValueError('q must be an odd prime power')
    from sage.schemes.projective.projective_space import ProjectiveSpace
    from sage.rings.finite_rings.constructor import FiniteField
    from sage.modules.free_module_element import free_module_element as vector
    from sage.rings.finite_rings.integer_mod import mod
    from __builtin__ import sum
    Fq = FiniteField(q**2, 'a')
    PG = map(tuple,ProjectiveSpace(2, Fq))
    def S(x,y):
        return sum(map(lambda j: x[j]*y[2-j]**q, xrange(3)))

    V = filter(lambda x: S(x,x)==0, PG) # the points of the unital
    v0 = V[0]
    V.remove(v0)
    if mod(q,4)==1:
        G = Graph([V,lambda y,z: not (S(v0,y)*S(y,z)*S(z,v0)).is_square()], loops=False)
    else:
        G = Graph([V,lambda y,z:     (S(v0,y)*S(y,z)*S(z,v0)).is_square()], loops=False)
    G.name("Taylor two-graph descendant SRG")
    if clique_partition:
        lines = map(lambda x: filter(lambda t: t[0]+x*t[1]==0, V),
                     filter(lambda z: z != 0, Fq))
        return (G, lines, v0)
    else:
        return G
Exemplo n.º 39
0
def NonisotropicOrthogonalPolarGraph(m, q, sign="+", perp=None):
    r"""
    Returns the Graph `NO^{\epsilon,\perp}_{m}(q)`

    Let the vectorspace of dimension `m` over `F_q` be
    endowed with a nondegenerate quadratic form `F`, of type ``sign`` for `m` even.

    * `m` even: assume further that `q=2` or `3`. Returns the graph of the
      points (in the underlying projective space) `x` satisfying `F(x)=1`, with adjacency
      given by orthogonality w.r.t. `F`. Parameter ``perp`` is ignored.

    * `m` odd: if ``perp`` is not ``None``, then we assume that `q=5` and
      return the graph of the points `x` satisfying `F(x)=\pm 1` if ``sign="+"``,
      respectively `F(x) \in \{2,3\}` if ``sign="-"``, with adjacency
      given by orthogonality w.r.t. `F` (cf. Sect 7.D of [BvL84]_).
      Otherwise return the graph
      of nongenerate hyperplanes of type ``sign``, adjacent whenever the intersection
      is degenerate (cf. Sect. 7.C of [BvL84]_).
      Note that for `q=2` one will get a complete graph.

    For more information, see Sect. 9.9 of [BH12]_ and [BvL84]_. Note that the `page of
    Andries Brouwer's website <http://www.win.tue.nl/~aeb/graphs/srghub.html>`_
    uses different notation.

    INPUT:

    - ``m``  - integer,  half the dimension of the underlying vectorspace

    - ``q``  - a power of a prime number, the size of the underlying field

    - ``sign`` -- ``"+"`` (default) or ``"-"``.

    EXAMPLES:

    `NO^-(4,2)` is isomorphic to Petersen graph::

        sage: g=graphs.NonisotropicOrthogonalPolarGraph(4,2,'-'); g
        NO^-(4, 2): Graph on 10 vertices
        sage: g.is_strongly_regular(parameters=True)
        (10, 3, 0, 1)

    `NO^-(6,2)` and `NO^+(6,2)`::

        sage: g=graphs.NonisotropicOrthogonalPolarGraph(6,2,'-')
        sage: g.is_strongly_regular(parameters=True)
        (36, 15, 6, 6)
        sage: g=graphs.NonisotropicOrthogonalPolarGraph(6,2,'+'); g
        NO^+(6, 2): Graph on 28 vertices
        sage: g.is_strongly_regular(parameters=True)
        (28, 15, 6, 10)

    `NO^+(8,2)`::

        sage: g=graphs.NonisotropicOrthogonalPolarGraph(8,2,'+')
        sage: g.is_strongly_regular(parameters=True)
        (120, 63, 30, 36)

    Wilbrink's graphs for `q=5`::

        sage: graphs.NonisotropicOrthogonalPolarGraph(5,5,perp=1).is_strongly_regular(parameters=True) # long time
        (325, 60, 15, 10)
        sage: graphs.NonisotropicOrthogonalPolarGraph(5,5,'-',perp=1).is_strongly_regular(parameters=True) # long time
        (300, 65, 10, 15)

    Wilbrink's graphs::

        sage: g=graphs.NonisotropicOrthogonalPolarGraph(5,4,'+')
        sage: g.is_strongly_regular(parameters=True)
        (136, 75, 42, 40)
        sage: g=graphs.NonisotropicOrthogonalPolarGraph(5,4,'-') 
        sage: g.is_strongly_regular(parameters=True)
        (120, 51, 18, 24)
        sage: g=graphs.NonisotropicOrthogonalPolarGraph(7,4,'+'); g # not tested (long time)
        NO^+(7, 4): Graph on 2080 vertices
        sage: g.is_strongly_regular(parameters=True) # not tested (long time)
        (2080, 1071, 558, 544)

    TESTS::

        sage: g=graphs.NonisotropicOrthogonalPolarGraph(4,2); g
        NO^+(4, 2): Graph on 6 vertices
        sage: graphs.NonisotropicOrthogonalPolarGraph(4,3,'-').is_strongly_regular(parameters=True)
        (15, 6, 1, 3)
        sage: g=graphs.NonisotropicOrthogonalPolarGraph(3,5,'-',perp=1); g
        NO^-,perp(3, 5): Graph on 10 vertices
        sage: g.is_strongly_regular(parameters=True)
        (10, 3, 0, 1)
        sage: g=graphs.NonisotropicOrthogonalPolarGraph(6,3,'+')   # long time
        sage: g.is_strongly_regular(parameters=True)               # long time
        (117, 36, 15, 9)
        sage: g=graphs.NonisotropicOrthogonalPolarGraph(6,3,'-'); g # long time
        NO^-(6, 3): Graph on 126 vertices
        sage: g.is_strongly_regular(parameters=True)                # long time
        (126, 45, 12, 18)
        sage: g=graphs.NonisotropicOrthogonalPolarGraph(5,5,'-')    # long time
        sage: g.is_strongly_regular(parameters=True)                # long time
        (300, 104, 28, 40)
        sage: g=graphs.NonisotropicOrthogonalPolarGraph(5,5,'+')    # long time
        sage: g.is_strongly_regular(parameters=True)                # long time
        (325, 144, 68, 60)
        sage: g=graphs.NonisotropicOrthogonalPolarGraph(6,4,'+')
        Traceback (most recent call last):
        ...
        ValueError: for m even q must be 2 or 3 

