Exemplo n.º 1
0
 def ideal(self, *gens, **kwds):
     """
     Create an ideal in this polynomial ring.
     """
     do_coerce = False
     if len(gens) == 1:
         from sage.rings.ideal import is_Ideal
         if is_Ideal(gens[0]):
             if gens[0].ring() is self:
                 return gens[0]
             gens = gens[0].gens()
         elif isinstance(gens[0], (list, tuple)):
             gens = gens[0]
     if not self._has_singular:
         # pass through
         MPolynomialRing_generic.ideal(self,gens,**kwds)
     if is_SingularElement(gens):
         gens = list(gens)
         do_coerce = True
     if is_Macaulay2Element(gens):
         gens = list(gens)
         do_coerce = True
     elif not isinstance(gens, (list, tuple)):
         gens = [gens]
     if ('coerce' in kwds and kwds['coerce']) or do_coerce:
         gens = [self(x) for x in gens]  # this will even coerce from singular ideals correctly!
     return multi_polynomial_ideal.MPolynomialIdeal(self, gens, **kwds)
Exemplo n.º 2
0
    def ideal(self, *gens):
        """
        Returns the fractional ideal generated by ``gens``.

        EXAMPLES::

            sage: K.<x> = FunctionField(QQ)
            sage: O = K.maximal_order()
            sage: O.ideal(x)
            Ideal (x) of Maximal order in Rational function field in x over Rational Field
            sage: O.ideal([x,1/x]) == O.ideal(x,1/x) # multiple generators may be given as a list
            True
            sage: O.ideal(x^3+1,x^3+6)
            Ideal (1) of Maximal order in Rational function field in x over Rational Field
            sage: I = O.ideal((x^2+1)*(x^3+1),(x^3+6)*(x^2+1)); I
            Ideal (x^2 + 1) of Maximal order in Rational function field in x over Rational Field
            sage: O.ideal(I)
            Ideal (x^2 + 1) of Maximal order in Rational function field in x over Rational Field
        """
        if len(gens) == 1:
            gens = gens[0]
            if not isinstance(gens, (list, tuple)):
                if is_Ideal(gens):
                    gens = gens.gens()
                else:
                    gens = (gens,)
        from .function_field_ideal import ideal_with_gens
        return ideal_with_gens(self, gens)
Exemplo n.º 3
0
    def ideal(self, *gens):
        """
        Returns the fractional ideal generated by ``gens``.

        EXAMPLES::

            sage: K.<x> = FunctionField(QQ)
            sage: O = K.maximal_order()
            sage: O.ideal(x)
            Ideal (x) of Maximal order in Rational function field in x over Rational Field
            sage: O.ideal([x,1/x]) == O.ideal(x,1/x) # multiple generators may be given as a list
            True
            sage: O.ideal(x^3+1,x^3+6)
            Ideal (1) of Maximal order in Rational function field in x over Rational Field
            sage: I = O.ideal((x^2+1)*(x^3+1),(x^3+6)*(x^2+1)); I
            Ideal (x^2 + 1) of Maximal order in Rational function field in x over Rational Field
            sage: O.ideal(I)
            Ideal (x^2 + 1) of Maximal order in Rational function field in x over Rational Field
        """
        if len(gens) == 1:
            gens = gens[0]
            if not isinstance(gens, (list, tuple)):
                if is_Ideal(gens):
                    gens = gens.gens()
                else:
                    gens = (gens, )
        from function_field_ideal import ideal_with_gens
        return ideal_with_gens(self, gens)
Exemplo n.º 4
0
 def ideal(self, *gens, **kwds):
     """
     Create an ideal in this polynomial ring.
     """
     do_coerce = False
     if len(gens) == 1:
         from sage.rings.ideal import is_Ideal
         if is_Ideal(gens[0]):
             if gens[0].ring() is self:
                 return gens[0]
             gens = gens[0].gens()
         elif isinstance(gens[0], (list, tuple)):
             gens = gens[0]
     if not self._has_singular:
         # pass through
         MPolynomialRing_generic.ideal(self, gens, **kwds)
     if is_SingularElement(gens):
         gens = list(gens)
         do_coerce = True
     if is_Macaulay2Element(gens):
         gens = list(gens)
         do_coerce = True
     elif not isinstance(gens, (list, tuple)):
         gens = [gens]
     if ('coerce' in kwds and kwds['coerce']) or do_coerce:
         gens = [self(x) for x in gens
                 ]  # this will even coerce from singular ideals correctly!
     return multi_polynomial_ideal.MPolynomialIdeal(self, gens, **kwds)
def buchberger_algorithm(I):
    """
    Buchberger algorithm for the computation of a Groebner basis.

    Returns a list of polynomials that form a Groebner basis of the given ideal.

    Parameters
    ----------
    I: an ideal of a multivariate polynomial ring over a field.

    Returns
    -------
    The list of polynomials forming a Groebner basis.
    """
    if not is_Ideal(I):
        raise TypeError('Argument should be an ideal')

    poly_ring = I.ring()

    if (not is_PolynomialRing(poly_ring)) and (
            not is_MPolynomialRing(poly_ring)):
        raise TypeError('The ideal should be of a polynomial ring')

    base_field = I.base_ring()

    if not base_field.is_field():
        raise TypeError(
            'The ideal should be of a polynomial ring over a field')

    # Idea of the algorithm: we will check if the basis is already Groebner by checking that
    # S(gi, gj) rem (g1, ..., gs) = 0 for each pair (gi, gj). If it is not, we add that S(gi, gj) to the basis to force
    # it to be true.

