def test_reduce_poly_inequalities_complex_relational(): cond = Eq(im(x), 0) assert reduce_poly_inequalities( [[Eq(x**2, 0)]], x, relational=True) == And(Eq(re(x), 0), cond) assert reduce_poly_inequalities( [[Le(x**2, 0)]], x, relational=True) == And(Eq(re(x), 0), cond) assert reduce_poly_inequalities( [[Lt(x**2, 0)]], x, relational=True) is False assert reduce_poly_inequalities( [[Ge(x**2, 0)]], x, relational=True) == cond assert reduce_poly_inequalities([[Gt(x**2, 0)]], x, relational=True) == And(Or(Lt(re(x), 0), Lt(0, re(x))), cond) assert reduce_poly_inequalities([[Ne(x**2, 0)]], x, relational=True) == And(Or(Lt(re(x), 0), Lt(0, re(x))), cond) assert reduce_poly_inequalities([[Eq(x**2, 1)]], x, relational=True) == And(Or(Eq(re(x), -1), Eq(re(x), 1)), cond) assert reduce_poly_inequalities([[Le(x**2, 1)]], x, relational=True) == And(And(Le(-1, re(x)), Le(re(x), 1)), cond) assert reduce_poly_inequalities([[Lt(x**2, 1)]], x, relational=True) == And(And(Lt(-1, re(x)), Lt(re(x), 1)), cond) assert reduce_poly_inequalities([[Ge(x**2, 1)]], x, relational=True) == And(Or(Le(re(x), -1), Le(1, re(x))), cond) assert reduce_poly_inequalities([[Gt(x**2, 1)]], x, relational=True) == And(Or(Lt(re(x), -1), Lt(1, re(x))), cond) assert reduce_poly_inequalities([[Ne(x**2, 1)]], x, relational=True) == And(Or(Lt(re(x), -1), And(Lt(-1, re(x)), Lt(re(x), 1)), Lt(1, re(x))), cond) assert reduce_poly_inequalities([[Eq(x**2, 1.0)]], x, relational=True).evalf() == And(Or(Eq(re(x), -1.0), Eq(re(x), 1.0)), cond) assert reduce_poly_inequalities([[Le(x**2, 1.0)]], x, relational=True) == And(And(Le(-1.0, re(x)), Le(re(x), 1.0)), cond) assert reduce_poly_inequalities([[Lt(x**2, 1.0)]], x, relational=True) == And(And(Lt(-1.0, re(x)), Lt(re(x), 1.0)), cond) assert reduce_poly_inequalities([[Ge(x**2, 1.0)]], x, relational=True) == And(Or(Le(re(x), -1.0), Le(1.0, re(x))), cond) assert reduce_poly_inequalities([[Gt(x**2, 1.0)]], x, relational=True) == And(Or(Lt(re(x), -1.0), Lt(1.0, re(x))), cond) assert reduce_poly_inequalities([[Ne(x**2, 1.0)]], x, relational=True) == And(Or(Lt(re(x), -1.0), And(Lt(-1.0, re(x)), Lt(re(x), 1.0)), Lt(1.0, re(x))), cond)
def test_f_expand_complex(): x = Symbol("x", real=True) assert f(x).expand(complex=True) == I * im(f(x)) + re(f(x)) assert exp(x).expand(complex=True) == exp(x) assert exp(I * x).expand(complex=True) == cos(x) + I * sin(x) assert exp(z).expand(complex=True) == cos(im(z)) * exp(re(z)) + I * sin(im(z)) * exp(re(z))
def _generic_mul(q1, q2): q1 = sympify(q1) q2 = sympify(q2) # None is a Quaternion: if not isinstance(q1, Quaternion) and not isinstance(q2, Quaternion): return q1 * q2 # If q1 is a number or a sympy expression instead of a quaternion if not isinstance(q1, Quaternion): if q2.real_field: if q1.is_complex: return q2 * Quaternion(re(q1), im(q1), 0, 0) else: return Mul(q1, q2) else: return Quaternion(q1 * q2.a, q1 * q2.b, q1 * q2.c, q1 * q2.d) # If q2 is a number or a sympy expression instead of a quaternion if not isinstance(q2, Quaternion): if q1.real_field: if q2.is_complex: return q1 * Quaternion(re(q2), im(q2), 0, 0) else: return Mul(q1, q2) else: return Quaternion(q2 * q1.a, q2 * q1.b, q2 * q1.c, q2 * q1.d) return Quaternion(-q1.b*q2.b - q1.c*q2.c - q1.d*q2.d + q1.a*q2.a, q1.b*q2.a + q1.c*q2.d - q1.d*q2.c + q1.a*q2.b, -q1.b*q2.d + q1.c*q2.a + q1.d*q2.b + q1.a*q2.c, q1.b*q2.c - q1.c*q2.b + q1.d*q2.a + q1.a * q2.d)
def test_real_imag(): x, y, z = symbols('x, y, z') X, Y, Z = symbols('X, Y, Z', commutative=False) a = Symbol('a', real=True) assert (2*a*x).as_real_imag() == (2*a*re(x), 2*a*im(x)) # issue 2296: assert (x*x.conjugate()).as_real_imag() == (Abs(x)**2, 0) assert im(x*x.conjugate()) == 0 assert im(x*y.conjugate()*z*y) == im(x*z)*Abs(y)**2 assert im(x*y.conjugate()*x*y) == im(x**2)*Abs(y)**2 assert im(Z*y.conjugate()*X*y) == im(Z*X)*Abs(y)**2 assert im(X*X.conjugate()) == im(X*X.conjugate(), evaluate=False) assert (sin(x)*sin(x).conjugate()).as_real_imag() == \ (Abs(sin(x))**2, 0) # issue 3474: assert (x**2).as_real_imag() == (re(x)**2 - im(x)**2, 2*re(x)*im(x)) # issue 3329: r = Symbol('r', real=True) i = Symbol('i', imaginary=True) assert (i*r*x).as_real_imag() == (I*i*r*im(x), -I*i*r*re(x)) # issue 4007: assert ((1 + I)/(1 - I)).as_real_imag() == (0, 1) assert ((1 + 2*I)*(1 + 3*I)).as_real_imag() == (-5, 5)
