def bake(zgrid):
    # get SED list
    listOfSedsFile = "lsst.seds"
    sedLib = sedFilter.createSedDict(listOfSedsFile, "../data/sed/")
    sedList = sorted(sedLib.keys())
    nSED = len(sedLib)

    # get LSST filters
    listOfFiltersFile = "lsst.filters"
    filterLib = sedFilter.createFilterDict(listOfFiltersFile,
                                           "../data/bandpass/")
    filterList = sedFilter.orderFiltersByLamEff(filterLib)
    nFilter = len(filterLib)

    # instantiate photometric calculations
    pcalcs = {}
    for sedname, sed in sedLib.items():
        pcalcs[sedname] = phot.PhotCalcs(sed, filterLib)

    nz = len(zgrid)

    # record array to return
    n_rows = nSED*nz
    dtype = np.dtype([('sedname', str, 300), ('redshift', np.float),
                      ('ug', np.float), ('gr', np.float), ('ri', np.float),
                      ('iz', np.float), ('zy', np.float), ('time', np.float)])
    dummy = ('aaaa', 1.0, 1, 1, 1, 1, 1, 1.0)
    records = np.array([dummy]*n_rows, dtype=dtype)

    i = 0
    # loop over redshifts
    for z in zgrid:
        # each SED in lib
        for sedname in sedList:
            # time calculation of *all* colors for this redshift+SED
            start_time = time.time()
            colors = []
            for ifilt in range(nFilter-1):
                mag = pcalcs[sedname].computeColor(filterList[ifilt],
                                                   filterList[ifilt+1], z)
                colors.append(mag)
            end_time = time.time()
            rec = np.array([(sedname, z, colors[0], colors[1], colors[2],
                             colors[3], colors[4], end_time-start_time)],
                           dtype=records.dtype)
            records[i] = rec
            i += 1

    return records
def main(argv):
    
    save_stem = 'new_lsst' # files will be saved to filenames beginning `save_stem`
    perf_lim = 3           # performance limit: min number of colors that should reach LSST sys err
    color_file = "../tmp/brown_colors_lsst.txt"  # File to contain colors or to read colors from 
    listOfFilters = 'LSST.filters'               # Filter set to use                           
    corr_type = 'cubic'    # type of covariance function to use in GP
    theta0 = 0.2           # parameters for GP covariance function
                 
    try:
        opts, args = getopt.getopt(argv,"hs:p:c:f:g:")
    except getopt.GetoptError as err: # if include option that's not there
        usage(2)
      
    for opt, arg in opts:
        if opt == '-h':
            usage(0)
        elif opt in ("-s"):
            save_stem = arg
        elif opt in ("-p"):
            perf_lim = int(arg)
        elif opt in ("-c"):
            color_file = arg
        elif opt in ("-f"):
            listOfFilters = arg
        elif opt in ("-g"):
            corr_type = arg.split(',')[0]
            theta0 = float(arg.split(',')[1])
            
    print '\n Command line arguments:'
    print ' Saving to files ... ', save_stem
    print ' Reading/saving colors from/to file', color_file
    print ' Using', listOfFilters ,'filter set'
    print ' At least', perf_lim ,'colors must meet LSST sys err to be `good`'
    print ' Covariance function will be', corr_type ,'with parameter', theta0
    print ''


    ### Read SEDs into a dictionary
    listOfSeds = 'brown_masked.seds'                             
    pathToSEDs = '../sed_data'
    sedDict = sedFilter.createSedDict(listOfSeds, pathToSEDs)
    nSED = len(sedDict)
    print "Number of SEDs =", nSED


    ### Filter set to calculate colors
    pathToFilters = '../filter_data/'
    filterDict = sedFilter.createFilterDict(listOfFilters, pathToFilters)
    filterList = sedFilter.orderFiltersByLamEff(filterDict)
    nFilters = len(filterList)
    print "Number of filters =", nFilters


    ### Wavelength grid to do PCA on
    minWavelen = 1000.
    maxWavelen = 12000.
    nWavelen = 10000

                 
    ### Do PCA and train GP
    ncomp = nSED
    nfit = -1
    pcaGP = sedMapper.PcaGaussianProc(sedDict, filterDict, color_file, ncomp, 
                                      minWavelen, maxWavelen, nWavelen, nfit,
                                      corr_type, theta0)
    colors = pcaGP._colors
    spectra = pcaGP._spectra
    waveLen = pcaGP._waveLen
    meanSpectrum = pcaGP.meanSpec
    projected_all = pcaGP.eigenvalue_coeffs
    print "... done\n"