    # Initialize G with the generators of the ideal
    G = list(I.basis)

    # It will finish by construction of the algorithm
    while True:
        S = []
        G.sort(reverse=True)  # Sorts with the polynomial ring ordering

        for (g1, g2) in __unordered_pairs(G):
            r = __s_polynomial(g1, g2)
            _, r = multivariate_division_with_remainder(r, G)

            if r != 0:
                S.append(r)

        # If S is empty, we already have a Groebner basis
        if not S:
            return G

        G.extend(S)
Exemplo n.º 6
0
    def __call__(self, *args):
        """
        Construct a scheme-valued or topological point of ``self``.

        INPUT/OUTPUT:

        The argument ``x`` must be one of the following:

        - a prime ideal of the coordinate ring; the output will
          be the corresponding point of `X`

        - a ring or a scheme `S`; the output will be the set `X(S)` of
          `S`-valued points on `X`

        EXAMPLES::

            sage: S = Spec(ZZ)
            sage: P = S(ZZ.ideal(3)); P
            Point on Spectrum of Integer Ring defined by the Principal ideal (3) of Integer Ring
            sage: type(P)
            <class 'sage.schemes.generic.point.SchemeTopologicalPoint_prime_ideal'>
            sage: S(ZZ.ideal(next_prime(1000000)))
            Point on Spectrum of Integer Ring defined by the Principal ideal (1000003) of Integer Ring

            sage: R.<x, y, z> = QQ[]
            sage: S = Spec(R)
            sage: P = S(R.ideal(x, y, z)); P
            Point on Spectrum of Multivariate Polynomial Ring
            in x, y, z over Rational Field defined by the Ideal (x, y, z)
            of Multivariate Polynomial Ring in x, y, z over Rational Field

        This indicates the fix of :trac:`12734`::

            sage: S = Spec(ZZ)
            sage: S(ZZ)
            Set of rational points of Spectrum of Integer Ring

        Note the difference between the previous example and the
        following one::

            sage: S(S)
            Set of morphisms
              From: Spectrum of Integer Ring
              To:   Spectrum of Integer Ring
        """
        if len(args) == 1:
            from sage.rings.ideal import is_Ideal
            x = args[0]
            if is_Ideal(x) and x.ring() is self.coordinate_ring():
                from sage.schemes.generic.point import SchemeTopologicalPoint_prime_ideal
                return SchemeTopologicalPoint_prime_ideal(self, x)

        return super(AffineScheme, self).__call__(*args)
Exemplo n.º 7
0
    def __call__(self, *args):
        """
        Construct a scheme-valued or topological point of ``self``.

        INPUT/OUTPUT:

        The argument ``x`` must be one of the following:

        - a prime ideal of the coordinate ring; the output will
          be the corresponding point of `X`

        - a ring or a scheme `S`; the output will be the set `X(S)` of
          `S`-valued points on `X`

        EXAMPLES::

            sage: S = Spec(ZZ)
            sage: P = S(ZZ.ideal(3)); P
            Point on Spectrum of Integer Ring defined by the Principal ideal (3) of Integer Ring
            sage: type(P)
            <class 'sage.schemes.generic.point.SchemeTopologicalPoint_prime_ideal'>
            sage: S(ZZ.ideal(next_prime(1000000)))
            Point on Spectrum of Integer Ring defined by the Principal ideal (1000003) of Integer Ring

            sage: R.<x, y, z> = QQ[]
            sage: S = Spec(R)
            sage: P = S(R.ideal(x, y, z)); P
            Point on Spectrum of Multivariate Polynomial Ring
            in x, y, z over Rational Field defined by the Ideal (x, y, z)
            of Multivariate Polynomial Ring in x, y, z over Rational Field

        This indicates the fix of :trac:`12734`::

            sage: S = Spec(ZZ)
            sage: S(ZZ)
            Set of rational points of Spectrum of Integer Ring

        Note the difference between the previous example and the
        following one::

            sage: S(S)
            Set of morphisms
              From: Spectrum of Integer Ring
              To:   Spectrum of Integer Ring
        """
        if len(args) == 1:
            from sage.rings.ideal import is_Ideal
            x = args[0]
            if is_Ideal(x) and x.ring() is self.coordinate_ring():
                from sage.schemes.generic.point import SchemeTopologicalPoint_prime_ideal
                return SchemeTopologicalPoint_prime_ideal(self, x)

        return super(AffineScheme, self).__call__(*args)
Exemplo n.º 8
0
    def __contains__(self, x):
        """
        EXAMPLES::

            sage: C = Ideals(IntegerRing())
            sage: IntegerRing().zero_ideal() in C
            True
        """
        if super(Category_ideal, self).__contains__(x):
            return True
        from sage.rings.ideal import is_Ideal
        if is_Ideal(x) and x.ring() == self.ring():
            return True
        return False
Exemplo n.º 9
0
    def __contains__(self, x):
        """
        EXAMPLES::

            sage: C = Ideals(IntegerRing())
            sage: IntegerRing().zero_ideal() in C
            True
        """
        if super(Category_ideal, self).__contains__(x):
            return True
        from sage.rings.ideal import is_Ideal
        if is_Ideal(x) and x.ring() == self.ring():
            return True
        return False
Exemplo n.º 10
0
    def _element_constructor_(self, x):
        """
        Construct a topological point from `x`.