def test_im(): x, y = symbols('x,y') a, b = symbols('a,b', real=True) r = Symbol('r', real=True) i = Symbol('i', imaginary=True) assert im(nan) == nan assert im(oo*I) == oo assert im(-oo*I) == -oo assert im(0) == 0 assert im(1) == 0 assert im(-1) == 0 assert im(E*I) == E assert im(-E*I) == -E assert im(x) == im(x) assert im(x*I) == re(x) assert im(r*I) == r assert im(r) == 0 assert im(i*I) == 0 assert im(i) == -I * i assert im(x + y) == im(x + y) assert im(x + r) == im(x) assert im(x + r*I) == im(x) + r assert im(im(x)*I) == im(x) assert im(2 + I) == 1 assert im(x + I) == im(x) + 1 assert im(x + y*I) == im(x) + re(y) assert im(x + r*I) == im(x) + r assert im(log(2*I)) == pi/2 assert im((2 + I)**2).expand(complex=True) == 4 assert im(conjugate(x)) == -im(x) assert conjugate(im(x)) == im(x) assert im(x).as_real_imag() == (im(x), 0) assert im(i*r*x).diff(r) == im(i*x) assert im(i*r*x).diff(i) == -I * re(r*x) assert im( sqrt(a + b*I)) == (a**2 + b**2)**Rational(1, 4)*sin(atan2(b, a)/2) assert im(a * (2 + b*I)) == a*b assert im((1 + sqrt(a + b*I))/2) == \ (a**2 + b**2)**Rational(1, 4)*sin(atan2(b, a)/2)/2 assert im(x).rewrite(re) == x - re(x) assert (x + im(y)).rewrite(im, re) == x + y - re(y)
def test_solve_inequalities(): system = [Lt(x ** 2 - 2, 0), Gt(x ** 2 - 1, 0)] assert solve(system) == And( Or(And(Lt(-sqrt(2), re(x)), Lt(re(x), -1)), And(Lt(1, re(x)), Lt(re(x), sqrt(2)))), Eq(im(x), 0) ) assert solve(system, assume=Q.real(x)) == Or(And(Lt(-sqrt(2), x), Lt(x, -1)), And(Lt(1, x), Lt(x, sqrt(2))))
def test_mellin_transform_fail(): skip("Risch takes forever.") from sympy import Max, Min MT = mellin_transform bpos = symbols('b', positive=True) bneg = symbols('b', negative=True) expr = (sqrt(x + b**2) + b)**a/sqrt(x + b**2) # TODO does not work with bneg, argument wrong. Needs changes to matching. assert MT(expr.subs(b, -bpos), x, s) == \ ((-1)**(a + 1)*2**(a + 2*s)*bpos**(a + 2*s - 1)*gamma(a + s) *gamma(1 - a - 2*s)/gamma(1 - s), (-re(a), -re(a)/2 + S(1)/2), True) expr = (sqrt(x + b**2) + b)**a assert MT(expr.subs(b, -bpos), x, s) == \ ( 2**(a + 2*s)*a*bpos**(a + 2*s)*gamma(-a - 2* s)*gamma(a + s)/gamma(-s + 1), (-re(a), -re(a)/2), True) # Test exponent 1: assert MT(expr.subs({b: -bpos, a: 1}), x, s) == \ (-bpos**(2*s + 1)*gamma(s)*gamma(-s - S(1)/2)/(2*sqrt(pi)), (-1, -S(1)/2), True)
def test_messy(): from sympy import (laplace_transform, Si, Shi, Chi, atan, Piecewise, acoth, E1, besselj, acosh, asin, And, re, fourier_transform, sqrt) assert laplace_transform(Si(x), x, s) == ((-atan(s) + pi/2)/s, 0, True) assert laplace_transform(Shi(x), x, s) == (acoth(s)/s, 1, True) # where should the logs be simplified? assert laplace_transform(Chi(x), x, s) == \ ((log(s**(-2)) - log((s**2 - 1)/s**2))/(2*s), 1, True) # TODO maybe simplify the inequalities? assert laplace_transform(besselj(a, x), x, s)[1:] == \ (0, And(S(0) < re(a/2) + S(1)/2, S(0) < re(a/2) + 1)) # NOTE s < 0 can be done, but argument reduction is not good enough yet assert fourier_transform(besselj(1, x)/x, x, s, noconds=False) == \ (Piecewise((0, 4*abs(pi**2*s**2) > 1), (2*sqrt(-4*pi**2*s**2 + 1), True)), s > 0) # TODO FT(besselj(0,x)) - conditions are messy (but for acceptable reasons) # - folding could be better assert integrate(E1(x)*besselj(0, x), (x, 0, oo), meijerg=True) == \ log(1 + sqrt(2)) assert integrate(E1(x)*besselj(1, x), (x, 0, oo), meijerg=True) == \ log(S(1)/2 + sqrt(2)/2) assert integrate(1/x/sqrt(1 - x**2), x, meijerg=True) == \ Piecewise((-acosh(1/x), 1 < abs(x**(-2))), (I*asin(1/x), True))
def test_as_real_imag(): n = pi**1000 # the special code for working out the real # and complex parts of a power with Integer exponent # should not run if there is no imaginary part, hence # this should not hang assert n.as_real_imag() == (n, 0) # issue 6261 x = Symbol('x') assert sqrt(x).as_real_imag() == \ ((re(x)**2 + im(x)**2)**(S(1)/4)*cos(atan2(im(x), re(x))/2), (re(x)**2 + im(x)**2)**(S(1)/4)*sin(atan2(im(x), re(x))/2)) # issue 3853 a, b = symbols('a,b', real=True) assert ((1 + sqrt(a + b*I))/2).as_real_imag() == \ ( (a**2 + b**2)**Rational( 1, 4)*cos(atan2(b, a)/2)/2 + Rational(1, 2), (a**2 + b**2)**Rational(1, 4)*sin(atan2(b, a)/2)/2) assert sqrt(a**2).as_real_imag() == (sqrt(a**2), 0) i = symbols('i', imaginary=True) assert sqrt(i**2).as_real_imag() == (0, abs(i))
def horo_image_height(M,z,h): # assert linalg.det(M) == 1 c = get_c(M) d = get_d(M) if c*z + d != 0 : return h / sym.re((c*z + d)*(c*z + d).conjugate()) else : return 1 / sym.re(h * c * c.conjugate())
def test_derivatives_issue1658(): x = Symbol('x') f = Function('f') assert re(f(x)).diff(x) == re(f(x).diff(x)) assert im(f(x)).diff(x) == im(f(x).diff(x)) x = Symbol('x', real=True) assert Abs(f(x)).diff(x).subs(f(x), 1+I*x).doit() == x/sqrt(1 + x**2) assert arg(f(x)).diff(x).subs(f(x), 1+I*x**2).doit() == 2*x/(1+x**4)