    ### Leave out each SED in turn
    delta_mag = np.zeros((nSED,nFilters))
    perf = []
    for i, (sedname, spec) in enumerate(sedDict.items()):
    
        print "\nOn SED", i+1 ,"of", nSED
    

        ### Retrain GP with SED removed
        nc = nSED-1
        pcaGP.reTrainGP(nc, i)
    
    
        ### Reconstruct SED
        sed_rec = pcaGP.generateSpectrum(colors[i,:])
        
    
        ### Calculate colors of reconstructed SED
        pcalcs = phot.PhotCalcs(sed_rec, filterDict)
        cnt = 0
        isBad = False

        for j in range(nFilters-1):
            cs = pcalcs.computeColor(filterList[j], filterList[j+1])
        
            delta_mag[i,j] = cs-colors[i,j]
            if (j<6):
                print "(", cs, colors[i,j], delta_mag[i,j],")"
            if (abs(delta_mag[i,j])<0.005):
                cnt+=1
            if (abs(delta_mag[i,j])>0.05):
                isBad = True
        print ""


        ### Get array version of SED back
        wl, spec_rec = sed_rec.getSedData(lamMin=minWavelen, lamMax=maxWavelen, nLam=nWavelen)

    
        ### Plot
        fig = plt.figure(figsize=(10,10))
        ax = fig.add_subplot(111)
        ax.plot(waveLen, spectra[i,:], color='blue', label='true')
        ax.plot(wl, spec_rec, color='red', linestyle='dashed', label='estimated')
        ax.plot(waveLen, meanSpectrum, color='black', linestyle='dotted', label='mean')
        ax.set_xlabel('wavelength (angstroms)', fontsize=24)
        ax.set_ylabel('flux', fontsize=24)
        handles, labels = ax.get_legend_handles_labels()
        ax.legend(loc='lower right', prop={'size':12})
        ax.set_title(sedname, fontsize=24) 
        
        annotate =  "Mean $\Delta$ color = {0:.5f} \n".format(np.mean(delta_mag[i,:]))
        annotate += "Stdn $\Delta$ color = {0:.5f} ".format(np.std(delta_mag[i,:]))
        y1, y2 = ax.get_ylim()
        ax.text(9000, 0.9*y2, annotate, fontsize=12)
        plt.savefig(save_stem + '_' + 'bad_' + sedname + '.png')
        #plt.show(block=True)
        
        
        ### Performance check
        print cnt,"colors within LSST systematic error"
        perf.append(cnt)
    

    perf = np.asarray(perf)

    ### Save results
    np.savetxt(save_stem + '_deltamag.txt', delta_mag)

     
    ### Plot eigenvalue 1 vs eigenvalue 2
    fig = plt.figure(figsize=(10,10))
    ax = fig.add_subplot(111)    
    ax.plot(projected_all[:, 0], projected_all[:, 1], linestyle='none', marker='o', color='blue', label='good')
    ax.plot(projected_all[np.where(perf<perf_lim), 0], projected_all[np.where(perf<perf_lim), 1],
            linestyle='none', marker='o', color='red', label='bad')
    ax.set_xlabel('eigenvalue 1', fontsize=24)
    ax.set_ylabel('eigenvalue 2', fontsize=24)
    handles, labels = ax.get_legend_handles_labels()
    ax.legend(handles[:4], labels[:4], loc='lower right', prop={'size':12})


    ### Histogram of number of colors per SED better than LSST systematic error
    fig = plt.figure(figsize=(10,10))
    ax = fig.add_subplot(111)
    ax.hist(perf,20, normed=False, histtype='stepfilled')
    ax.set_xlabel('number of colors better than sys error', fontsize=24)
    plt.savefig(save_stem + '_' + 'perf.png')
    plt.show(block=True)
    