        TESTS::

            sage: S = Spec(ZZ)
            sage: S(ZZ.ideal(0))
            Point on Spectrum of Integer Ring defined by the Principal ideal (0) of Integer Ring
        """
        if isinstance(x, self.element_class):
            if x.parent() is self:
                return x
            elif x.parent() == self:
                return self.element_class(self, x.prime_ideal())
        elif is_Ideal(x) and x.ring() is self.coordinate_ring():
            return self.element_class(self, x)
        raise TypeError('cannot convert %s to a topological point of %s' % (x, self))
Exemplo n.º 11
0
    def _element_constructor_(self, x):
        """
        Construct a topological point from `x`.

        TESTS::

            sage: S = Spec(ZZ)
            sage: S(ZZ.ideal(0))
            Point on Spectrum of Integer Ring defined by the Principal ideal (0) of Integer Ring
        """
        if isinstance(x, self.element_class):
            if x.parent() is self:
                return x
            elif x.parent() == self:
                return self.element_class(self, x.prime_ideal())
        elif is_Ideal(x) and x.ring() is self.coordinate_ring():
            return self.element_class(self, x)
        raise TypeError('cannot convert %s to a topological point of %s' % (x, self))
Exemplo n.º 12
0
    def __init__(self, S, P, check=False):
        """
        INPUT:

        - ``S`` -- an affine scheme

        - ``P`` -- a prime ideal of the coordinate ring of `S`, or
          anything that can be converted into such an ideal

        TESTS::

            sage: from sage.schemes.generic.point import SchemeTopologicalPoint_prime_ideal
            sage: S = Spec(ZZ)
            sage: P = SchemeTopologicalPoint_prime_ideal(S, 3); P
            Point on Spectrum of Integer Ring defined by the Principal ideal (3) of Integer Ring
            sage: SchemeTopologicalPoint_prime_ideal(S, 6, check=True)
            Traceback (most recent call last):
            ...
            ValueError: The argument Principal ideal (6) of Integer Ring must be a prime ideal of Integer Ring
            sage: SchemeTopologicalPoint_prime_ideal(S, ZZ.ideal(7))
            Point on Spectrum of Integer Ring defined by the Principal ideal (7) of Integer Ring

        We define a parabola in the projective plane as a point
        corresponding to a prime ideal::

            sage: P2.<x, y, z> = ProjectiveSpace(2, QQ)
            sage: SchemeTopologicalPoint_prime_ideal(P2, y*z-x^2)
            Point on Projective Space of dimension 2 over Rational Field defined by the Ideal (-x^2 + y*z) of Multivariate Polynomial Ring in x, y, z over Rational Field
        """
        R = S.coordinate_ring()
        from sage.rings.ideal import is_Ideal
        if not is_Ideal(P):
            P = R.ideal(P)
        elif P.ring() is not R:
            P = R.ideal(P.gens())
        # ideally we would have check=True by default, but
        # unfortunately is_prime() is only implemented in a small
        # number of cases
        if check and not P.is_prime():
            raise ValueError("The argument %s must be a prime ideal of %s" %
                             (P, R))
        SchemeTopologicalPoint.__init__(self, S)
        self.__P = P
Exemplo n.º 13
0
    def ideal(self, *gens):
        """
        Returns the fractional ideal generated by the elements in ``gens``.

        INPUT:

            - ``gens`` -- a list of generators or an ideal in a ring which
                          coerces to this order.

        EXAMPLES::

            sage: K.<y> = FunctionField(QQ)
            sage: O = K.maximal_order()
            sage: O.ideal(y)
            Ideal (y) of Maximal order in Rational function field in y over Rational Field
            sage: O.ideal([y,1/y]) == O.ideal(y,1/y) # multiple generators may be given as a list
            True

        A fractional ideal of a nontrivial extension::

            sage: K.<x> = FunctionField(GF(7)); R.<y> = K[]
            sage: O = K.maximal_order()
            sage: I = O.ideal(x^2-4)
            sage: L.<y> = K.extension(y^2 - x^3 - 1)
            sage: S = L.equation_order()
            sage: S.ideal(1/y)
            Ideal (1, (6/(x^3 + 1))*y) of Order in Function field in y defined by y^2 + 6*x^3 + 6        
            sage: I2 = S.ideal(x^2-4); I2
            Ideal (x^2 + 3, (x^2 + 3)*y) of Order in Function field in y defined by y^2 + 6*x^3 + 6
            sage: I2 == S.ideal(I)
            True
        """
        if len(gens) == 1:
            gens = gens[0]
            if not isinstance(gens, (list, tuple)):
                if is_Ideal(gens):
                    gens = gens.gens()
                else:
                    gens = [gens]
        from function_field_ideal import ideal_with_gens

        return ideal_with_gens(self, gens)
Exemplo n.º 14
0
    def __init__(self, S, P, check=False):
        """
        INPUT:

        - ``S`` -- an affine scheme

        - ``P`` -- a prime ideal of the coordinate ring of `S`, or
          anything that can be converted into such an ideal