def test_f_expand_complex(): f = Function('f') x = Symbol('x', real=True) z = Symbol('z') assert f(x).expand(complex=True) == I*im(f(x)) + re(f(x)) assert exp(x).expand(complex=True) == exp(x) assert exp(I*x).expand(complex=True) == cos(x) + I*sin(x) assert exp(z).expand(complex=True) == cos(im(z))*exp(re(z)) + \ I*sin(im(z))*exp(re(z))
def dictprint(n,D): """ Prints the tableau format of the dictionary representation in D, n is the number of variables. """ print len(D), n for k in D.keys(): c = D[k] print sp.re(c), sp.im(c), strexp(k)
def test_latex_functions(): assert latex(exp(x)) == "e^{x}" assert latex(exp(1)+exp(2)) == "e + e^{2}" f = Function('f') assert latex(f(x)) == '\\operatorname{f}{\\left (x \\right )}' beta = Function('beta') assert latex(beta(x)) == r"\beta{\left (x \right )}" assert latex(sin(x)) == r"\sin{\left (x \right )}" assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}" assert latex(sin(2*x**2), fold_func_brackets=True) == \ r"\sin {2 x^{2}}" assert latex(sin(x**2), fold_func_brackets=True) == \ r"\sin {x^{2}}" assert latex(asin(x)**2) == r"\operatorname{asin}^{2}{\left (x \right )}" assert latex(asin(x)**2,inv_trig_style="full") == \ r"\arcsin^{2}{\left (x \right )}" assert latex(asin(x)**2,inv_trig_style="power") == \ r"\sin^{-1}{\left (x \right )}^{2}" assert latex(asin(x**2),inv_trig_style="power",fold_func_brackets=True) == \ r"\sin^{-1} {x^{2}}" assert latex(factorial(k)) == r"k!" assert latex(factorial(-k)) == r"\left(- k\right)!" assert latex(factorial2(k)) == r"k!!" assert latex(factorial2(-k)) == r"\left(- k\right)!!" assert latex(binomial(2,k)) == r"{\binom{2}{k}}" assert latex(FallingFactorial(3,k)) == r"{\left(3\right)}_{\left(k\right)}" assert latex(RisingFactorial(3,k)) == r"{\left(3\right)}^{\left(k\right)}" assert latex(floor(x)) == r"\lfloor{x}\rfloor" assert latex(ceiling(x)) == r"\lceil{x}\rceil" assert latex(Abs(x)) == r"\lvert{x}\rvert" assert latex(re(x)) == r"\Re{x}" assert latex(re(x+y)) == r"\Re {\left (x + y \right )}" assert latex(im(x)) == r"\Im{x}" assert latex(conjugate(x)) == r"\overline{x}" assert latex(gamma(x)) == r"\Gamma\left(x\right)" assert latex(Order(x)) == r"\mathcal{O}\left(x\right)" assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)' assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)' assert latex(cot(x)) == r'\cot{\left (x \right )}' assert latex(coth(x)) == r'\coth{\left (x \right )}' assert latex(re(x)) == r'\Re{x}' assert latex(im(x)) == r'\Im{x}' assert latex(root(x,y)) == r'x^{\frac{1}{y}}' assert latex(arg(x)) == r'\arg{\left (x \right )}' assert latex(zeta(x)) == r'\zeta{\left (x \right )}'
def _laplace_transform(f, t, s, simplify=True): """ The backend function for laplace transforms. """ from sympy import (re, Max, exp, pi, Abs, Min, periodic_argument as arg, cos, Wild, symbols) F = integrate(exp(-s*t) * f, (t, 0, oo)) if not F.has(Integral): return _simplify(F, simplify), -oo, True if not F.is_Piecewise: raise IntegralTransformError('Laplace', f, 'could not compute integral') F, cond = F.args[0] if F.has(Integral): raise IntegralTransformError('Laplace', f, 'integral in unexpected form') a = -oo aux = True conds = conjuncts(to_cnf(cond)) u = Dummy('u', real=True) p, q, w1, w2, w3 = symbols('p q w1 w2 w3', cls=Wild, exclude=[s]) for c in conds: a_ = oo aux_ = [] for d in disjuncts(c): m = d.match(abs(arg((s + w3)**p*q, w1)) < w2) if m: if m[q] > 0 and m[w2]/m[p] == pi/2: d = re(s + m[w3]) > 0 m = d.match(0 < cos(abs(arg(s, q)))*abs(s) - p) if m: d = re(s) > m[p] d_ = d.replace(re, lambda x: x.expand().as_real_imag()[0]).subs(re(s), t) if not d.is_Relational or (d.rel_op != '<' and d.rel_op != '<=') \ or d_.has(s) or not d_.has(t): aux_ += [d] continue soln = _solve_inequality(d_, t) if not soln.is_Relational or \ (soln.rel_op != '<' and soln.rel_op != '<='): aux_ += [d] continue if soln.lhs == t: raise IntegralTransformError('Laplace', f, 'convergence not in half-plane?') else: a_ = Min(soln.lhs, a_) if a_ != oo: a = Max(a_, a) else: aux = And(aux, Or(*aux_)) return _simplify(F, simplify), a, aux
def test_solve_inequalities(): system = [Lt(x**2 - 2, 0), Gt(x**2 - 1, 0)] assert solve(system) == \ And(Or(And(Lt(-sqrt(2), re(x)), Lt(re(x), -1)), And(Lt(1, re(x)), Lt(re(x), sqrt(2)))), Eq(im(x), 0)) assert solve(system, assume=Q.real(x)) == \ Or(And(Lt(-sqrt(2), x), Lt(x, -1)), And(Lt(1, x), Lt(x, sqrt(2)))) # issue 3528, 3448 assert solve((x - 3)/(x - 2) < 0, x, assume=Q.real(x)) == And(Lt(2, x), Lt(x, 3)) assert solve(x/(x + 1) > 1, x, assume=Q.real(x)) == Lt(x, -1)