    ### Histogram of delta-mags
    for j in range(nFilters-1):
        fig = plt.figure(figsize=(10,10))
        ax = fig.add_subplot(111)
    
        dmag_finite = delta_mag[np.where(abs(delta_mag[:,j])<50),j].T
    
        ax.hist(dmag_finite, 20, normed=False, histtype='stepfilled')
        ax.set_xlabel('$\Delta$color$_{' + str(j) + "}$", fontsize=24)
        plt.savefig(save_stem + '_color' + str(j) + '.png')

 
    plt.show(block=True)
Exemplo n.º 3
0
def main(argv):

    save_stem = 'new_lsst'  # files will be saved to filenames beginning `save_stem`
    perf_lim = 3  # performance limit: min number of colors that should reach LSST sys err
    color_file = "../tmp/brown_colors_lsst.txt"  # File to contain colors or to read colors from
    listOfFilters = 'LSST.filters'  # Filter set to use
    corr_type = 'cubic'  # type of covariance function to use in GP
    theta0 = 0.2  # parameters for GP covariance function

    try:
        opts, args = getopt.getopt(argv, "hs:p:c:f:g:")
    except getopt.GetoptError as err:  # if include option that's not there
        usage(2)

    for opt, arg in opts:
        if opt == '-h':
            usage(0)
        elif opt in ("-s"):
            save_stem = arg
        elif opt in ("-p"):
            perf_lim = int(arg)
        elif opt in ("-c"):
            color_file = arg
        elif opt in ("-f"):
            listOfFilters = arg
        elif opt in ("-g"):
            corr_type = arg.split(',')[0]
            theta0 = float(arg.split(',')[1])

    print '\n Command line arguments:'
    print ' Saving to files ... ', save_stem
    print ' Reading/saving colors from/to file', color_file
    print ' Using', listOfFilters, 'filter set'
    print ' At least', perf_lim, 'colors must meet LSST sys err to be `good`'
    print ' Covariance function will be', corr_type, 'with parameter', theta0
    print ''

    ### Read SEDs into a dictionary
    listOfSeds = 'brown_masked.seds'
    pathToSEDs = '../sed_data'
    sedDict = sedFilter.createSedDict(listOfSeds, pathToSEDs)
    nSED = len(sedDict)
    print "Number of SEDs =", nSED

    ### Filter set to calculate colors
    pathToFilters = '../filter_data/'
    filterDict = sedFilter.createFilterDict(listOfFilters, pathToFilters)
    filterList = sedFilter.orderFiltersByLamEff(filterDict)
    nFilters = len(filterList)
    print "Number of filters =", nFilters

    ### Wavelength grid to do PCA on
    minWavelen = 1000.
    maxWavelen = 12000.
    nWavelen = 10000

    ### Do PCA and train GP
    ncomp = nSED
    nfit = -1
    pcaGP = sedMapper.PcaGaussianProc(sedDict, filterDict, color_file, ncomp,
                                      minWavelen, maxWavelen, nWavelen, nfit,
                                      corr_type, theta0)
    colors = pcaGP._colors
    spectra = pcaGP._spectra
    waveLen = pcaGP._waveLen
    meanSpectrum = pcaGP.meanSpec
    projected_all = pcaGP.eigenvalue_coeffs
    print "... done\n"

    ### Leave out each SED in turn
    delta_mag = np.zeros((nSED, nFilters))
    perf = []
    for i, (sedname, spec) in enumerate(sedDict.items()):

        print "\nOn SED", i + 1, "of", nSED

        ### Retrain GP with SED removed
        nc = nSED - 1
        pcaGP.reTrainGP(nc, i)

        ### Reconstruct SED
        sed_rec = pcaGP.generateSpectrum(colors[i, :])

        ### Calculate colors of reconstructed SED
        pcalcs = phot.PhotCalcs(sed_rec, filterDict)
        cnt = 0
        isBad = False

        for j in range(nFilters - 1):
            cs = pcalcs.computeColor(filterList[j], filterList[j + 1])

            delta_mag[i, j] = cs - colors[i, j]
            if (j < 6):
                print "(", cs, colors[i, j], delta_mag[i, j], ")"
            if (abs(delta_mag[i, j]) < 0.005):
                cnt += 1
            if (abs(delta_mag[i, j]) > 0.05):
                isBad = True
        print ""

        ### Get array version of SED back
        wl, spec_rec = sed_rec.getSedData(lamMin=minWavelen,
                                          lamMax=maxWavelen,
                                          nLam=nWavelen)

