def getModel(data):
	numInputs = len(data[0][0])
	numOutputs = len(data[0][1])
	
	model = Model(numInputs, numOutputs)
	
	for input in range(numInputs):
	
		#extract fourier bin from training data
		x = map(lambda x: x[0][input], data)
		
		for output in range(numOutputs):
			#extract outputs to train against
			y = map(lambda x: x[1][output], data)
			
			#calculate pearson score between input and output
			p = stats.pearson(x, y)
			
			model.pearsons[input][output] = p
			
			#get the slope and y-int of the line of best fit between in put and output
			
			(slope, yInt) = fittingFunction(x, y)
			
			model.slopes[input][output] = slope
			model.yInts[input][output] = yInt
			
	return model
Exemplo n.º 2
0
def alphasense_compute(dataFrame, t_incl=False, h_incl=False):

    # lambdas for columns
    col_skip = 3
    if t_incl and h_incl:
        col_temp = (lambda i: (col_skip + 6 * i))
        col_hum = (lambda i: (col_skip + 6 * i + 1))
        col_no2 = (lambda i: range((col_skip + 6 * i + 2),
                                   (col_skip + 6 * i + 4)))
        col_ox = (lambda i: range((col_skip + 6 * i + 4),
                                  (col_skip + 6 * i + 6)))
    elif h_incl:
        col_hum = (lambda i: (col_skip + 5 * i))
        col_no2 = (lambda i: range((col_skip + 5 * i + 1),
                                   (col_skip + 5 * i + 3)))
        col_ox = (lambda i: range((col_skip + 5 * i + 3),
                                  (col_skip + 5 * i + 5)))
    elif t_incl:
        col_temp = (lambda i: (col_skip + 5 * i))
        col_no2 = (lambda i: range((col_skip + 5 * i + 1),
                                   (col_skip + 5 * i + 3)))
        col_ox = (lambda i: range((col_skip + 5 * i + 3),
                                  (col_skip + 5 * i + 5)))
    else:
        col_no2 = (lambda i: range((col_skip + 4 * i), (col_skip + 4 * i + 2)))
        col_ox = (lambda i: range((col_skip + 4 * i + 2),
                                  (col_skip + 4 * i + 4)))

    #dataFrame = dataFrame.values
    err_no2 = np.zeros([len(NO2_WE_0T), 4, 5])
    err_o3 = np.zeros([len(NO2_WE_0T), 4, 5])

    # iterate over sensors
    for i in xrange(np.size(dataFrame, 1)):
        if col_ox(i)[-1] >= np.size(dataFrame, 1):
            break

        nx = dataFrame[:, col_no2(i)]
        ox = dataFrame[:, col_ox(i)]

        # formula 1
        pred_no2 = formula1(nx[:, 0], nx[:, 1], NO2_WE_0E[i], NO2_AE_0E[i],
                            NTn, SENSITIVITY_NO2[i])
        err_no2[i, 0, 0] = stats.mae(dataFrame[:, 1], pred_no2)
        err_no2[i, 0, 1] = stats.rmse(dataFrame[:, 1], pred_no2)
        err_no2[i, 0, 2] = stats.mape(dataFrame[:, 1], pred_no2)
        err_no2[i, 0, 3] = stats.coeff_deter(dataFrame[:, 1], pred_no2)
        err_no2[i, 0, 4] = stats.pearson(dataFrame[:, 1], pred_no2)

        #print np.mean(pred_no2)
        #print np.std(pred_no2)

        pred = formula1(ox[:, 0], ox[:, 1], O3_WE_0E[i], O3_AE_0E[i], NTo,
                        SENSITIVITY_O3[i])
        err_o3[i, 0, 0] = stats.mae(dataFrame[:, 2], pred - pred_no2)
        err_o3[i, 0, 1] = stats.rmse(dataFrame[:, 2], pred - pred_no2)
        err_o3[i, 0, 2] = stats.mape(dataFrame[:, 2], pred - pred_no2)
        err_o3[i, 0, 3] = stats.coeff_deter(dataFrame[:, 2], pred - pred_no2)
        err_o3[i, 0, 4] = stats.pearson(dataFrame[:, 2], pred - pred_no2)

        #print np.mean(pred)
        #print np.std(pred)

        # formula 2
        pred_no2 = formula2(nx[:, 0], nx[:, 1], NO2_WE_0E[i], NO2_AE_0E[i],
                            NO2_WE_0T[i], NO2_AE_0T[i], KTn,
                            SENSITIVITY_NO2[i])
        err_no2[i, 1, 0] = stats.mae(dataFrame[:, 1], pred)
        err_no2[i, 1, 1] = stats.rmse(dataFrame[:, 1], pred)
        err_no2[i, 1, 2] = stats.mape(dataFrame[:, 1], pred)
        err_no2[i, 1, 3] = stats.coeff_deter(dataFrame[:, 1], pred)
        err_no2[i, 1, 4] = stats.pearson(dataFrame[:, 1], pred)

        #print np.mean(pred_no2)
        #print np.std(pred_no2)

        pred = formula2(ox[:, 0], ox[:, 1], O3_WE_0E[i], O3_AE_0E[i],
                        O3_WE_0T[i], O3_AE_0T[i], KTo, SENSITIVITY_O3[i])
        err_o3[i, 1, 0] = stats.mae(dataFrame[:, 2], pred - pred_no2)
        err_o3[i, 1, 1] = stats.rmse(dataFrame[:, 2], pred - pred_no2)
        err_o3[i, 1, 2] = stats.mape(dataFrame[:, 2], pred - pred_no2)
        err_o3[i, 1, 3] = stats.coeff_deter(dataFrame[:, 2], pred - pred_no2)
        err_o3[i, 1, 4] = stats.pearson(dataFrame[:, 2], pred - pred_no2)