    """
    from sage.graphs.generators.classical_geometries import _orthogonal_polar_graph
    from sage.rings.arith import is_prime_power
    p, k = is_prime_power(q, get_data=True)
    if k == 0:
        raise ValueError('q must be a prime power')
    dec = ''
    if m % 2 == 0:
        if q in [2, 3]:
            G = _orthogonal_polar_graph(m, q, sign=sign, point_type=[1])
        else:
            raise ValueError("for m even q must be 2 or 3")
    elif not perp is None:
        if q == 5:
            G = _orthogonal_polar_graph(m, q, point_type=\
                [-1,1] if sign=='+' else [2,3] if sign=='-' else [])
            dec = ",perp"
        else:
            raise ValueError("for perp not None q must be 5")
    else:
        if not sign in ['+', '-']:
            raise ValueError("sign must be '+' or '-'")
        from sage.libs.gap.libgap import libgap
        g0 = libgap.GeneralOrthogonalGroup(m, q)
        g = libgap.Group(
            libgap.List(g0.GeneratorsOfGroup(), libgap.TransposedMat))
        F = libgap.GF(q)  # F_q
        W = libgap.FullRowSpace(F, m)  # F_q^m
        e = 1 if sign == '+' else -1
        n = (m - 1) / 2
        # we build (q^n(q^n+e)/2, (q^n-e)(q^(n-1)+e), 2(q^(2n-2)-1)+eq^(n-1)(q-1),
        #                                          2q^(n-1)(q^(n-1)+e))-srg
        # **use** v and k to select appropriate orbit and orbital
        nvert = (q**n) * (q**n + e) / 2  # v
        deg = (q**n - e) * (q**(n - 1) + e)  # k
        S=map(lambda x: libgap.Elements(libgap.Basis(x))[0], \
            libgap.Elements(libgap.Subspaces(W,1)))
        V = filter(lambda x: len(x) == nvert,
                   libgap.Orbits(g, S, libgap.OnLines))
        assert len(V) == 1
        V = V[0]
        gp = libgap.Action(g, V, libgap.OnLines)  # make a permutation group
        h = libgap.Stabilizer(gp, 1)
        Vh = filter(lambda x: len(x) == deg,
                    libgap.Orbits(h, libgap.Orbit(gp, 1)))
        assert len(Vh) == 1
        Vh = Vh[0][0]
        L = libgap.Orbit(gp, [1, Vh], libgap.OnSets)
        G = Graph()
        G.add_edges(L)
    G.name("NO^" + sign + dec + str((m, q)))
    return G
Exemplo n.º 40
0
def difference_family(v, k, l=1, existence=False, check=True):
    r"""
    Return a (``k``, ``l``)-difference family on an Abelian group of size ``v``.

    Let `G` be a finite Abelian group. For a given subset `D` of `G`, we define
    `\Delta D` to be the multi-set of differences `\Delta D = \{x - y; x \in D,
    y \in D, x \not= y\}`. A `(G,k,\lambda)`-*difference family* is a collection
    of `k`-subsets of `G`, `D = \{D_1, D_2, \ldots, D_b\}` such that the union
    of the difference sets `\Delta D_i` for `i=1,...b`, seen as a multi-set,
    contains each element of `G \backslash \{0\}` exactly `\lambda`-times.

    When there is only one block, i.e. `\lambda(v - 1) = k(k-1)`, then a
    `(G,k,\lambda)`-difference family is also called a *difference set*.

    See also :wikipedia:`Difference_set`.

    If there is no such difference family, an ``EmptySetError`` is raised and if
    there is no construction at the moment ``NotImplementedError`` is raised.

    EXAMPLES::

        sage: K,D = designs.difference_family(73,4)
        sage: D
        [[0, 1, 8, 64],
         [0, 25, 54, 67],
         [0, 41, 36, 69],
         [0, 3, 24, 46],
         [0, 2, 16, 55],
         [0, 50, 35, 61]]

        sage: K,D = designs.difference_family(337,7)
        sage: D
        [[1, 175, 295, 64, 79, 8, 52],
         [326, 97, 125, 307, 142, 249, 102],
         [121, 281, 310, 330, 123, 294, 226],
         [17, 279, 297, 77, 332, 136, 210],
         [150, 301, 103, 164, 55, 189, 49],
         [35, 59, 215, 218, 69, 280, 135],
         [289, 25, 331, 298, 252, 290, 200],
         [191, 62, 66, 92, 261, 180, 159]]

    For `k=6,7` we look at the set of small prime powers for which a
    construction is available::

        sage: def prime_power_mod(r,m):
        ....:     k = m+r
        ....:     while True:
        ....:         if is_prime_power(k):
        ....:             yield k
        ....:         k += m

        sage: from itertools import islice
        sage: l6 = {True:[], False: [], Unknown: []}
        sage: for q in islice(prime_power_mod(1,30), 60):
        ....:     l6[designs.difference_family(q,6,existence=True)].append(q)
        sage: l6[True]
        [31, 151, 181, 211, ...,  3061, 3121, 3181]
        sage: l6[Unknown]
        [61, 121]
        sage: l6[False]
        []

        sage: l7 = {True: [], False: [], Unknown: []}
        sage: for q in islice(prime_power_mod(1,42), 60):
        ....:     l7[designs.difference_family(q,7,existence=True)].append(q)
        sage: l7[True]
        [337, 421, 463, 883, 1723, 3067, 3319, 3529, 3823, 3907, 4621, 4957, 5167]
        sage: l7[Unknown]
        [43, 127, 169, 211, ..., 4999, 5041, 5209]
        sage: l7[False]
        []

    Other constructions for `\lambda > 1`::

        sage: for v in xrange(2,100):
        ....:     constructions = []
        ....:     for k in xrange(2,10):
        ....:         for l in xrange(2,10):
        ....:             if designs.difference_family(v,k,l,existence=True):
        ....:                 constructions.append((k,l))
        ....:                 _ = designs.difference_family(v,k,l)
        ....:     if constructions:
        ....:         print "%2d: %s"%(v, ', '.join('(%d,%d)'%(k,l) for k,l in constructions))
         4: (3,2)
         5: (4,3)
         7: (3,2), (6,5)
         8: (7,6)
         9: (4,3), (8,7)
        11: (5,2), (5,4)
        13: (3,2), (4,3), (6,5)
        15: (7,3)
        16: (3,2), (5,4)
        17: (4,3), (8,7)
        19: (3,2), (6,5), (9,4), (9,8)
        25: (3,2), (4,3), (6,5), (8,7)
        29: (4,3), (7,6)
        31: (3,2), (5,4), (6,5)
        37: (3,2), (4,3), (6,5), (9,2), (9,8)
        41: (4,3), (5,4), (8,7)
        43: (3,2), (6,5), (7,6)
        49: (3,2), (4,3), (6,5), (8,7)
        53: (4,3)
        61: (3,2), (4,3), (5,4), (6,5)
        64: (3,2), (7,6), (9,8)
        67: (3,2), (6,5)
        71: (5,4), (7,6)
        73: (3,2), (4,3), (6,5), (8,7), (9,8)
        79: (3,2), (6,5)
        81: (4,3), (5,4), (8,7)
        89: (4,3), (8,7)
        97: (3,2), (4,3), (6,5), (8,7)