        TESTS::

            sage: from sage.schemes.generic.point import SchemeTopologicalPoint_prime_ideal
            sage: S = Spec(ZZ)
            sage: P = SchemeTopologicalPoint_prime_ideal(S, 3); P
            Point on Spectrum of Integer Ring defined by the Principal ideal (3) of Integer Ring
            sage: SchemeTopologicalPoint_prime_ideal(S, 6, check=True)
            Traceback (most recent call last):
            ...
            ValueError: The argument Principal ideal (6) of Integer Ring must be a prime ideal of Integer Ring
            sage: SchemeTopologicalPoint_prime_ideal(S, ZZ.ideal(7))
            Point on Spectrum of Integer Ring defined by the Principal ideal (7) of Integer Ring

        We define a parabola in the projective plane as a point
        corresponding to a prime ideal::

            sage: P2.<x, y, z> = ProjectiveSpace(2, QQ)
            sage: SchemeTopologicalPoint_prime_ideal(P2, y*z-x^2)
            Point on Projective Space of dimension 2 over Rational Field defined by the Ideal (-x^2 + y*z) of Multivariate Polynomial Ring in x, y, z over Rational Field
        """
        R = S.coordinate_ring()
        from sage.rings.ideal import is_Ideal
        if not is_Ideal(P):
            P = R.ideal(P)
        elif P.ring() is not R:
            P = R.ideal(P.gens())
        # ideally we would have check=True by default, but
        # unfortunately is_prime() is only implemented in a small
        # number of cases
        if check and not P.is_prime():
            raise ValueError("The argument %s must be a prime ideal of %s"%(P, R))
        SchemeTopologicalPoint.__init__(self, S)
        self.__P = P
Exemplo n.º 15
0
    def ideal(self, *gens):
        """
        Returns the fractional ideal generated by the elements in ``gens``.

        INPUT:

            - ``gens`` -- a list of generators or an ideal in a ring which
                          coerces to this order.

        EXAMPLES::

            sage: K.<y> = FunctionField(QQ)
            sage: O = K.maximal_order()
            sage: O.ideal(y)
            Ideal (y) of Maximal order in Rational function field in y over Rational Field
            sage: O.ideal([y,1/y]) == O.ideal(y,1/y) # multiple generators may be given as a list
            True

        A fractional ideal of a nontrivial extension::

            sage: K.<x> = FunctionField(GF(7)); R.<y> = K[]
            sage: O = K.maximal_order()
            sage: I = O.ideal(x^2-4)
            sage: L.<y> = K.extension(y^2 - x^3 - 1)
            sage: S = L.equation_order()
            sage: S.ideal(1/y)
            Ideal (1, (6/(x^3 + 1))*y) of Order in Function field in y defined by y^2 + 6*x^3 + 6        
            sage: I2 = S.ideal(x^2-4); I2
            Ideal (x^2 + 3, (x^2 + 3)*y) of Order in Function field in y defined by y^2 + 6*x^3 + 6
            sage: I2 == S.ideal(I)
            True
        """
        if len(gens) == 1:
            gens = gens[0]
            if not isinstance(gens, (list, tuple)):
                if is_Ideal(gens):
                    gens = gens.gens()
                else:
                    gens = [gens]
        from function_field_ideal import ideal_with_gens
        return ideal_with_gens(self, gens)
Exemplo n.º 16
0
    def ideal(self, *gens):
        """
        Return the fractional ideal generated by the element gens or
        the elements in gens if gens is a list.

        EXAMPLES::

            sage: R.<y> = FunctionField(QQ)
            sage: S = R.maximal_order()
            sage: S.ideal(y)
            Ideal (y) of Maximal order in Rational function field in y over Rational Field

        A fractional ideal of a nontrivial extension::

            sage: R.<x> = FunctionField(GF(7)); S.<y> = R[]
            sage: L.<y> = R.extension(y^2 - x^3 - 1)
            sage: M = L.equation_order()
            sage: M.ideal(1/y)
            Ideal (1, (6/(x^3 + 1))*y) of Order in Function field in y defined by y^2 + 6*x^3 + 6

        A non-principal ideal::

            sage: R.<x> = FunctionField(GF(7))
            sage: S = R.maximal_order()
            sage: S.ideal(x^3+1,x^3+6)
            Ideal (1) of Maximal order in Rational function field in x over Finite Field of size 7
            sage: S.ideal((x^2+1)*(x^3+1),(x^3+6)*(x^2+1))
            Ideal (x^2 + 1) of Maximal order in Rational function field in x over Finite Field of size 7    
        """
        if len(gens) == 1:
            gens = gens[0]
            if not isinstance(gens, (list, tuple)):
                if is_Ideal(gens):
                    gens = gens.gens()
                else:
                    gens = [gens]
        from function_field_ideal import ideal_with_gens
        return ideal_with_gens(self, gens)
Exemplo n.º 17
0
    def ideal(self, *gens):
        """
        Return the fractional ideal generated by the element gens or
        the elements in gens if gens is a list.

