Exemplo n.º 1
0
    def generate_code(K=5):
        # Wrap c code for slow matching
        c_header = "\nvoid merge_features(double *tracks, double *features, long long *empty_idxs);"

        c_code = "#include <math.h>\n"
        c_code += "#include <string.h>\n"
        c_code += "#define K %d\n" % K
        c_code += "\n" + open(os.path.join(TEMPLATE_DIR,
                                           "feature_handler.c")).read()

        filename = f"{FeatureHandler.name}_{K}"
        write_code(filename, c_code, c_header)
Exemplo n.º 2
0
    def generate_code(K=4):
        sympy_functions = generate_residual(K)
        header, code = sympy_into_c(sympy_functions)

        code += "\n#define KDIM %d\n" % K
        code += "\n" + open(os.path.join(TEMPLATE_DIR, "compute_pos.c")).read()

        header += """
    void compute_pos(double *to_c, double *in_poses, double *in_img_positions, double *param, double *pos);
    """

        filename = f"{LstSqComputer.name}_{K}"
        write_code(filename, code, header)
Exemplo n.º 3
0
def gen_code(name,
             f_sym,
             dt_sym,
             x_sym,
             obs_eqs,
             dim_x,
             dim_err,
             eskf_params=None,
             msckf_params=None,
             maha_test_kinds=[]):
    # optional state transition matrix, H modifier
    # and err_function if an error-state kalman filter (ESKF)
    # is desired. Best described in "Quaternion kinematics
    # for the error-state Kalman filter" by Joan Sola

    if eskf_params:
        err_eqs = eskf_params[0]
        inv_err_eqs = eskf_params[1]
        H_mod_sym = eskf_params[2]
        f_err_sym = eskf_params[3]
        x_err_sym = eskf_params[4]
    else:
        nom_x = sp.MatrixSymbol('nom_x', dim_x, 1)
        true_x = sp.MatrixSymbol('true_x', dim_x, 1)
        delta_x = sp.MatrixSymbol('delta_x', dim_x, 1)
        err_function_sym = sp.Matrix(nom_x + delta_x)
        inv_err_function_sym = sp.Matrix(true_x - nom_x)
        err_eqs = [err_function_sym, nom_x, delta_x]
        inv_err_eqs = [inv_err_function_sym, nom_x, true_x]

        H_mod_sym = sp.Matrix(np.eye(dim_x))
        f_err_sym = f_sym
        x_err_sym = x_sym

    # This configures the multi-state augmentation
    # needed for EKF-SLAM with MSCKF (Mourikis et al 2007)
    if msckf_params:
        msckf = True
        dim_main = msckf_params[0]  # size of the main state
        dim_augment = msckf_params[1]  # size of one augment state chunk
        dim_main_err = msckf_params[2]
        dim_augment_err = msckf_params[3]
        N = msckf_params[4]
        feature_track_kinds = msckf_params[5]
        assert dim_main + dim_augment * N == dim_x
        assert dim_main_err + dim_augment_err * N == dim_err
    else:
        msckf = False
        dim_main = dim_x
        dim_augment = 0
        dim_main_err = dim_err
        dim_augment_err = 0
        N = 0

    # linearize with jacobians
    F_sym = f_err_sym.jacobian(x_err_sym)

    if eskf_params:
        for sym in x_err_sym:
            F_sym = F_sym.subs(sym, 0)

    assert dt_sym in F_sym.free_symbols

    for i in range(len(obs_eqs)):
        obs_eqs[i].append(obs_eqs[i][0].jacobian(x_sym))
        if msckf and obs_eqs[i][1] in feature_track_kinds:
            obs_eqs[i].append(obs_eqs[i][0].jacobian(obs_eqs[i][2]))
        else:
            obs_eqs[i].append(None)

    # collect sympy functions
    sympy_functions = []

    # error functions
    sympy_functions.append(('err_fun', err_eqs[0], [err_eqs[1], err_eqs[2]]))
    sympy_functions.append(
        ('inv_err_fun', inv_err_eqs[0], [inv_err_eqs[1], inv_err_eqs[2]]))

    # H modifier for ESKF updates
    sympy_functions.append(('H_mod_fun', H_mod_sym, [x_sym]))

    # state propagation function
    sympy_functions.append(('f_fun', f_sym, [x_sym, dt_sym]))
    sympy_functions.append(('F_fun', F_sym, [x_sym, dt_sym]))

    # observation functions
    for h_sym, kind, ea_sym, H_sym, He_sym in obs_eqs:
        sympy_functions.append(('h_%d' % kind, h_sym, [x_sym, ea_sym]))
        sympy_functions.append(('H_%d' % kind, H_sym, [x_sym, ea_sym]))
        if msckf and kind in feature_track_kinds:
            sympy_functions.append(('He_%d' % kind, He_sym, [x_sym, ea_sym]))

    # Generate and wrap all th c code
    header, code = sympy_into_c(sympy_functions)
    extra_header = "#define DIM %d\n" % dim_x
    extra_header += "#define EDIM %d\n" % dim_err
    extra_header += "#define MEDIM %d\n" % dim_main_err
    extra_header += "typedef void (*Hfun)(double *, double *, double *);\n"

    extra_header += "\nvoid predict(double *x, double *P, double *Q, double dt);"

    extra_post = ""

    for h_sym, kind, ea_sym, H_sym, He_sym in obs_eqs:
        if msckf and kind in feature_track_kinds:
            He_str = 'He_%d' % kind
            # ea_dim = ea_sym.shape[0]
        else:
            He_str = 'NULL'
            # ea_dim = 1 # not really dim of ea but makes c function work
        maha_thresh = chi2_ppf(0.95, int(
            h_sym.shape[0]))  # mahalanobis distance for outlier detection
        maha_test = kind in maha_test_kinds
        extra_post += """
      void update_%d(double *in_x, double *in_P, double *in_z, double *in_R, double *in_ea) {
        update<%d,%d,%d>(in_x, in_P, h_%d, H_%d, %s, in_z, in_R, in_ea, MAHA_THRESH_%d);
      }
    """ % (kind, h_sym.shape[0], 3, maha_test, kind, kind, He_str, kind)
        extra_header += "\nconst static double MAHA_THRESH_%d = %f;" % (
            kind, maha_thresh)
        extra_header += "\nvoid update_%d(double *, double *, double *, double *, double *);" % kind

    code += '\nextern "C"{\n' + extra_header + "\n}\n"
    code += "\n" + open(os.path.join(TEMPLATE_DIR, "ekf_c.c")).read()
    code += '\nextern "C"{\n' + extra_post + "\n}\n"
    header += "\n" + extra_header

    write_code(name, code, header)