    TESTS:

    Check more of the Wilson constructions from [Wi72]_::

        sage: Q5 = [241, 281,421,601,641, 661, 701, 821,881]
        sage: Q9 = [73, 1153, 1873, 2017]
        sage: Q15 = [76231]
        sage: Q4 = [13, 73, 97, 109, 181, 229, 241, 277, 337, 409, 421, 457]
        sage: Q8 = [1009, 3137, 3697]
        sage: for Q,k in [(Q4,4),(Q5,5),(Q8,8),(Q9,9),(Q15,15)]:
        ....:     for q in Q:
        ....:         assert designs.difference_family(q,k,1,existence=True) is True
        ....:         _ = designs.difference_family(q,k,1)

    Check Singer difference sets::

        sage: sgp = lambda q,d: ((q**(d+1)-1)//(q-1), (q**d-1)//(q-1), (q**(d-1)-1)//(q-1))

        sage: for q in range(2,10):
        ....:     if is_prime_power(q):
        ....:         for d in [2,3,4]:
        ....:           v,k,l = sgp(q,d)
        ....:           assert designs.difference_family(v,k,l,existence=True) is True
        ....:           _ = designs.difference_family(v,k,l)

    .. TODO::

        There is a slightly more general version of difference families where
        the stabilizers of the blocks are taken into account. A block is *short*
        if the stabilizer is not trivial. The more general version is called a
        *partial difference family*. It is still possible to construct BIBD from
        this more general version (see the chapter 16 in the Handbook
        [DesignHandbook]_).

        Implement recursive constructions from Buratti "Recursive for difference
        matrices and relative difference families" (1998) and Jungnickel
        "Composition theorems for difference families and regular planes" (1978)
    """
    if (l * (v - 1)) % (k * (k - 1)) != 0:
        if existence:
            return False
        raise EmptySetError(
            "A (v,%d,%d)-difference family may exist only if %d*(v-1) = mod %d" % (k, l, l, k * (k - 1))
        )

    from block_design import are_hyperplanes_in_projective_geometry_parameters
    from database import DF_constructions

    if (v, k, l) in DF_constructions:
        if existence:
            return True
        return DF_constructions[(v, k, l)]()

    e = k * (k - 1)
    t = l * (v - 1) // e  # number of blocks

    D = None

    if arith.is_prime_power(v):
        from sage.rings.finite_rings.constructor import GF

        G = K = GF(v, "z")
        x = K.multiplicative_generator()

        if l == (k - 1):
            if existence:
                return True
            return K, K.cyclotomic_cosets(x ** ((v - 1) // k))[1:]

        if t == 1:
            # some of the difference set constructions VI.18.48 from the
            # Handbook of combinatorial designs
            # q = 3 mod 4
            if v % 4 == 3 and k == (v - 1) // 2:
                if existence:
                    return True
                D = K.cyclotomic_cosets(x ** 2, [1])

            # q = 4t^2 + 1, t odd
            elif v % 8 == 5 and k == (v - 1) // 4 and arith.is_square((v - 1) // 4):
                if existence:
                    return True
                D = K.cyclotomic_cosets(x ** 4, [1])

            # q = 4t^2 + 9, t odd
            elif v % 8 == 5 and k == (v + 3) // 4 and arith.is_square((v - 9) // 4):
                if existence:
                    return True
                D = K.cyclotomic_cosets(x ** 4, [1])
                D[0].insert(0, K.zero())

        if D is None and l == 1:
            one = K.one()

            # Wilson (1972), Theorem 9
            if k % 2 == 1:
                m = (k - 1) // 2
                xx = x ** m
                to_coset = {x ** i * xx ** j: i for i in xrange(m) for j in xrange((v - 1) / m)}
                r = x ** ((v - 1) // k)  # primitive k-th root of unity
                if len(set(to_coset[r ** j - one] for j in xrange(1, m + 1))) == m:
                    if existence:
                        return True
                    B = [r ** j for j in xrange(k)]  # = H^((k-1)t) whose difference is
                    # H^(mt) (r^i - 1, i=1,..,m)
                    # Now pick representatives a translate of R for by a set of
                    # representatives of H^m / H^(mt)
                    D = [[x ** (i * m) * b for b in B] for i in xrange(t)]

            # Wilson (1972), Theorem 10
            else:
                m = k // 2
                xx = x ** m
                to_coset = {x ** i * xx ** j: i for i in xrange(m) for j in xrange((v - 1) / m)}
                r = x ** ((v - 1) // (k - 1))  # primitive (k-1)-th root of unity
                if (
                    all(to_coset[r ** j - one] != 0 for j in xrange(1, m))
                    and len(set(to_coset[r ** j - one] for j in xrange(1, m))) == m - 1
                ):
                    if existence:
                        return True
                    B = [K.zero()] + [r ** j for j in xrange(k - 1)]
                    D = [[x ** (i * m) * b for b in B] for i in xrange(t)]

            # Wilson (1972), Theorem 11
            if D is None and k == 6:
                r = x ** ((v - 1) // 3)  # primitive cube root of unity
                r2 = r * r
                xx = x ** 5
                to_coset = {x ** i * xx ** j: i for i in xrange(5) for j in xrange((v - 1) / 5)}
                for c in to_coset:
                    if c == 1 or c == r or c == r2:
                        continue
                    if len(set(to_coset[elt] for elt in (r - 1, c * (r - 1), c - 1, c - r, c - r ** 2))) == 5:
                        if existence:
                            return True
                        B = [one, r, r ** 2, c, c * r, c * r ** 2]
                        D = [[x ** (i * 5) * b for b in B] for i in xrange(t)]
                        break

    if D is None and are_hyperplanes_in_projective_geometry_parameters(v, k, l):
        _, (q, d) = are_hyperplanes_in_projective_geometry_parameters(v, k, l, True)
        if existence:
            return True
        else:
            G, D = singer_difference_set(q, d)

    if D is None:
        if existence:
            return Unknown
        raise NotImplementedError("No constructions for these parameters")

    if check and not is_difference_family(G, D, verbose=False):
        raise RuntimeError

    return G, D
Exemplo n.º 41
0
def TaylorTwographDescendantSRG(q, clique_partition=None):
    r"""
    constructing the descendant graph of the Taylor's two-graph for `U_3(q)`, `q` odd

    This is a strongly regular graph with parameters
    `(v,k,\lambda,\mu)=(q^3, (q^2+1)(q-1)/2, (q-1)^3/4-1, (q^2+1)(q-1)/4)`
    obtained as a two-graph descendant of the
    :func:`Taylor's two-graph <sage.combinat.designs.twographs.taylor_twograph>` `T`.
    This graph admits a partition into cliques of size `q`, which are useful in
    :func:`TaylorTwographSRG <sage.graphs.generators.classical_geometries.TaylorTwographSRG>`,
    a strongly regular graph on `q^3+1` vertices in the
    Seidel switching class of `T`, for which we need `(q^2+1)/2` cliques.
    The cliques are the `q^2` lines on `v_0` of the projective plane containing the unital
    for `U_3(q)`, and intersecting the unital (i.e. the vertices of the graph and the point
    we remove) in `q+1` points. This is all taken from §7E of [BvL84]_.