        ### Plot
        fig = plt.figure(figsize=(10, 10))
        ax = fig.add_subplot(111)
        ax.plot(waveLen, spectra[i, :], color='blue', label='true')
        ax.plot(wl,
                spec_rec,
                color='red',
                linestyle='dashed',
                label='estimated')
        ax.plot(waveLen,
                meanSpectrum,
                color='black',
                linestyle='dotted',
                label='mean')
        ax.set_xlabel('wavelength (angstroms)', fontsize=24)
        ax.set_ylabel('flux', fontsize=24)
        handles, labels = ax.get_legend_handles_labels()
        ax.legend(loc='lower right', prop={'size': 12})
        ax.set_title(sedname, fontsize=24)

        annotate = "Mean $\Delta$ color = {0:.5f} \n".format(
            np.mean(delta_mag[i, :]))
        annotate += "Stdn $\Delta$ color = {0:.5f} ".format(
            np.std(delta_mag[i, :]))
        y1, y2 = ax.get_ylim()
        ax.text(9000, 0.9 * y2, annotate, fontsize=12)
        plt.savefig(save_stem + '_' + 'bad_' + sedname + '.png')
        #plt.show(block=True)

        ### Performance check
        print cnt, "colors within LSST systematic error"
        perf.append(cnt)

    perf = np.asarray(perf)

    ### Save results
    np.savetxt(save_stem + '_deltamag.txt', delta_mag)

    ### Plot eigenvalue 1 vs eigenvalue 2
    fig = plt.figure(figsize=(10, 10))
    ax = fig.add_subplot(111)
    ax.plot(projected_all[:, 0],
            projected_all[:, 1],
            linestyle='none',
            marker='o',
            color='blue',
            label='good')
    ax.plot(projected_all[np.where(perf < perf_lim), 0],
            projected_all[np.where(perf < perf_lim), 1],
            linestyle='none',
            marker='o',
            color='red',
            label='bad')
    ax.set_xlabel('eigenvalue 1', fontsize=24)
    ax.set_ylabel('eigenvalue 2', fontsize=24)
    handles, labels = ax.get_legend_handles_labels()
    ax.legend(handles[:4], labels[:4], loc='lower right', prop={'size': 12})

    ### Histogram of number of colors per SED better than LSST systematic error
    fig = plt.figure(figsize=(10, 10))
    ax = fig.add_subplot(111)
    ax.hist(perf, 20, normed=False, histtype='stepfilled')
    ax.set_xlabel('number of colors better than sys error', fontsize=24)
    plt.savefig(save_stem + '_' + 'perf.png')
    plt.show(block=True)

    ### Histogram of delta-mags
    for j in range(nFilters - 1):
        fig = plt.figure(figsize=(10, 10))
        ax = fig.add_subplot(111)

        dmag_finite = delta_mag[np.where(abs(delta_mag[:, j]) < 50), j].T

        ax.hist(dmag_finite, 20, normed=False, histtype='stepfilled')
        ax.set_xlabel('$\Delta$color$_{' + str(j) + "}$", fontsize=24)
        plt.savefig(save_stem + '_color' + str(j) + '.png')

    plt.show(block=True)
Exemplo n.º 4
0
"""

import sedFilter
import numpy as np
import itertools
import collections
import math
import matplotlib.pyplot as plt

# File containing wavelength regions to mask out
emission_lines_file = '../eml_data/emission_lines.dat'

# Read in Brown SEDs
listOfSedsFile = "brown.seds"
pathToFile = "../sed_data/"
brownSEDs = sedFilter.createSedDict(listOfSedsFile, pathToFile)

# Class that does the masking (linear interpolation across wavelength region)
msed = sedFilter.MaskSEDs(brownSEDs, emission_lines_file)
msed.mask_SEDs()

# return SEDs with lines masked
masked_seds = msed.return_masked_SEDs()

# Plot first 10 spectra with and without masking
nMax = 10

# wavelength grid
wlmin = 3000
wlmax = 12000
nlam = 10000
import sedFilter
import numpy as np
import itertools
import collections
import math
import matplotlib.pyplot as plt


# File containing wavelength regions to mask out
emission_lines_file = '../eml_data/emission_lines.dat'


# Read in Brown SEDs
listOfSedsFile = "brown.seds"
pathToFile = "../sed_data/"
brownSEDs = sedFilter.createSedDict(listOfSedsFile, pathToFile)


# Class that does the masking (linear interpolation across wavelength region)
msed = sedFilter.MaskSEDs(brownSEDs, emission_lines_file)
msed.mask_SEDs()


# return SEDs with lines masked
masked_seds = msed.return_masked_SEDs()


# Plot first 10 spectra with and without masking
nMax = 10

# wavelength grid