        EXAMPLES::

            sage: R.<y> = FunctionField(QQ)
            sage: S = R.maximal_order()
            sage: S.ideal(y)
            Ideal (y) of Maximal order in Rational function field in y over Rational Field

        A fractional ideal of a nontrivial extension::

            sage: R.<x> = FunctionField(GF(7)); S.<y> = R[]
            sage: L.<y> = R.extension(y^2 - x^3 - 1)
            sage: M = L.equation_order()
            sage: M.ideal(1/y)
            Ideal (1, (6/(x^3 + 1))*y) of Order in Function field in y defined by y^2 + 6*x^3 + 6

        A non-principal ideal::

            sage: R.<x> = FunctionField(GF(7))
            sage: S = R.maximal_order()
            sage: S.ideal(x^3+1,x^3+6)
            Ideal (1) of Maximal order in Rational function field in x over Finite Field of size 7
            sage: S.ideal((x^2+1)*(x^3+1),(x^3+6)*(x^2+1))
            Ideal (x^2 + 1) of Maximal order in Rational function field in x over Finite Field of size 7    
        """
        if len(gens) == 1:
            gens = gens[0]
            if not isinstance(gens, (list, tuple)):
                if is_Ideal(gens):
                    gens = gens.gens()
                else:
                    gens = [gens]
        from .function_field_ideal import ideal_with_gens
        return ideal_with_gens(self, gens)
Exemplo n.º 18
0
def is_member(f, I):
    """
    Determines if the polynomial f is a member of the ideal I.

    Parameters
    ----------
    f: a polynomial of a multivariate polynomial ring over a field.
    I: an ideal of the same polynomial ring.

    Returns
    -------
    True if f is a member of the ideal I, False otherwise.
    """

    if not is_Ideal(I):
        raise TypeError('Argument should be an ideal')

    poly_ring = I.ring()

    if not f.parent() == poly_ring:
        raise ValueError('f must belong to the same polynomial ring that the ideal belongs to')

    if (not is_PolynomialRing(poly_ring)) and (not is_MPolynomialRing(poly_ring)):
        raise TypeError('The ideal should be of a polynomial ring')

    base_field = I.base_ring()

    if not base_field.is_field():
        raise TypeError('The ideal should be of a polynomial ring over a field')

    # Computation of a groebner basis
    G = buchberger_algorithm(I)

    # Since groebner basis have a unique remainder with multivariate division, f belongs to I <=> f rem G == 0
    # Formalized on theorem 21.28 of Modern Computer Algebra
    _, rem = multivariate_division_with_remainder(f, G)
    return rem == 0
Exemplo n.º 19
0
    def __call__(self, *args):
        """
        Construct a scheme-valued or topological point of ``self``.

        INPUT/OUTPUT:

        The argument ``x`` must be one of the following:

        - a prime ideal of the coordinate ring; the output will
          be the corresponding point of `X`

        - a ring or a scheme `S`; the output will be the set `X(S)` of
          `S`-valued points on `X`

        EXAMPLES::

            sage: S = Spec(ZZ)
            sage: P = S(ZZ.ideal(3)); P
            Point on Spectrum of Integer Ring defined by the Principal ideal (3) of Integer Ring
            sage: type(P)
            <class 'sage.schemes.generic.scheme.AffineScheme_with_category.element_class'>
            sage: S(ZZ.ideal(next_prime(1000000)))
            Point on Spectrum of Integer Ring defined by the Principal ideal (1000003) of Integer Ring

            sage: R.<x, y, z> = QQ[]
            sage: S = Spec(R)
            sage: P = S(R.ideal(x, y, z)); P
            Point on Spectrum of Multivariate Polynomial Ring
            in x, y, z over Rational Field defined by the Ideal (x, y, z)
            of Multivariate Polynomial Ring in x, y, z over Rational Field

        This indicates the fix of :trac:`12734`::

            sage: S = Spec(ZZ)
            sage: S(ZZ)
            Set of rational points of Spectrum of Integer Ring

        Note the difference between the previous example and the
        following one::

            sage: S(S)
            Set of morphisms
              From: Spectrum of Integer Ring
              To:   Spectrum of Integer Ring

        For affine or projective varieties, passing the correct number
        of elements of the base ring constructs the rational point
        with these elements as coordinates::

            sage: S = AffineSpace(ZZ, 1)
            sage: S(0)
            (0)

        To prevent confusion with this usage, topological points must
        be constructed by explicitly specifying a prime ideal, not
        just generators::

            sage: R = S.coordinate_ring()
            sage: S(R.ideal(0))
            Point on Affine Space of dimension 1 over Integer Ring defined by the Ideal (0) of Multivariate Polynomial Ring in x over Integer Ring

        This explains why the following example raises an error rather
        than constructing the topological point defined by the prime
        ideal `(0)` as one might expect::

            sage: S = Spec(ZZ)
            sage: S(0)
            Traceback (most recent call last):
            ...
            TypeError: cannot call Spectrum of Integer Ring with arguments (0,)
        """
        if len(args) == 1:
            x = args[0]
            if ((isinstance(x, self.element_class) and (x.parent() is self or x.parent() == self))
                or (is_Ideal(x) and x.ring() is self.coordinate_ring())):
                # Construct a topological point from x.
                return self._element_constructor_(x)
        try:
            # Construct a scheme homset or a scheme-valued point from
            # args using the generic Scheme.__call__() method.
            return super(AffineScheme, self).__call__(*args)
        except NotImplementedError:
            # This arises from self._morphism() not being implemented.
            # We must convert it into a TypeError to keep the coercion
            # system working.
            raise TypeError('cannot call %s with arguments %s' % (self, args))
Exemplo n.º 20
0
def check_prime(K, P):
    r"""
    Function to check that `P` determines a prime of `K`, and return that ideal.

    INPUT:

    - ``K`` -- a number field (including `\QQ`).