    INPUT:

    - ``q`` -- a power of an odd prime number

    - ``clique_partition`` -- if ``True``, return `q^2-1` cliques of size `q`
      with empty pairwise intersection. (Removing all of them leaves a clique, too),
      and the point removed from the unital.

    EXAMPLES::

        sage: g=graphs.TaylorTwographDescendantSRG(3); g
        Taylor two-graph descendant SRG: Graph on 27 vertices
        sage: g.is_strongly_regular(parameters=True)
        (27, 10, 1, 5)
        sage: from sage.combinat.designs.twographs import taylor_twograph
        sage: T = taylor_twograph(3)                           # long time
        sage: g.is_isomorphic(T.descendant(T.ground_set()[1])) # long time
        True
        sage: g=graphs.TaylorTwographDescendantSRG(5)    # not tested (long time)
        sage: g.is_strongly_regular(parameters=True)  # not tested (long time)
        (125, 52, 15, 26)

    TESTS::

        sage: g,l,_=graphs.TaylorTwographDescendantSRG(3,clique_partition=True)
        sage: all(map(lambda x: g.is_clique(x), l))
        True
        sage: graphs.TaylorTwographDescendantSRG(4)
        Traceback (most recent call last):
        ...
        ValueError: q must be an odd prime power
        sage: graphs.TaylorTwographDescendantSRG(6)
        Traceback (most recent call last):
        ...
        ValueError: q must be an odd prime power
    """
    from sage.rings.arith import is_prime_power
    p, k = is_prime_power(q, get_data=True)
    if k == 0 or p == 2:
        raise ValueError('q must be an odd prime power')
    from sage.schemes.projective.projective_space import ProjectiveSpace
    from sage.rings.finite_rings.constructor import FiniteField
    from sage.modules.free_module_element import free_module_element as vector
    from sage.rings.finite_rings.integer_mod import mod
    from __builtin__ import sum
    Fq = FiniteField(q**2, 'a')
    PG = map(tuple, ProjectiveSpace(2, Fq))

    def S(x, y):
        return sum(map(lambda j: x[j] * y[2 - j]**q, xrange(3)))

    V = filter(lambda x: S(x, x) == 0, PG)  # the points of the unital
    v0 = V[0]
    V.remove(v0)
    if mod(q, 4) == 1:
        G = Graph(
            [V, lambda y, z: not (S(v0, y) * S(y, z) * S(z, v0)).is_square()],
            loops=False)
    else:
        G = Graph(
            [V, lambda y, z: (S(v0, y) * S(y, z) * S(z, v0)).is_square()],
            loops=False)
    G.name("Taylor two-graph descendant SRG")
    if clique_partition:
        lines = map(lambda x: filter(lambda t: t[0] + x * t[1] == 0, V),
                    filter(lambda z: z != 0, Fq))
        return (G, lines, v0)
    else:
        return G
Exemplo n.º 42
0
def hadamard_matrix_paleyII(n):
    """
    Implements the Paley type II construction.

    The Paley type II case corresponds to the case `p \cong 1 \mod{4}` for a
    prime `p` (see [Hora]_).

    EXAMPLES::

        sage: sage.combinat.matrices.hadamard_matrix.hadamard_matrix_paleyII(12).det()
        2985984
        sage: 12^6
        2985984

    We note that the method returns a normalised Hadamard matrix ::

        sage: sage.combinat.matrices.hadamard_matrix.hadamard_matrix_paleyII(12)
        [ 1  1| 1  1| 1  1| 1  1| 1  1| 1  1]
        [ 1 -1|-1  1|-1  1|-1  1|-1  1|-1  1]
        [-----+-----+-----+-----+-----+-----]
        [ 1 -1| 1 -1| 1  1|-1 -1|-1 -1| 1  1]
        [ 1  1|-1 -1| 1 -1|-1  1|-1  1| 1 -1]
        [-----+-----+-----+-----+-----+-----]
        [ 1 -1| 1  1| 1 -1| 1  1|-1 -1|-1 -1]
        [ 1  1| 1 -1|-1 -1| 1 -1|-1  1|-1  1]
        [-----+-----+-----+-----+-----+-----]
        [ 1 -1|-1 -1| 1  1| 1 -1| 1  1|-1 -1]
        [ 1  1|-1  1| 1 -1|-1 -1| 1 -1|-1  1]
        [-----+-----+-----+-----+-----+-----]
        [ 1 -1|-1 -1|-1 -1| 1  1| 1 -1| 1  1]
        [ 1  1|-1  1|-1  1| 1 -1|-1 -1| 1 -1]
        [-----+-----+-----+-----+-----+-----]
        [ 1 -1| 1  1|-1 -1|-1 -1| 1  1| 1 -1]
        [ 1  1| 1 -1|-1  1|-1  1| 1 -1|-1 -1]

    TESTS::

        sage: from sage.combinat.matrices.hadamard_matrix import (hadamard_matrix_paleyII, is_hadamard_matrix)
        sage: test_cases = [2*(x+1) for x in range(50) if is_prime_power(x) and x%4==1]
        sage: all(is_hadamard_matrix(hadamard_matrix_paleyII(n),normalized=True,verbose=True)
        ....:     for n in test_cases)
        True
    """
    q = n//2 - 1
    if not(n%2==0 and is_prime_power(q) and (q % 4 == 1)):
        raise ValueError("The order %s is not covered by the Paley type II construction." % n)

    from sage.rings.finite_rings.constructor import FiniteField
    K = FiniteField(q,'x')
    K_list = list(K)
    K_list.insert(0,K.zero())
    H = matrix(ZZ, [[(1 if (x-y).is_square() else -1)
                     for x in K_list]
                    for y in K_list])
    for i in range(q+1):
        H[0,i] = 1
        H[i,0] = 1
        H[i,i] = 0

    tr = { 0: matrix(2,2,[ 1,-1,-1,-1]),
           1: matrix(2,2,[ 1, 1, 1,-1]),
          -1: matrix(2,2,[-1,-1,-1, 1])}