def test_map_coeffs(): p = Poly(x**2 + 2*x*y, x, y) q = p.map_coeffs(lambda c: 2*c) assert q.as_basic() == 2*x**2 + 4*x*y p = Poly(u*x**2 + v*x*y, x, y) q = p.map_coeffs(expand, complex=True) assert q.as_basic() == x**2*(I*im(u) + re(u)) + x*y*(I*im(v) + re(v)) raises(PolynomialError, "p.map_coeffs(lambda c: x*c)")
def test_derivatives_issue_4757(): x = Symbol('x', real=True) y = Symbol('y', imaginary=True) f = Function('f') assert re(f(x)).diff(x) == re(f(x).diff(x)) assert im(f(x)).diff(x) == im(f(x).diff(x)) assert re(f(y)).diff(y) == -I*im(f(y).diff(y)) assert im(f(y)).diff(y) == -I*re(f(y).diff(y)) assert Abs(f(x)).diff(x).subs(f(x), 1 + I*x).doit() == x/sqrt(1 + x**2) assert arg(f(x)).diff(x).subs(f(x), 1 + I*x**2).doit() == 2*x/(1 + x**4) assert Abs(f(y)).diff(y).subs(f(y), 1 + y).doit() == -y/sqrt(1 - y**2) assert arg(f(y)).diff(y).subs(f(y), I + y**2).doit() == 2*y/(1 + y**4)
def test_exp_assumptions(): x = Symbol('x') r = Symbol('r', real=True) i = Symbol('i', imaginary=True) for e in exp, exp_polar: assert e(x).is_real is None assert e(x).is_imaginary is None assert e(i).is_real is None assert e(i).is_imaginary is None assert e(r).is_real is True assert e(r).is_imaginary is False assert e(re(x)).is_real is True assert e(re(x)).is_imaginary is False
def test_as_real_imag(): n = pi**1000 # the special code for working out the real # and complex parts of a power with Integer exponent # should not run if there is no imaginary part, hence # this should not hang assert n.as_real_imag() == (n, 0) # issue 3162 x = Symbol('x') assert sqrt(x).as_real_imag() == \ ((re(x)**2 + im(x)**2)**(S(1)/4)*cos(atan2(im(x), re(x))/2), \ (re(x)**2 + im(x)**2)**(S(1)/4)*sin(atan2(im(x), re(x))/2))
def test_zero_assumptions(): nr = Symbol('nonreal', real=False) ni = Symbol('nonimaginary', imaginary=False) # imaginary implies not zero nzni = Symbol('nonzerononimaginary', zero=False, imaginary=False) assert re(nr).is_zero is None assert im(nr).is_zero is False assert re(ni).is_zero is None assert im(ni).is_zero is None assert re(nzni).is_zero is False assert im(nzni).is_zero is None
def test_diff_no_eval_derivative(): class My(Expr): def __new__(cls, x): return Expr.__new__(cls, x) x, y = symbols('x y') # My doesn't have its own _eval_derivative method assert My(x).diff(x).func is Derivative assert My(x).diff(x, 3).func is Derivative assert re(x).diff(x, 2) == Derivative(re(x), (x, 2)) # issue 15518 assert diff(NDimArray([re(x), im(x)]), (x, 2)) == NDimArray( [Derivative(re(x), (x, 2)), Derivative(im(x), (x, 2))]) # it doesn't have y so it shouldn't need a method for this case assert My(x).diff(y) == 0
def test_im(): x, y = symbols('x,y') r = Symbol('r', real=True) i = Symbol('i', imaginary=True) assert im(nan) == nan assert im(oo*I) == oo assert im(-oo*I) == -oo assert im(0) == 0 assert im(1) == 0 assert im(-1) == 0 assert im(E*I) == E assert im(-E*I) == -E assert im(x) == im(x) assert im(x*I) == re(x) assert im(r*I) == r assert im(r) == 0 assert im(i*I) == 0 assert im(i) == -I * i assert im(x + y) == im(x + y) assert im(x + r) == im(x) assert im(x + r*I) == im(x) + r assert im(im(x)*I) == im(x) assert im(2 + I) == 1 assert im(x + I) == im(x) + 1 assert im(x + y*I) == im(x) + re(y) assert im(x + r*I) == im(x) + r assert im(log(2*I)) == pi/2 assert im((2+I)**2).expand(complex=True) == 4 assert im(conjugate(x)) == -im(x) assert conjugate(im(x)) == im(x) assert im(x).as_real_imag() == (im(x), 0) assert im(i*r*x).diff(r) == im(i*x) assert im(i*r*x).diff(i) == -I * re(r*x)
def convergence_statement(self): """ Return a condition on z under which the series converges. """ from sympy import And, Or, re, Ne, oo R = self.radius_of_convergence if R == 0: return False if R == oo: return True # The special functions and their approximations, page 44 e = self.eta z = self.argument c1 = And(re(e) < 0, abs(z) <= 1) c2 = And(0 <= re(e), re(e) < 1, abs(z) <= 1, Ne(z, 1)) c3 = And(re(e) >= 1, abs(z) < 1) return Or(c1, c2, c3)
def test_reduce_inequalities_multivariate(): x = Symbol('x') y = Symbol('y') assert reduce_inequalities([Ge(x**2, 1), Ge(y**2, 1)]) == \ And(Eq(im(x), 0), Eq(im(y), 0), Or(And(Le(1, re(x)), Lt(re(x), oo)), And(Le(re(x), -1), Lt(-oo, re(x)))), Or(And(Le(1, re(y)), Lt(re(y), oo)), And(Le(re(y), -1), Lt(-oo, re(y)))))
def test_bugs(): from sympy import polar_lift, re assert abs(re((1 + I)**2)) < 1e-15 # anything that evalf's to 0 will do in place of polar_lift assert abs(polar_lift(0)).n() == 0