    - ``P`` -- an element of ``K`` or a (fractional) ideal of ``K``.

    OUTPUT:

    - If ``K`` is `\QQ`: the prime integer equal to or which generates `P`.

    - If ``K`` is not `\QQ`: the prime ideal equal to or generated by `P`.

    .. NOTE::

        If `P` is not a prime and does not generate a prime, a ``TypeError``
        is raised.

    EXAMPLES::

        sage: from sage.schemes.elliptic_curves.ell_local_data import check_prime
        sage: check_prime(QQ,3)
        3
        sage: check_prime(QQ,QQ(3))
        3
        sage: check_prime(QQ,ZZ.ideal(31))
        31
        sage: K.<a> = NumberField(x^2-5)
        sage: check_prime(K,a)
        Fractional ideal (a)
        sage: check_prime(K,a+1)
        Fractional ideal (a + 1)
        sage: [check_prime(K,P) for P in K.primes_above(31)]
        [Fractional ideal (5/2*a + 1/2), Fractional ideal (5/2*a - 1/2)]
        sage: L.<b> = NumberField(x^2+3)
        sage: check_prime(K, L.ideal(5))
        Traceback (most recent call last):
        ...
        TypeError: The ideal Fractional ideal (5) is not a prime ideal of Number Field in a with defining polynomial x^2 - 5
        sage: check_prime(K, L.ideal(b))
        Traceback (most recent call last):
        ...
        TypeError: No compatible natural embeddings found for Number Field in a with defining polynomial x^2 - 5 and Number Field in b with defining polynomial x^2 + 3
    """
    if K is QQ:
        if P in ZZ or isinstance(P, integer_types + (Integer,)):
            P = Integer(P)
            if P.is_prime():
                return P
            else:
                raise TypeError("The element %s is not prime" % (P,))
        elif P in QQ:
            raise TypeError("The element %s is not prime" % (P,))
        elif is_Ideal(P) and P.base_ring() is ZZ:
            if P.is_prime():
                return P.gen()
            else:
                raise TypeError("The ideal %s is not a prime ideal of %s" % (P, ZZ))
        else:
            raise TypeError("%s is neither an element of QQ or an ideal of %s" % (P, ZZ))

    if not is_NumberField(K):
        raise TypeError("%s is not a number field" % (K,))

    if is_NumberFieldFractionalIdeal(P) or P in K:
        # if P is an ideal, making sure it is an fractional ideal of K
        P = K.fractional_ideal(P)
        if P.is_prime():
            return P
        else:
            raise TypeError("The ideal %s is not a prime ideal of %s" % (P, K))

    raise TypeError("%s is not a valid prime of %s" % (P, K))
Exemplo n.º 21
0
def check_prime(K,P):
    r"""
    Function to check that `P` determines a prime of `K`, and return that ideal.

    INPUT:

    - ``K`` -- a number field (including `\QQ`).

    - ``P`` -- an element of ``K`` or a (fractional) ideal of ``K``.

    OUTPUT:

    - If ``K`` is `\QQ`: the prime integer equal to or which generates `P`.

    - If ``K`` is not `\QQ`: the prime ideal equal to or generated by `P`.

    .. note::

       If `P` is not a prime and does not generate a prime, a TypeError is raised.

    EXAMPLES::

        sage: from sage.schemes.elliptic_curves.ell_local_data import check_prime
        sage: check_prime(QQ,3)
        3
        sage: check_prime(QQ,ZZ.ideal(31))
        31
        sage: K.<a>=NumberField(x^2-5)
        sage: check_prime(K,a)
        Fractional ideal (a)
        sage: check_prime(K,a+1)
        Fractional ideal (a + 1)
        sage: [check_prime(K,P) for P in K.primes_above(31)]
        [Fractional ideal (5/2*a + 1/2), Fractional ideal (5/2*a - 1/2)]
    """
    if K is QQ:
        if isinstance(P, (int,long,Integer)):
            P = Integer(P)
            if P.is_prime():
                return P
            else:
                raise TypeError("%s is not prime"%P)
        else:
            if is_Ideal(P) and P.base_ring() is ZZ and P.is_prime():
                return P.gen()
        raise TypeError("%s is not a prime ideal of %s"%(P,ZZ))

    if not is_NumberField(K):
        raise TypeError("%s is not a number field"%K)

    if is_NumberFieldFractionalIdeal(P):
        if P.is_prime():
            return P
        else:
            raise TypeError("%s is not a prime ideal of %s"%(P,K))

    if is_NumberFieldElement(P):
        if P in K:
            P = K.ideal(P)
        else:
            raise TypeError("%s is not an element of %s"%(P,K))
        if P.is_prime():
            return P
        else:
            raise TypeError("%s is not a prime ideal of %s"%(P,K))

    raise TypeError("%s is not a valid prime of %s"%(P,K))
Exemplo n.º 22
0
def ideal(X):
    if not is_Ideal(X):
        return O_F.ideal(X)
    return X
Exemplo n.º 23
0
    def __call__(self, *args):
        """
        Construct a scheme-valued or topological point of ``self``.