    H = block_matrix(q+1,q+1,[tr[v] for r in H for v in r])

    return normalise_hadamard(H)
Exemplo n.º 43
0
    def create_key_and_extra_args(self, order, name=None, modulus=None, names=None,
                                  impl=None, proof=None, **kwds):
        """
        EXAMPLES::

            sage: GF.create_key_and_extra_args(9, 'a')
            ((9, ('a',), x^2 + 2*x + 2, None, '{}', 3, 2, True), {})
            sage: GF.create_key_and_extra_args(9, 'a', foo='value')
            ((9, ('a',), x^2 + 2*x + 2, None, "{'foo': 'value'}", 3, 2, True), {'foo': 'value'})
        """
        from sage.structure.proof.all import WithProof, arithmetic
        if proof is None: proof = arithmetic()
        with WithProof('arithmetic', proof):
            order = int(order)
            if order <= 1:
                raise ValueError("the order of a finite field must be > 1.")

            if arith.is_prime(order):
                name = None
                modulus = None
                p = integer.Integer(order)
                n = integer.Integer(1)
            elif arith.is_prime_power(order):
                if not names is None: name = names
                name = normalize_names(1,name)

                p, n = arith.factor(order)[0]

                # The following is a temporary solution that allows us
                # to construct compatible systems of finite fields
                # until algebraic closures of finite fields are
                # implemented in Sage.  It requires the user to
                # specify two parameters:
                #
                # - `conway` -- boolean; if True, this field is
                #   constructed to fit in a compatible system using
                #   a Conway polynomial.
                # - `prefix` -- a string used to generate names for
                #   automatically constructed finite fields
                #
                # See the docstring of FiniteFieldFactory for examples.
                #
                # Once algebraic closures of finite fields are
                # implemented, this syntax should be superseded by
                # something like the following:
                #
                #     sage: Fpbar = GF(5).algebraic_closure('z')
                #     sage: F, e = Fpbar.subfield(3)  # e is the embedding into Fpbar
                #     sage: F
                #     Finite field in z3 of size 5^3
                #
                # This temporary solution only uses actual Conway
                # polynomials (no pseudo-Conway polynomials), since
                # pseudo-Conway polynomials are not unique, and until
                # we have algebraic closures of finite fields, there
                # is no good place to store a specific choice of
                # pseudo-Conway polynomials.
                if name is None:
                    if not (kwds.has_key('conway') and kwds['conway']):
                        raise ValueError("parameter 'conway' is required if no name given")
                    if not kwds.has_key('prefix'):
                        raise ValueError("parameter 'prefix' is required if no name given")
                    name = kwds['prefix'] + str(n)

                if kwds.has_key('conway') and kwds['conway']:
                    from conway_polynomials import conway_polynomial
                    if not kwds.has_key('prefix'):
                        raise ValueError("a prefix must be specified if conway=True")
                    if modulus is not None:
                        raise ValueError("no modulus may be specified if conway=True")
                    # The following raises a RuntimeError if no polynomial is found.
                    modulus = conway_polynomial(p, n)

                if modulus is None or isinstance(modulus, str):
                    # A string specifies an algorithm to find a suitable modulus.
                    if modulus == "default":    # for backward compatibility
                        modulus = None
                    modulus = GF(p)['x'].irreducible_element(n, algorithm=modulus)
                elif isinstance(modulus, (list, tuple)):
                    modulus = GF(p)['x'](modulus)
                elif sage.rings.polynomial.polynomial_element.is_Polynomial(modulus):
                    modulus = modulus.change_variable_name('x')
                else:
                    raise TypeError("wrong type for modulus parameter")
            else:
                raise ValueError("the order of a finite field must be a prime power.")

            return (order, name, modulus, impl, str(kwds), p, n, proof), kwds
Exemplo n.º 44
0
def hadamard_matrix(n,existence=False, check=True):
    r"""
    Tries to construct a Hadamard matrix using a combination of Paley
    and Sylvester constructions.

    INPUT:

    - ``n`` (integer) -- dimension of the matrix

    - ``existence`` (boolean) -- whether to build the matrix or merely query if
      a construction is available in Sage. When set to ``True``, the function
      returns:

        - ``True`` -- meaning that Sage knows how to build the matrix

        - ``Unknown`` -- meaning that Sage does not know how to build the
          matrix, although the matrix may exist (see :mod:`sage.misc.unknown`).

        - ``False`` -- meaning that the matrix does not exist.

    - ``check`` (boolean) -- whether to check that output is correct before
      returning it. As this is expected to be useless (but we are cautious
      guys), you may want to disable it whenever you want speed. Set to ``True``
      by default.

    EXAMPLES::

        sage: hadamard_matrix(12).det()
        2985984
        sage: 12^6
        2985984
        sage: hadamard_matrix(1)
        [1]
        sage: hadamard_matrix(2)
        [ 1  1]
        [ 1 -1]
        sage: hadamard_matrix(8) # random
        [ 1  1  1  1  1  1  1  1]
        [ 1 -1  1 -1  1 -1  1 -1]
        [ 1  1 -1 -1  1  1 -1 -1]
        [ 1 -1 -1  1  1 -1 -1  1]
        [ 1  1  1  1 -1 -1 -1 -1]
        [ 1 -1  1 -1 -1  1 -1  1]
        [ 1  1 -1 -1 -1 -1  1  1]
        [ 1 -1 -1  1 -1  1  1 -1]
        sage: hadamard_matrix(8).det() == 8^4
        True

    We note that the method `hadamard_matrix()` returns a normalised Hadamard matrix
    (the entries in the first row and column are all +1) ::

        sage: hadamard_matrix(12) # random
        [ 1  1| 1  1| 1  1| 1  1| 1  1| 1  1]
        [ 1 -1|-1  1|-1  1|-1  1|-1  1|-1  1]
        [-----+-----+-----+-----+-----+-----]
        [ 1 -1| 1 -1| 1  1|-1 -1|-1 -1| 1  1]
        [ 1  1|-1 -1| 1 -1|-1  1|-1  1| 1 -1]
        [-----+-----+-----+-----+-----+-----]
        [ 1 -1| 1  1| 1 -1| 1  1|-1 -1|-1 -1]
        [ 1  1| 1 -1|-1 -1| 1 -1|-1  1|-1  1]
        [-----+-----+-----+-----+-----+-----]
        [ 1 -1|-1 -1| 1  1| 1 -1| 1  1|-1 -1]
        [ 1  1|-1  1| 1 -1|-1 -1| 1 -1|-1  1]
        [-----+-----+-----+-----+-----+-----]
        [ 1 -1|-1 -1|-1 -1| 1  1| 1 -1| 1  1]
        [ 1  1|-1  1|-1  1| 1 -1|-1 -1| 1 -1]
        [-----+-----+-----+-----+-----+-----]
        [ 1 -1| 1  1|-1 -1|-1 -1| 1  1| 1 -1]
        [ 1  1| 1 -1|-1  1|-1  1| 1 -1|-1 -1]