def test_atan2(): assert atan2(0, 0) == S.NaN assert atan2(0, 1) == 0 assert atan2(1, 1) == pi/4 assert atan2(1, 0) == pi/2 assert atan2(1, -1) == 3*pi/4 assert atan2(0, -1) == pi assert atan2(-1, -1) == -3*pi/4 assert atan2(-1, 0) == -pi/2 assert atan2(-1, 1) == -pi/4 u = Symbol("u", positive=True) assert atan2(0, u) == 0 u = Symbol("u", negative=True) assert atan2(0, u) == pi assert atan2(y, oo) == 0 assert atan2(y, -oo)== 2*pi*Heaviside(re(y)) - pi assert atan2(y, x).rewrite(log) == -I*log((x + I*y)/sqrt(x**2 + y**2)) assert atan2(y, x).rewrite(atan) == 2*atan(y/(x + sqrt(x**2 + y**2))) assert diff(atan2(y, x), x) == -y/(x**2 + y**2) assert diff(atan2(y, x), y) == x/(x**2 + y**2) assert simplify(diff(atan2(y, x).rewrite(log), x)) == -y/(x**2 + y**2) assert simplify(diff(atan2(y, x).rewrite(log), y)) == x/(x**2 + y**2) assert isinstance(atan2(2, 3*I).n(), atan2)
def test_catalan(): n = Symbol('n', integer=True) m = Symbol('n', integer=True, positive=True) catalans = [1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786] for i, c in enumerate(catalans): assert catalan(i) == c assert catalan(n).rewrite(factorial).subs(n, i) == c assert catalan(n).rewrite(Product).subs(n, i).doit() == c assert catalan(x) == catalan(x) assert catalan(2*x).rewrite(binomial) == binomial(4*x, 2*x)/(2*x + 1) assert catalan(Rational(1, 2)).rewrite(gamma) == 8/(3*pi) assert catalan(Rational(1, 2)).rewrite(factorial).rewrite(gamma) ==\ 8 / (3 * pi) assert catalan(3*x).rewrite(gamma) == 4**( 3*x)*gamma(3*x + Rational(1, 2))/(sqrt(pi)*gamma(3*x + 2)) assert catalan(x).rewrite(hyper) == hyper((-x + 1, -x), (2,), 1) assert catalan(n).rewrite(factorial) == factorial(2*n) / (factorial(n + 1) * factorial(n)) assert isinstance(catalan(n).rewrite(Product), catalan) assert isinstance(catalan(m).rewrite(Product), Product) assert diff(catalan(x), x) == (polygamma( 0, x + Rational(1, 2)) - polygamma(0, x + 2) + log(4))*catalan(x) assert catalan(x).evalf() == catalan(x) c = catalan(S.Half).evalf() assert str(c) == '0.848826363156775' c = catalan(I).evalf(3) assert str((re(c), im(c))) == '(0.398, -0.0209)'
def plot_and_save(): x = Symbol('x') y = Symbol('y') z = Symbol('z') #implicit plot tests plot_implicit(Eq(y, cos(x)), (x, -5, 5), (y, -2, 2)).save(tmp_file()) plot_implicit(Eq(y**2, x**3 - x), (x, -5, 5), (y, -4, 4)).save(tmp_file()) plot_implicit(y > 1 / x, (x, -5, 5), (y, -2, 2)).save(tmp_file()) plot_implicit(y < 1 / tan(x), (x, -5, 5), (y, -2, 2)).save(tmp_file()) plot_implicit(y >= 2 * sin(x) * cos(x), (x, -5, 5), (y, -2, 2)).save(tmp_file()) plot_implicit(y <= x**2, (x, -3, 3), (y, -1, 5)).save(tmp_file()) #Test all input args for plot_implicit plot_implicit(Eq(y**2, x**3 - x)).save(tmp_file()) plot_implicit(Eq(y**2, x**3 - x), adaptive=False).save(tmp_file()) plot_implicit(Eq(y**2, x**3 - x), adaptive=False, points = 500).save(tmp_file()) plot_implicit(y > x, (x, -5, 5)).save(tmp_file()) plot_implicit(And(y > exp(x), y > x + 2)).save(tmp_file()) plot_implicit(Or(y > x, y > -x)).save(tmp_file()) plot_implicit(x**2 - 1, (x, -5, 5)).save(tmp_file()) plot_implicit(x**2 - 1).save(tmp_file()) plot_implicit(y > x, depth = -5).save(tmp_file()) plot_implicit(y > x, depth = 5).save(tmp_file()) plot_implicit(y > cos(x), adaptive=False).save(tmp_file()) plot_implicit(y < cos(x), adaptive=False).save(tmp_file()) plot_implicit(And(y > cos(x), Or(y > x, Eq(y, x)))).save(tmp_file()) #Test plots which cannot be rendered using the adaptive algorithm #TODO: catch the warning. plot_implicit(Eq(y, re(cos(x) + I*sin(x)))).save(tmp_file())
def process_conds(cond): """ Turn ``cond`` into a strip (a, b), and auxiliary conditions. """ a = -oo b = oo aux = True conds = conjuncts(to_cnf(cond)) t = Dummy('t', real=True) for c in conds: a_ = oo b_ = -oo aux_ = [] for d in disjuncts(c): d_ = d.replace(re, lambda x: x.as_real_imag()[0]).subs(re(s), t) if not d.is_Relational or (d.rel_op != '<' and d.rel_op != '<=') \ or d_.has(s) or not d_.has(t): aux_ += [d] continue soln = _solve_inequality(d_, t) if not soln.is_Relational or \ (soln.rel_op != '<' and soln.rel_op != '<='): aux_ += [d] continue if soln.lhs == t: b_ = Max(soln.rhs, b_) else: a_ = Min(soln.lhs, a_) if a_ != oo and a_ != b: a = Max(a_, a) elif b_ != -oo and b_ != a: b = Min(b_, b) else: aux = And(aux, Or(*aux_)) return a, b, aux