        INPUT/OUTPUT:

        The argument ``x`` must be one of the following:

        - a prime ideal of the coordinate ring; the output will
          be the corresponding point of `X`

        - a ring or a scheme `S`; the output will be the set `X(S)` of
          `S`-valued points on `X`

        EXAMPLES::

            sage: S = Spec(ZZ)
            sage: P = S(ZZ.ideal(3)); P
            Point on Spectrum of Integer Ring defined by the Principal ideal (3) of Integer Ring
            sage: type(P)
            <class 'sage.schemes.generic.scheme.AffineScheme_with_category.element_class'>
            sage: S(ZZ.ideal(next_prime(1000000)))
            Point on Spectrum of Integer Ring defined by the Principal ideal (1000003) of Integer Ring

            sage: R.<x, y, z> = QQ[]
            sage: S = Spec(R)
            sage: P = S(R.ideal(x, y, z)); P
            Point on Spectrum of Multivariate Polynomial Ring
            in x, y, z over Rational Field defined by the Ideal (x, y, z)
            of Multivariate Polynomial Ring in x, y, z over Rational Field

        This indicates the fix of :trac:`12734`::

            sage: S = Spec(ZZ)
            sage: S(ZZ)
            Set of rational points of Spectrum of Integer Ring

        Note the difference between the previous example and the
        following one::

            sage: S(S)
            Set of morphisms
              From: Spectrum of Integer Ring
              To:   Spectrum of Integer Ring

        For affine or projective varieties, passing the correct number
        of elements of the base ring constructs the rational point
        with these elements as coordinates::

            sage: S = AffineSpace(ZZ, 1)
            sage: S(0)
            (0)

        To prevent confusion with this usage, topological points must
        be constructed by explicitly specifying a prime ideal, not
        just generators::

            sage: R = S.coordinate_ring()
            sage: S(R.ideal(0))
            Point on Affine Space of dimension 1 over Integer Ring defined by the Ideal (0) of Multivariate Polynomial Ring in x over Integer Ring

        This explains why the following example raises an error rather
        than constructing the topological point defined by the prime
        ideal `(0)` as one might expect::

            sage: S = Spec(ZZ)
            sage: S(0)
            Traceback (most recent call last):
            ...
            TypeError: cannot call Spectrum of Integer Ring with arguments (0,)
        """
        if len(args) == 1:
            x = args[0]
            if ((isinstance(x, self.element_class) and
                 (x.parent() is self or x.parent() == self))
                    or (is_Ideal(x) and x.ring() is self.coordinate_ring())):
                # Construct a topological point from x.
                return self._element_constructor_(x)
        try:
            # Construct a scheme homset or a scheme-valued point from
            # args using the generic Scheme.__call__() method.
            return super(AffineScheme, self).__call__(*args)
        except NotImplementedError:
            # This arises from self._morphism() not being implemented.
            # We must convert it into a TypeError to keep the coercion
            # system working.
            raise TypeError('cannot call %s with arguments %s' % (self, args))
Exemplo n.º 24
0
    def create_key_and_extra_args(self, domain, prime):
        r"""
        Create a unique key which identifies the valuation given by ``prime``
        on ``domain``.

        TESTS:

        We specify a valuation on a function field by two different means and
        get the same object::

            sage: K.<x> = FunctionField(QQ)
            sage: v = K.valuation(x - 1) # indirect doctest

            sage: R.<x> = QQ[]
            sage: w = GaussValuation(R, valuations.TrivialValuation(QQ)).augmentation(x - 1, 1)
            sage: K.valuation(w) is v
            True

        The normalization is, however, not smart enough, to unwrap
        substitutions that turn out to be trivial::
        
            sage: w = GaussValuation(R, QQ.valuation(2))
            sage: w = K.valuation(w)
            sage: w is K.valuation((w, K.hom([~K.gen()]), K.hom([~K.gen()])))
            False

        """
        from sage.categories.function_fields import FunctionFields
        if domain not in FunctionFields():
            raise ValueError("Domain must be a function field.")

        if isinstance(prime, tuple):
            if len(prime) == 3:
                # prime is a triple of a valuation on another function field with
                # isomorphism information
                return self.create_key_and_extra_args_from_valuation_on_isomorphic_field(domain, prime[0], prime[1], prime[2])

        from sage.rings.valuation.valuation_space import DiscretePseudoValuationSpace
        if prime.parent() is DiscretePseudoValuationSpace(domain):
            # prime is already a valuation of the requested domain
            # if we returned (domain, prime), we would break caching
            # because this element has been created from a different key
            # Instead, we return the key that was used to create prime
            # so the caller gets back a correctly cached version of prime
            if not hasattr(prime, "_factory_data"):
               raise NotImplementedError("Valuations on function fields must be unique and come out of the FunctionFieldValuation factory but %r has been created by other means"%(prime,))
            return prime._factory_data[2], {}

        if prime in domain:
            # prime defines a place
            return self.create_key_and_extra_args_from_place(domain, prime)
        if prime.parent() is DiscretePseudoValuationSpace(domain._ring):
            # prime is a discrete (pseudo-)valuation on the polynomial ring
            # that the domain is constructed from
            return self.create_key_and_extra_args_from_valuation(domain, prime)
        if domain.base_field() is not domain:
            # prime might define a valuation on a subring of domain and have a
            # unique extension to domain
            base_valuation = domain.base_field().valuation(prime)
            return self.create_key_and_extra_args_from_valuation(domain, base_valuation)
        from sage.rings.ideal import is_Ideal
        if is_Ideal(prime):
            raise NotImplementedError("a place can not be given by an ideal yet")

        raise NotImplementedError("argument must be a place or a pseudo-valuation on a supported subring but %r does not satisfy this for the domain %r"%(prime, domain))
Exemplo n.º 25
0
Arquivo: hmf.py Projeto: bubonic/psage
def ideal(X):
    if not is_Ideal(X):
        return O_F.ideal(X)
    return X
Exemplo n.º 26
0
def check_prime(K,P):
    r"""
    Function to check that `P` determines a prime of `K`, and return that ideal.