    TESTS::

        sage: matrix.hadamard(10,existence=True)
        False
        sage: matrix.hadamard(12,existence=True)
        True
        sage: matrix.hadamard(92,existence=True)
        Unknown
        sage: matrix.hadamard(10)
        Traceback (most recent call last):
        ...
        ValueError: The Hadamard matrix of order 10 does not exist
    """
    if not(n % 4 == 0) and (n > 2):
        if existence:
            return False
        raise ValueError("The Hadamard matrix of order %s does not exist" % n)
    if n == 2:
        if existence:
            return True
        M = matrix([[1, 1], [1, -1]])
    elif n == 1:
        if existence:
            return True
        M = matrix([1])
    elif is_prime_power(n//2 - 1) and (n//2 - 1) % 4 == 1:
        if existence:
            return True
        M = hadamard_matrix_paleyII(n)
    elif n == 4 or n % 8 == 0:
        if existence:
            return hadamard_matrix(n//2,existence=True)
        had = hadamard_matrix(n//2,check=False)
        chad1 = matrix([list(r) + list(r) for r in had.rows()])
        mhad = (-1) * had
        R = len(had.rows())
        chad2 = matrix([list(had.rows()[i]) + list(mhad.rows()[i])
                       for i in range(R)])
        M = chad1.stack(chad2)
    elif is_prime_power(n - 1) and (n - 1) % 4 == 3:
        if existence:
            return True
        M = hadamard_matrix_paleyI(n)
    else:
        if existence:
            return Unknown
        raise ValueError("The Hadamard matrix of order %s is not yet implemented." % n)

    if check:
        assert is_hadamard_matrix(M, normalized=True)

    return M
Exemplo n.º 45
0
def GDD_4_2(q, existence=False, check=True):
    r"""
    Return a `(2q,\{4\},\{2\})`-GDD for `q` a prime power with `q\equiv 1\pmod{6}`.

    This method implements Lemma VII.5.17 from [BJL99] (p.495).

    INPUT:

    - ``q`` (integer)

    - ``existence`` (boolean) -- instead of building the design, return:

        - ``True`` -- meaning that Sage knows how to build the design

        - ``Unknown`` -- meaning that Sage does not know how to build the
          design, but that the design may exist (see :mod:`sage.misc.unknown`).

        - ``False`` -- meaning that the design does not exist.

    - ``check`` -- (boolean) Whether to check that output is correct before
      returning it. As this is expected to be useless (but we are cautious
      guys), you may want to disable it whenever you want speed. Set to ``True``
      by default.

    EXAMPLE::

        sage: from sage.combinat.designs.group_divisible_designs import GDD_4_2
        sage: GDD_4_2(7,existence=True)
        True
        sage: GDD_4_2(7)
        Group Divisible Design on 14 points of type 2^7
        sage: GDD_4_2(8,existence=True)
        Unknown
        sage: GDD_4_2(8)
        Traceback (most recent call last):
        ...
        NotImplementedError
    """
    if q <= 1 or q % 6 != 1 or not is_prime_power(q):
        if existence:
            return Unknown
        raise NotImplementedError
    if existence:
        return True

    from sage.rings.finite_rings.constructor import FiniteField as GF
    G = GF(q, 'x')
    w = G.primitive_element()
    e = w**((q - 1) / 3)

    # A first parallel class is defined. G acts on it, which yields all others.
    first_class = [[(0, 0), (1, w**i), (1, e * w**i), (1, e * e * w**i)]
                   for i in range((q - 1) / 6)]

    label = {p: i for i, p in enumerate(G)}
    classes = [[[2 * label[x[1] + g] + (x[0] + j) % 2 for x in S]
                for S in first_class] for g in G for j in range(2)]

    return GroupDivisibleDesign(2 * q,
                                groups=[[i, i + 1]
                                        for i in range(0, 2 * q, 2)],
                                blocks=sum(classes, []),
                                K=[4],
                                G=[2],
                                check=check,
                                copy=False)
Exemplo n.º 46
0
def regular_symmetric_hadamard_matrix_with_constant_diagonal(n,e,existence=False):
    r"""
    Return a Regular Symmetric Hadamard Matrix with Constant Diagonal.

    A Hadamard matrix is said to be *regular* if its rows all sum to the same
    value.

    When `\epsilon\in\{-1,+1\}`, we say that `M` is a `(n,\epsilon)-RSHCD` if
    `M` is a regular symmetric Hadamard matrix with constant diagonal
    `\delta\in\{-1,+1\}` and row values all equal to `\delta \epsilon
    \sqrt(n)`. For more information, see [HX10]_ or 10.5.1 in
    [BH12]_.

    INPUT:

    - ``n`` (integer) -- side of the matrix

    - ``e`` -- one of `-1` or `+1`, equal to the value of `\epsilon`

    EXAMPLES::

        sage: from sage.combinat.matrices.hadamard_matrix import regular_symmetric_hadamard_matrix_with_constant_diagonal
        sage: regular_symmetric_hadamard_matrix_with_constant_diagonal(4,1)
        [ 1  1  1 -1]
        [ 1  1 -1  1]
        [ 1 -1  1  1]
        [-1  1  1  1]
        sage: regular_symmetric_hadamard_matrix_with_constant_diagonal(4,-1)
        [ 1 -1 -1 -1]
        [-1  1 -1 -1]
        [-1 -1  1 -1]
        [-1 -1 -1  1]

    Other hardcoded values::

        sage: for n,e in [(36,1),(36,-1),(100,1),(100,-1),(196, 1)]:
        ....:     print regular_symmetric_hadamard_matrix_with_constant_diagonal(n,e)
        36 x 36 dense matrix over Integer Ring
        36 x 36 dense matrix over Integer Ring
        100 x 100 dense matrix over Integer Ring
        100 x 100 dense matrix over Integer Ring
        196 x 196 dense matrix over Integer Ring

    From two close prime powers::

        sage: print regular_symmetric_hadamard_matrix_with_constant_diagonal(64,-1)
        64 x 64 dense matrix over Integer Ring

    Recursive construction::

        sage: print regular_symmetric_hadamard_matrix_with_constant_diagonal(144,-1)
        144 x 144 dense matrix over Integer Ring

    REFERENCE:

    .. [BH12] A. Brouwer and W. Haemers,
      Spectra of graphs,
      Springer, 2012,
      http://homepages.cwi.nl/~aeb/math/ipm/ipm.pdf