        #print np.mean(pred)
        #print np.std(pred)

        # formula 3
        pred_no2 = formula3(nx[:, 0], nx[:, 1], NO2_WE_0E[i], NO2_AE_0E[i],
                            NO2_WE_0T[i], NO2_AE_0T[i], K_Tn,
                            SENSITIVITY_NO2[i])
        err_no2[i, 2, 0] = stats.mae(dataFrame[:, 1], pred_no2)
        err_no2[i, 2, 1] = stats.rmse(dataFrame[:, 1], pred_no2)
        err_no2[i, 2, 2] = stats.mape(dataFrame[:, 1], pred_no2)
        err_no2[i, 2, 3] = stats.coeff_deter(dataFrame[:, 1], pred_no2)
        err_no2[i, 2, 4] = stats.pearson(dataFrame[:, 1], pred_no2)

        #print np.mean(pred_no2)
        #print np.std(pred_no2)

        pred = formula3(ox[:, 0], ox[:, 1], O3_WE_0E[i], O3_AE_0E[i],
                        O3_WE_0T[i], O3_AE_0T[i], K_To, SENSITIVITY_O3[i])
        err_o3[i, 2, 0] = stats.mae(dataFrame[:, 2], pred - pred_no2)
        err_o3[i, 2, 1] = stats.rmse(dataFrame[:, 2], pred - pred_no2)
        err_o3[i, 2, 2] = stats.mape(dataFrame[:, 2], pred - pred_no2)
        err_o3[i, 2, 3] = stats.coeff_deter(dataFrame[:, 2], pred - pred_no2)
        err_o3[i, 2, 4] = stats.pearson(dataFrame[:, 2], pred - pred_no2)

        #print np.mean(pred)
        #print np.std(pred)

        # formula 4
        pred_no2 = formula4(nx[:, 0], nx[:, 1], NO2_WE_0E[i], NO2_AE_0E[i],
                            NO2_WE_0T[i], NO2_AE_0T[i], K__Tn,
                            SENSITIVITY_NO2[i])
        err_no2[i, 3, 0] = stats.mae(dataFrame[:, 1], pred_no2)
        err_no2[i, 3, 1] = stats.rmse(dataFrame[:, 1], pred_no2)
        err_no2[i, 3, 2] = stats.mape(dataFrame[:, 1], pred_no2)
        err_no2[i, 3, 3] = stats.coeff_deter(dataFrame[:, 1], pred_no2)
        err_no2[i, 3, 4] = stats.pearson(dataFrame[:, 1], pred_no2)

        #print np.mean(pred_no2)
        #print np.std(pred_no2)

        pred = formula4(ox[:, 0], ox[:, 1], O3_WE_0E[i], O3_AE_0E[i],
                        O3_WE_0T[i], O3_AE_0T[i], K__To, SENSITIVITY_O3[i])
        err_o3[i, 3, 0] = stats.mae(dataFrame[:, 2], pred - pred_no2)
        err_o3[i, 3, 1] = stats.rmse(dataFrame[:, 2], pred - pred_no2)
        err_o3[i, 3, 2] = stats.mape(dataFrame[:, 2], pred - pred_no2)
        err_o3[i, 3, 3] = stats.coeff_deter(dataFrame[:, 2], pred - pred_no2)
        err_o3[i, 3, 4] = stats.pearson(dataFrame[:, 2], pred - pred_no2)

        #print np.mean(pred)
        #print np.std(pred)

    #np.savetxt("alpha-no2-err1.csv", err_no2[0].T, fmt='%0.4g', delimiter=',')
    #np.savetxt("alpha-no2-err2.csv", err_no2[1].T, fmt='%0.4g', delimiter=',')
    #np.savetxt("alpha-o3-err1.csv", err_o3[0].T, fmt='%0.4g', delimiter=',')
    #np.savetxt("alpha-o3-err2.csv", err_o3[1].T, fmt='%0.4g', delimiter=',')
    #print err_no2
    #print err_o3
    return err_no2, err_o3
Exemplo n.º 3
0
                            (stats.peak_snr(post1, post2)))

        if opts.structural_similarity:
            if opts.Verbose:
                print "        structural_similarity"
            messages.append(
                "structural similarity : %.5f" % stats.structural_similarity(
                    post1,
                    post2,
                    c1=0.01 * np.min(np.mean(post1), np.mean(post2)),
                    c2=0.01 * np.min(np.var(post1), np.var(post2))))

        if opts.pearson:
            if opts.Verbose:
                print "        pearson"
            messages.append("pearson : %.5f" % stats.pearson(post1, post2))

        if opts.dot:
            if opts.Verbose:
                print "        dot"
            messages.append("dot : %.5f" % stats.dot(post1, post2))

        if opts.spotcheck:
            if opts.Verbose:
                print "        spotcheck"
            p12, p21 = stats.spotcheck(post1, post2, opts.spotcheck)
            for conf, a, b in zip(opts.spotcheck, p12, p21):
                messages.append("spotcheck %.3f %s: (%.5f, %.5f)" %
                                (conf * 100, "%", a, b))

        if opts.Verbose:
def pearsonDistance(lx, ly):	
	return stats.pearson(lx, ly)