    INPUT:

    - ``K`` -- a number field (including `\QQ`).

    - ``P`` -- an element of ``K`` or a (fractional) ideal of ``K``.

    OUTPUT:

    - If ``K`` is `\QQ`: the prime integer equal to or which generates `P`.

    - If ``K`` is not `\QQ`: the prime ideal equal to or generated by `P`.

    .. note::

       If `P` is not a prime and does not generate a prime, a TypeError is raised.

    EXAMPLES::

        sage: from sage.schemes.elliptic_curves.ell_local_data import check_prime
        sage: check_prime(QQ,3)
        3
        sage: check_prime(QQ,ZZ.ideal(31))
        31
        sage: K.<a>=NumberField(x^2-5)
        sage: check_prime(K,a)
        Fractional ideal (a)
        sage: check_prime(K,a+1)
        Fractional ideal (a + 1)
        sage: [check_prime(K,P) for P in K.primes_above(31)]
        [Fractional ideal (5/2*a + 1/2), Fractional ideal (5/2*a - 1/2)]
    """
    if K is QQ:
        if isinstance(P, (int,long,Integer)):
            P = Integer(P)
            if P.is_prime():
                return P
            else:
                raise TypeError("%s is not prime"%P)
        else:
            if is_Ideal(P) and P.base_ring() is ZZ and P.is_prime():
                return P.gen()
        raise TypeError("%s is not a prime ideal of %s"%(P,ZZ))

    if not is_NumberField(K):
        raise TypeError("%s is not a number field"%K)

    if is_NumberFieldFractionalIdeal(P):
        if P.is_prime():
            return P
        else:
            raise TypeError("%s is not a prime ideal of %s"%(P,K))

    if is_NumberFieldElement(P):
        if P in K:
            P = K.ideal(P)
        else:
            raise TypeError("%s is not an element of %s"%(P,K))
        if P.is_prime():
            return P
        else:
            raise TypeError("%s is not a prime ideal of %s"%(P,K))

    raise TypeError("%s is not a valid prime of %s"%(P,K))
Exemplo n.º 27
0
def check_prime(K,P):
    r"""
    Function to check that `P` determines a prime of `K`, and return that ideal.

    INPUT:

    - ``K`` -- a number field (including `\QQ`).

    - ``P`` -- an element of ``K`` or a (fractional) ideal of ``K``.

    OUTPUT:

    - If ``K`` is `\QQ`: the prime integer equal to or which generates `P`.

    - If ``K`` is not `\QQ`: the prime ideal equal to or generated by `P`.

    .. note::

       If `P` is not a prime and does not generate a prime, a TypeError is raised.

    EXAMPLES::

        sage: from sage.schemes.elliptic_curves.ell_local_data import check_prime
        sage: check_prime(QQ,3)
        3
        sage: check_prime(QQ,QQ(3))
        3
        sage: check_prime(QQ,ZZ.ideal(31))
        31
        sage: K.<a>=NumberField(x^2-5)
        sage: check_prime(K,a)
        Fractional ideal (a)
        sage: check_prime(K,a+1)
        Fractional ideal (a + 1)
        sage: [check_prime(K,P) for P in K.primes_above(31)]
        [Fractional ideal (5/2*a + 1/2), Fractional ideal (5/2*a - 1/2)]
        sage: L.<b> = NumberField(x^2+3)
        sage: check_prime(K, L.ideal(5))
        Traceback (most recent call last):
        ..
        TypeError: The ideal Fractional ideal (5) is not a prime ideal of Number Field in a with defining polynomial x^2 - 5
        sage: check_prime(K, L.ideal(b))
        Traceback (most recent call last):
        TypeError: No compatible natural embeddings found for Number Field in a with defining polynomial x^2 - 5 and Number Field in b with defining polynomial x^2 + 3
    """
    if K is QQ:
        if P in ZZ or isinstance(P, integer_types + (Integer,)):
            P = Integer(P)
            if P.is_prime():
                return P
            else:
                raise TypeError("The element %s is not prime" % (P,) )
        elif P in QQ:
            raise TypeError("The element %s is not prime" % (P,) )
        elif is_Ideal(P) and P.base_ring() is ZZ:
            if P.is_prime():
                return P.gen()
            else:
                raise TypeError("The ideal %s is not a prime ideal of %s" % (P, ZZ))
        else:
            raise TypeError("%s is neither an element of QQ or an ideal of %s" % (P, ZZ))

    if not is_NumberField(K):
        raise TypeError("%s is not a number field" % (K,) )

    if is_NumberFieldFractionalIdeal(P) or P in K:
        # if P is an ideal, making sure it is an fractional ideal of K
        P = K.fractional_ideal(P)
        if P.is_prime():
            return P
        else:
            raise TypeError("The ideal %s is not a prime ideal of %s" % (P, K))

    raise TypeError("%s is not a valid prime of %s" % (P, K))