    .. [HX10] W. Haemers and Q. Xiang,
      Strongly regular graphs with parameters `(4m^4,2m^4+m^2,m^4+m^2,m^4+m^2)` exist for all `m>1`,
      European Journal of Combinatorics,
      Volume 31, Issue 6, August 2010, Pages 1553-1559,
      http://dx.doi.org/10.1016/j.ejc.2009.07.009.
    """
    if existence and (n,e) in _rshcd_cache:
        return _rshcd_cache[n,e]

    from sage.graphs.strongly_regular_db import strongly_regular_graph

    def true():
        _rshcd_cache[n,e] = True
        return True

    M = None
    if abs(e) != 1:
        raise ValueError
    if n<0:
        if existence:
            return False
        raise ValueError
    elif n == 4:
        if existence:
            return true()
        if e == 1:
            M = J(4)-2*matrix(4,[[int(i+j == 3) for i in range(4)] for j in range(4)])
        else:
            M = -J(4)+2*I(4)
    elif n ==  36:
        if existence:
            return true()
        if e == 1:
            M = strongly_regular_graph(36, 15, 6, 6).adjacency_matrix()
            M = J(36) - 2*M
        else:
            M = strongly_regular_graph(36,14,4,6).adjacency_matrix()
            M =  -J(36) + 2*M + 2*I(36)
    elif n == 100:
        if existence:
            return true()
        if e == -1:
            M = strongly_regular_graph(100,44,18,20).adjacency_matrix()
            M = 2*M - J(100) + 2*I(100)
        else:
            M = strongly_regular_graph(100,45,20,20).adjacency_matrix()
            M = J(100) - 2*M
    elif n == 196 and e == 1:
        if existence:
            return true()
        M = strongly_regular_graph(196,91,42,42).adjacency_matrix()
        M = J(196) - 2*M
    elif (  e  == 1                 and
          n%16 == 0                 and
          is_square(n)              and
          is_prime_power(sqrt(n)-1) and
          is_prime_power(sqrt(n)+1)):
        if existence:
            return true()
        M = -rshcd_from_close_prime_powers(int(sqrt(n)))

    # Recursive construction: the kronecker product of two RSHCD is a RSHCD
    else:
        from itertools import product
        for n1,e1 in product(divisors(n)[1:-1],[-1,1]):
            e2 = e1*e
            n2 = n//n1
            if (regular_symmetric_hadamard_matrix_with_constant_diagonal(n1,e1,existence=True) and
                regular_symmetric_hadamard_matrix_with_constant_diagonal(n2,e2,existence=True)):
                if existence:
                    return true()
                M1 = regular_symmetric_hadamard_matrix_with_constant_diagonal(n1,e1)
                M2 = regular_symmetric_hadamard_matrix_with_constant_diagonal(n2,e2)
                M  = M1.tensor_product(M2)
                break

    if M is None:
        from sage.misc.unknown import Unknown
        _rshcd_cache[n,e] = Unknown
        if existence:
            return Unknown
        raise ValueError("I do not know how to build a {}-RSHCD".format((n,e)))

    assert M*M.transpose() == n*I(n)
    assert set(map(sum,M)) == {e*sqrt(n)}

    return M
Exemplo n.º 47
0
def v_4_1_rbibd(v, existence=False):
    r"""
    Return a `(v,4,1)`-RBIBD.

    INPUT:

    - `n` (integer)

    - ``existence`` (boolean; ``False`` by default) -- whether to build the
      design or only answer whether it exists.

    .. SEEALSO::

        - :meth:`IncidenceStructure.is_resolvable`
        - :func:`resolvable_balanced_incomplete_block_design`

    .. NOTE::

        A resolvable `(v,4,1)`-BIBD exists whenever `1\equiv 4\pmod(12)`. This
        function, however, only implements a construction of `(v,4,1)`-BIBD such
        that `v=3q+1\equiv 1\pmod{3}` where `q` is a prime power (see VII.7.5.a
        from [BJL99]_).

    EXAMPLE::

        sage: rBIBD = designs.resolvable_balanced_incomplete_block_design(28,4)
        sage: rBIBD.is_resolvable()
        True
        sage: rBIBD.is_t_design(return_parameters=True)
        (True, (2, 28, 4, 1))

    TESTS::

        sage: for q in prime_powers(2,30):
        ....:     if (3*q+1)%12 == 4:
        ....:         _ = designs.resolvable_balanced_incomplete_block_design(3*q+1,4) # indirect doctest
    """
    # Volume 1, VII.7.5.a from [BJL99]_
    if v % 3 != 1 or not is_prime_power((v - 1) // 3):
        if existence:
            return Unknown
        raise NotImplementedError(
            "I don't know how to build a ({},{},1)-RBIBD!".format(v, 4))
    from sage.rings.finite_rings.constructor import FiniteField as GF
    q = (v - 1) // 3
    nn = (q - 1) // 4
    G = GF(q, 'x')
    w = G.primitive_element()
    e = w**(nn)
    assert e**2 == -1

    first_class = [[(w**i, j), (-w**i, j), (e * w**i, j + 1),
                    (-e * w**i, j + 1)] for i in range(nn) for j in range(3)]

    first_class.append([(0, 0), (0, 1), (0, 2), 'inf'])

    label = {p: i for i, p in enumerate(G)}

    classes = [[[
        v - 1 if x == 'inf' else (x[1] % 3) * q + label[x[0] + g] for x in S
    ] for S in first_class] for g in G]

    BIBD = BalancedIncompleteBlockDesign(v,
                                         blocks=sum(classes, []),
                                         k=4,
                                         check=True,
                                         copy=False)
    BIBD._classes = classes
    assert BIBD.is_resolvable()
    return BIBD
Exemplo n.º 48
0
def hadamard_matrix_paleyI(n, normalize=True):
    """
    Implements the Paley type I construction.

    The Paley type I case corresponds to the case `p \cong 3 \mod{4}` for a
    prime `p` (see [Hora]_).

    INPUT:

    - ``n`` -- the matrix size 

    - ``normalize`` (boolean) -- whether to normalize the result.

    EXAMPLES:

    We note that this method by default returns a normalised Hadamard matrix ::

        sage: from sage.combinat.matrices.hadamard_matrix import hadamard_matrix_paleyI
        sage: hadamard_matrix_paleyI(4)
        [ 1  1  1  1]
        [ 1 -1  1 -1]
        [ 1 -1 -1  1]
        [ 1  1 -1 -1]

    Otherwise, it returns a skew Hadamard matrix `H`, i.e. `H=S+I`, with
    `S=-S^\top`  ::

        sage: M=hadamard_matrix_paleyI(4, normalize=False); M
        [ 1  1  1  1]
        [-1  1  1 -1]
        [-1 -1  1  1]
        [-1  1 -1  1]
        sage: S=M-identity_matrix(4); -S==S.T
        True