def g_bessel(n): order = n # order is given s = symbols('s') # as a variable # reverse Bessel Function def bessel(s): b = [0 for i in range(order + 1)] b[0] = 1 b[1] = 1 + s for i in range(1, order): b[i + 1] = b[i] + (s**2) * b[i - 1] / (4 * i**2 - 1) return simplify(b[order]) # Transfer function def S12(s): return 1 / bessel(s) # F function def F(s): return S12(s) * S12(-s) # p,q are numerator and denominator of S11, respectively p, q = fraction(simplify(1 - F(s))) p = expand(p) q = expand(q) # factor_num,factor_den are coefficients of polynomial p,q factor_num = [float(p.coeff(s, i)) for i in range(order**2, -1, -1)] factor_den = [float(q.coeff(s, i)) for i in range(order**2, -1, -1)] ## KEY POINT: tf2zpk is a function that gives you zeros and poles of a fractional function(and really fast) zero, pole, k = signal.tf2zpk(factor_num, factor_den) ## We need only points on the left plane # numerator p1 = [] for i in range(len(zero)): if re(zero[i]) < 0: # without s=0 in case of complexity p1.append(zero[i]) while len(p1) < order: # put back s=0 since the order is determined p1.append(0) # denominator q1 = [] for i in range(len(pole)): if re(pole[i]) < 0: q1.append(pole[i]) while len(q1) < order: q1.append(0) ##Build S11 with p1,q1 def z_frac(s, p1, q1): b = 1 a = 1 for i in range(order): b = b * (s - p1[i]) a = a * (s - q1[i]) return expand(a + b), expand(a - b) # z=(1+S11)/(1-S11) # p2,q2 are numerator and denominator of Zin, respectively p2, q2 = z_frac(s, p1, q1) # p2,q2's coefficients are real now,but because of floats and approximation, the imaginary parts are very close to 0 def coeff(s, p2, q2): numerator = [re(p2.coeff(s, i)) for i in range(order, -1, -1)] denominator = [re(q2.coeff(s, i)) for i in range(order, -1, -1)] return numerator, denominator ## continuous fraction equation def continued_fraction_expr_series(s, p2, q2): numerator, denominator = coeff(s, p2, q2) g = [0 for i in range(order)] for i in range(order): if (numerator[i] - 0 > 0.001) & (denominator[i] - 0 > 0.001): g[i] = numerator[i] / denominator[i] for j in range(order, i - 1, -1): numerator[j] = simplify(numerator[j] - g[i] * denominator[j]) elif (numerator[i] - 0 < 0.001) & (denominator[i] - 0 > 0.001): g[i] = denominator[i] / numerator[i + 1] for j in range(order - 1, i - 1, -1): denominator[j] = simplify(denominator[j] - g[i] * numerator[j + 1]) elif (numerator[i] - 0 > 0.001) & (denominator[i] - 0 < 0.001): g[i] = numerator[i] / denominator[i + 1] for j in range(order - 1, i - 1, -1): numerator[j] = simplify(numerator[j] - g[i] * denominator[j + 1]) return g return continued_fraction_expr_series(s, p2, q2)
def test_inverse_mellin_transform(): from sympy import (sin, simplify, Max, Min, expand, powsimp, exp_polar, cos, cot) IMT = inverse_mellin_transform assert IMT(gamma(s), s, x, (0, oo)) == exp(-x) assert IMT(gamma(-s), s, x, (-oo, 0)) == exp(-1 / x) assert simplify(IMT(s/(2*s**2 - 2), s, x, (2, oo))) == \ (x**2 + 1)*Heaviside(1 - x)/(4*x) # test passing "None" assert IMT(1/(s**2 - 1), s, x, (-1, None)) == \ -x*Heaviside(-x + 1)/2 - Heaviside(x - 1)/(2*x) assert IMT(1/(s**2 - 1), s, x, (None, 1)) == \ -x*Heaviside(-x + 1)/2 - Heaviside(x - 1)/(2*x) # test expansion of sums assert IMT(gamma(s) + gamma(s - 1), s, x, (1, oo)) == (x + 1) * exp(-x) / x # test factorisation of polys r = symbols('r', real=True) assert IMT(1/(s**2 + 1), s, exp(-x), (None, oo) ).subs(x, r).rewrite(sin).simplify() \ == sin(r)*Heaviside(1 - exp(-r)) # test multiplicative substitution _a, _b = symbols('a b', positive=True) assert IMT(_b**(-s / _a) * factorial(s / _a) / s, s, x, (0, oo)) == exp(-_b * x**_a) assert IMT(factorial(_a / _b + s / _b) / (_a + s), s, x, (-_a, oo)) == x**_a * exp(-x**_b) def simp_pows(expr): return simplify(powsimp(expand_mul(expr, deep=False), force=True)).replace(exp_polar, exp) # Now test the inverses of all direct transforms tested above # Section 8.4.2 nu = symbols('nu', real=True, finite=True) assert IMT(-1 / (nu + s), s, x, (-oo, None)) == x**nu * Heaviside(x - 1) assert IMT(1 / (nu + s), s, x, (None, oo)) == x**nu * Heaviside(1 - x) assert simp_pows(IMT(gamma(beta)*gamma(s)/gamma(s + beta), s, x, (0, oo))) \ == (1 - x)**(beta - 1)*Heaviside(1 - x) assert simp_pows(IMT(gamma(beta)*gamma(1 - beta - s)/gamma(1 - s), s, x, (-oo, None))) \ == (x - 1)**(beta - 1)*Heaviside(x - 1) assert simp_pows(IMT(gamma(s)*gamma(rho - s)/gamma(rho), s, x, (0, None))) \ == (1/(x + 1))**rho assert simp_pows(IMT(d**c*d**(s - 1)*sin(pi*c) *gamma(s)*gamma(s + c)*gamma(1 - s)*gamma(1 - s - c)/pi, s, x, (Max(-re(c), 0), Min(1 - re(c), 1)))) \ == (x**c - d**c)/(x - d) assert simplify(IMT(1/sqrt(pi)*(-c/2)*gamma(s)*gamma((1 - c)/2 - s) *gamma(-c/2 - s)/gamma(1 - c - s), s, x, (0, -re(c)/2))) == \ (1 + sqrt(x + 1))**c assert simplify(IMT(2**(a + 2*s)*b**(a + 2*s - 1)*gamma(s)*gamma(1 - a - 2*s) /gamma(1 - a - s), s, x, (0, (-re(a) + 1)/2))) == \ b**(a - 1)*(sqrt(1 + x/b**2) + 1)**(a - 1)*(b**2*sqrt(1 + x/b**2) + b**2 + x)/(b**2 + x) assert simplify(IMT(-2**(c + 2*s)*c*b**(c + 2*s)*gamma(s)*gamma(-c - 2*s) / gamma(-c - s + 1), s, x, (0, -re(c)/2))) == \ b**c*(sqrt(1 + x/b**2) + 1)**c # Section 8.4.5 assert IMT(24 / s**5, s, x, (0, oo)) == log(x)**4 * Heaviside(1 - x) assert expand(IMT(6/s**4, s, x, (-oo, 0)), force=True) == \ log(x)**3*Heaviside(x - 1) assert IMT(pi / (s * sin(pi * s)), s, x, (-1, 0)) == log(x + 1) assert IMT(pi / (s * sin(pi * s / 2)), s, x, (-2, 0)) == log(x**2 + 1) assert IMT(pi / (s * sin(2 * pi * s)), s, x, (-S(1) / 2, 0)) == log(sqrt(x) + 1) assert IMT(pi / (s * sin(pi * s)), s, x, (0, 1)) == log(1 + 1 / x) # TODO def mysimp(expr): from sympy import expand, logcombine, powsimp return expand(powsimp(logcombine(expr, force=True), force=True, deep=True), force=True).replace(exp_polar, exp) assert mysimp(mysimp(IMT(pi / (s * tan(pi * s)), s, x, (-1, 0)))) in [ log(1 - x) * Heaviside(1 - x) + log(x - 1) * Heaviside(x - 1), log(x) * Heaviside(x - 1) + log(1 - 1 / x) * Heaviside(x - 1) + log(-x + 1) * Heaviside(-x + 1) ] # test passing cot assert mysimp(IMT(pi * cot(pi * s) / s, s, x, (0, 1))) in [ log(1 / x - 1) * Heaviside(1 - x) + log(1 - 1 / x) * Heaviside(x - 1), -log(x) * Heaviside(-x + 1) + log(1 - 1 / x) * Heaviside(x - 1) + log(-x + 1) * Heaviside(-x + 1), ] # 8.4.14 assert IMT(-gamma(s + S(1)/2)/(sqrt(pi)*s), s, x, (-S(1)/2, 0)) == \ erf(sqrt(x)) # 8.4.19 assert simplify(IMT(gamma(a/2 + s)/gamma(a/2 - s + 1), s, x, (-re(a)/2, S(3)/4))) \ == besselj(a, 2*sqrt(x)) assert simplify(IMT(2**a*gamma(S(1)/2 - 2*s)*gamma(s + (a + 1)/2) / (gamma(1 - s - a/2)*gamma(1 - 2*s + a)), s, x, (-(re(a) + 1)/2, S(1)/4))) == \ sin(sqrt(x))*besselj(a, sqrt(x)) assert simplify(IMT(2**a*gamma(a/2 + s)*gamma(S(1)/2 - 2*s) / (gamma(S(1)/2 - s - a/2)*gamma(1 - 2*s + a)), s, x, (-re(a)/2, S(1)/4))) == \ cos(sqrt(x))*besselj(a, sqrt(x)) # TODO this comes out as an amazing mess, but simplifies nicely assert simplify(IMT(gamma(a + s)*gamma(S(1)/2 - s) / (sqrt(pi)*gamma(1 - s)*gamma(1 + a - s)), s, x, (-re(a), S(1)/2))) == \ besselj(a, sqrt(x))**2 assert simplify(IMT(gamma(s)*gamma(S(1)/2 - s) / (sqrt(pi)*gamma(1 - s - a)*gamma(1 + a - s)), s, x, (0, S(1)/2))) == \ besselj(-a, sqrt(x))*besselj(a, sqrt(x)) assert simplify(IMT(4**s*gamma(-2*s + 1)*gamma(a/2 + b/2 + s) / (gamma(-a/2 + b/2 - s + 1)*gamma(a/2 - b/2 - s + 1) *gamma(a/2 + b/2 - s + 1)), s, x, (-(re(a) + re(b))/2, S(1)/2))) == \ besselj(a, sqrt(x))*besselj(b, sqrt(x)) # Section 8.4.20 # TODO this can be further simplified! assert simplify(IMT(-2**(2*s)*cos(pi*a/2 - pi*b/2 + pi*s)*gamma(-2*s + 1) * gamma(a/2 - b/2 + s)*gamma(a/2 + b/2 + s) / (pi*gamma(a/2 - b/2 - s + 1)*gamma(a/2 + b/2 - s + 1)), s, x, (Max(-re(a)/2 - re(b)/2, -re(a)/2 + re(b)/2), S(1)/2))) == \ besselj(a, sqrt(x))*-(besselj(-b, sqrt(x)) - besselj(b, sqrt(x))*cos(pi*b))/sin(pi*b) # TODO more # for coverage assert IMT(pi / cos(pi * s), s, x, (0, S(1) / 2)) == sqrt(x) / (x + 1)
def test_periodicity(): x = Symbol("x") y = Symbol("y") z = Symbol("z", real=True) assert periodicity(sin(2 * x), x) == pi assert periodicity((-2) * tan(4 * x), x) == pi / 4 assert periodicity(sin(x)**2, x) == 2 * pi assert periodicity(3**tan(3 * x), x) == pi / 3 assert periodicity(tan(x) * cos(x), x) == 2 * pi assert periodicity(sin(x)**(tan(x)), x) == 2 * pi assert periodicity(tan(x) * sec(x), x) == 2 * pi assert periodicity(sin(2 * x) * cos(2 * x) - y, x) == pi / 2 assert periodicity(tan(x) + cot(x), x) == pi assert periodicity(sin(x) - cos(2 * x), x) == 2 * pi assert periodicity(sin(x) - 1, x) == 2 * pi assert periodicity(sin(4 * x) + sin(x) * cos(x), x) == pi assert periodicity(exp(sin(x)), x) == 2 * pi assert periodicity(log(cot(2 * x)) - sin(cos(2 * x)), x) == pi assert periodicity(sin(2 * x) * exp(tan(x) - csc(2 * x)), x) == pi assert periodicity(cos(sec(x) - csc(2 * x)), x) == 2 * pi assert periodicity(tan(sin(2 * x)), x) == pi assert periodicity(2 * tan(x)**2, x) == pi assert periodicity(sin(x % 4), x) == 4 assert periodicity(sin(x) % 4, x) == 2 * pi assert periodicity(tan((3 * x - 2) % 4), x) == Rational(4, 3) assert periodicity((sqrt(2) * (x + 1) + x) % 3, x) == 3 / (sqrt(2) + 1) assert periodicity((x**2 + 1) % x, x) is None assert periodicity(sin(re(x)), x) == 2 * pi assert periodicity(sin(x)**2 + cos(x)**2, x) is S.Zero assert periodicity(tan(x), y) is S.Zero assert periodicity(sin(x) + I * cos(x), x) == 2 * pi assert periodicity(x - sin(2 * y), y) == pi assert periodicity(exp(x), x) is None assert periodicity(exp(I * x), x) == 2 * pi assert periodicity(exp(I * z), z) == 