    TESTS::

        sage: from sage.combinat.matrices.hadamard_matrix import is_hadamard_matrix
        sage: test_cases = [x+1 for x in range(100) if is_prime_power(x) and x%4==3]
        sage: all(is_hadamard_matrix(hadamard_matrix_paleyI(n),normalized=True,verbose=True)
        ....:     for n in test_cases)
        True
        sage: all(is_hadamard_matrix(hadamard_matrix_paleyI(n,normalize=False),verbose=True)
        ....:     for n in test_cases)
        True
    """
    p = n - 1
    if not(is_prime_power(p) and (p % 4 == 3)):
        raise ValueError("The order %s is not covered by the Paley type I construction." % n)

    from sage.rings.finite_rings.constructor import FiniteField
    K = FiniteField(p,'x')
    K_list = list(K)
    K_list.insert(0,K.zero())
    H = matrix(ZZ, [[(1 if (x-y).is_square() else -1)
                     for x in K_list]
                    for y in K_list])
    for i in range(n):
        H[i,0] = -1
        H[0,i] =  1
    if normalize:
        for i in range(n):
            H[i,i] = -1
        H = normalise_hadamard(H)
    return H
Exemplo n.º 49
0
def v_4_1_rbibd(v,existence=False):
    r"""
    Return a `(v,4,1)`-RBIBD.

    INPUT:

    - `n` (integer)

    - ``existence`` (boolean; ``False`` by default) -- whether to build the
      design or only answer whether it exists.

    .. SEEALSO::

        - :meth:`IncidenceStructure.is_resolvable`
        - :func:`resolvable_balanced_incomplete_block_design`

    .. NOTE::

        A resolvable `(v,4,1)`-BIBD exists whenever `1\equiv 4\pmod(12)`. This
        function, however, only implements a construction of `(v,4,1)`-BIBD such
        that `v=3q+1\equiv 1\pmod{3}` where `q` is a prime power (see VII.7.5.a
        from [BJL99]_).

    EXAMPLE::

        sage: rBIBD = designs.resolvable_balanced_incomplete_block_design(28,4)
        sage: rBIBD.is_resolvable()
        True
        sage: rBIBD.is_t_design(return_parameters=True)
        (True, (2, 28, 4, 1))

    TESTS::

        sage: for q in prime_powers(2,30):
        ....:     if (3*q+1)%12 == 4:
        ....:         _ = designs.resolvable_balanced_incomplete_block_design(3*q+1,4) # indirect doctest
    """
    # Volume 1, VII.7.5.a from [BJL99]_
    if v%3 != 1 or not is_prime_power((v-1)//3):
        if existence:
            return Unknown
        raise NotImplementedError("I don't know how to build a ({},{},1)-RBIBD!".format(v,4))
    from sage.rings.finite_rings.constructor import FiniteField as GF
    q = (v-1)//3
    nn = (q-1)//4
    G = GF(q,'x')
    w = G.primitive_element()
    e = w**(nn)
    assert e**2 == -1

    first_class = [[(w**i,j),(-w**i,j),(e*w**i,j+1),(-e*w**i,j+1)]
                   for i in range(nn) for j in range(3)]

    first_class.append([(0,0),(0,1),(0,2),'inf'])

    label = {p:i for i,p in enumerate(G)}

    classes = [[[v-1 if x=='inf' else (x[1]%3)*q+label[x[0]+g] for x in S]
                for S in first_class]
               for g in G]

    BIBD = BalancedIncompleteBlockDesign(v,
                                         blocks = sum(classes,[]),
                                         k=4,
                                         check=True,
                                         copy=False)
    BIBD._classes = classes
    assert BIBD.is_resolvable()
    return BIBD
Exemplo n.º 50
0
def difference_matrix(g, k, lmbda=1, existence=False, check=True):
    r"""
    Return a `(g,k,\lambda)`-difference matrix

    A matrix `M` is a `(g,k,\lambda)`-difference matrix if its entries are
    element of a group `G` of cardinality `g`, and if for any two rows `R,R'` of
    `M` and `x\in G` there are exactly `\lambda` values `i` such that
    `R_i-R'_i=x`.

    INPUT:

    - ``k`` -- (integer) number of columns. If ``k=None`` it is set to the
      largest value available.

    - ``g`` -- (integer) cardinality of the group `G`

    - ``lmbda`` -- (integer; default: 1) -- number of times each element of `G`
      appears as a difference.

    - ``check`` -- (boolean) Whether to check that output is correct before
      returning it. As this is expected to be useless (but we are cautious
      guys), you may want to disable it whenever you want speed. Set to
      ``True`` by default.

    - ``existence`` (boolean) -- instead of building the design, return:

        - ``True`` -- meaning that Sage knows how to build the design

        - ``Unknown`` -- meaning that Sage does not know how to build the
          design, but that the design may exist (see :mod:`sage.misc.unknown`).

        - ``False`` -- meaning that the design does not exist.

      .. NOTE::

          When ``k=None`` and ``existence=True`` the function returns an
          integer, i.e. the largest `k` such that we can build a
          `(g,k,\lambda)`-DM.

    EXAMPLES::

        sage: G,M = designs.difference_matrix(25,10); G
        Finite Field in x of size 5^2
        sage: designs.difference_matrix(993,None,existence=1)
        32

    TESTS::

        sage: designs.difference_matrix(10,12,1,existence=True)
        False
        sage: designs.difference_matrix(10,12,1)
        Traceback (most recent call last):
        ...
        EmptySetError: No (10,12,1)-Difference Matrix exists as k(=12)>g(=10)
        sage: designs.difference_matrix(10,9,1,existence=True)
        Unknown
        sage: designs.difference_matrix(10,9,1)
        Traceback (most recent call last):
        ...
        NotImplementedError: I don't know how to build a (10,9,1)-Difference Matrix!
    """

    if lmbda == 1 and k is not None and k > g:
        if existence:
            return False
        raise EmptySetError(
            "No ({},{},{})-Difference Matrix exists as k(={})>g(={})".format(
                g, k, lmbda, k, g))

    # Prime powers
    elif lmbda == 1 and is_prime_power(g):
        if k is None:
            if existence:
                return g
            else:
                k = g
        elif existence:
            return True
        F = FiniteField(g, 'x')
        F_set = list(F)
        F_k_set = F_set[:k]

        G = F
        M = [[x * y for y in F_k_set] for x in F_set]

    # From the database
    elif (g, lmbda) in DM_constructions and (
            k is None or DM_constructions[g, lmbda][0] >= k):
        if k is None:
            k = DM_constructions[g, lmbda][0]
            if existence:
                return k
        elif existence:
            return True
        _, f = DM_constructions[g, lmbda]
        G, M = f()
        M = [R[:k] for R in M]

    else:
        if existence:
            return Unknown
        raise NotImplementedError(
            "I don't know how to build a ({},{},{})-Difference Matrix!".format(
                g, k, lmbda))

    if check:
        assert is_difference_matrix(
            M, G, k, lmbda,
            1), "Sage built something which is not a ({},{},{})-DM!".format(
                g, k, lmbda)

    return G, M