2 * pi assert periodicity(exp(z), z) is None assert periodicity(exp(log(sin(z) + I * cos(2 * z)), evaluate=False), z) == 2 * pi assert periodicity(exp(log(sin(2 * z) + I * cos(z)), evaluate=False), z) == 2 * pi assert periodicity(exp(sin(z)), z) == 2 * pi assert periodicity(exp(2 * I * z), z) == pi assert periodicity(exp(z + I * sin(z)), z) is None assert periodicity(exp(cos(z / 2) + sin(z)), z) == 4 * pi assert periodicity(log(x), x) is None assert periodicity(exp(x)**sin(x), x) is None assert periodicity(sin(x)**y, y) is None assert periodicity(Abs(sin(Abs(sin(x)))), x) == pi assert all( periodicity(Abs(f(x)), x) == pi for f in (cos, sin, sec, csc, tan, cot)) assert periodicity(Abs(sin(tan(x))), x) == pi assert periodicity(Abs(sin(sin(x) + tan(x))), x) == 2 * pi assert periodicity(sin(x) > S.Half, x) == 2 * pi assert periodicity(x > 2, x) is None assert periodicity(x**3 - x**2 + 1, x) is None assert periodicity(Abs(x), x) is None assert periodicity(Abs(x**2 - 1), x) is None assert periodicity((x**2 + 4) % 2, x) is None assert periodicity((E**x) % 3, x) is None assert periodicity(sin(expint(1, x)) / expint(1, x), x) is None
def test_expand_function(): assert expand(x + y) == x + y assert expand(x + y, complex=True) == I * im(x) + I * im(y) + re(x) + re(y) assert expand((x + y)**11, modulus=11) == x**11 + y**11
Z3, Z4, ZC, V, relation = symbols('Z3 Z4 ZC V relation', imaginary=True) ZC = -I*(1/(omega * C)) Z3 = R4 Z4 = R3 * ZC / (R3 + ZC) V = 1 + Z4/Z3 relation = limit(V,omega,0) / V #relation = limit(relation,R2,R1) pprint(limit(V,omega,0)) relation = Abs(relation) relation = relation.subs(R3,R4) realRelation = re(relation) imRelation = im(relation) absrelation = simplify(sqrt(realRelation**2 + imRelation**2)) #pprint( simplify(absrelation - (2/sqrt(2)) )**2 ) pprint(solve( absrelation - (2/sqrt(2)),C)) #pprint( ) # example of calculations # set value for R4 = 100 Ohm relation = relation.subs(R4,100) # set value for R3 = 10 Ohm relation = relation.subs(R3,100) # set cutoff frequency 200Hz relation = relation.subs(omega,200/(2*pi))
def test_Abs(): raises(TypeError, lambda: Abs(Interval(2, 3))) # issue 8717 x, y = symbols('x,y') assert sign(sign(x)) == sign(x) assert sign(x * y).func is sign assert Abs(0) == 0 assert Abs(1) == 1 assert Abs(-1) == 1 assert Abs(I) == 1 assert Abs(-I) == 1 assert Abs(nan) == nan assert Abs(zoo) == oo assert Abs(I * pi) == pi assert Abs(-I * pi) == pi assert Abs(I * x) == Abs(x) assert Abs(-I * x) == Abs(x) assert Abs(-2 * x) == 2 * Abs(x) assert Abs(-2.0 * x) == 2.0 * Abs(x) assert Abs(2 * pi * x * y) == 2 * pi * Abs(x * y) assert Abs(conjugate(x)) == Abs(x) assert conjugate(Abs(x)) == Abs(x) assert Abs(x).expand(complex=True) == sqrt(re(x)**2 + im(x)**2) a = Symbol('a', positive=True) assert Abs(2 * pi * x * a) == 2 * pi * a * Abs(x) assert Abs(2 * pi * I * x * a) == 2 * pi * a * Abs(x) x = Symbol('x', real=True) n = Symbol('n', integer=True) assert Abs((-1)**n) == 1 assert x**(2 * n) == Abs(x)**(2 * n) assert Abs(x).diff(x) == sign(x) assert abs(x) == Abs(x) # Python built-in assert Abs(x)**3 == x**2 * Abs(x) assert Abs(x)**4 == x**4 assert (Abs(x)**(3 * n)).args == (Abs(x), 3 * n ) # leave symbolic odd unchanged assert (1 / Abs(x)).args == (Abs(x), -1) assert 1 / Abs(x)**3 == 1 / (x**2 * Abs(x)) assert Abs(x)**-3 == Abs(x) / (x**4) assert Abs(x**3) == x**2 * Abs(x) assert Abs(I**I) == exp(-pi / 2) assert Abs((4 + 5 * I)**(6 + 7 * I)) == 68921 * exp(-7 * atan(S(5) / 4)) y = Symbol('y', real=True) assert Abs(I**y) == 1 y = Symbol('y') assert Abs(I**y) == exp(-pi * im(y) / 2) x = Symbol('x', imaginary=True) assert Abs(x).diff(x) == -sign(x) eq = -sqrt(10 + 6 * sqrt(3)) + sqrt(1 + sqrt(3)) + sqrt(3 + 3 * sqrt(3)) # if there is a fast way to know when you can and when you cannot prove an # expression like this is zero then the equality to zero is ok assert abs(eq).func is Abs or abs(eq) == 0 # but sometimes it's hard to do this so it's better not to load # abs down with tests that will be very slow q = 1 + sqrt(2) - 2 * sqrt(3) + 1331 * sqrt(6) p = expand(q**3)**Rational(1, 3) d = p - q assert abs(d).func is Abs or abs(d) == 0 assert Abs(4 * exp(pi * I / 4)) == 4 assert Abs(3**(2 + I)) == 9 assert Abs((-3)**(1 - I)) == 3 * exp(pi) assert Abs(oo) is oo assert Abs(-oo) is oo assert Abs(oo + I) is oo assert Abs(oo + I * oo) is oo a = Symbol('a', algebraic=True) t = Symbol('t', transcendental=True) x = Symbol('x') assert re(a).is_algebraic assert re(x).is_algebraic is None assert re(t).is_algebraic is False
def test_re(): x, y = symbols('x,y') a, b = symbols('a,b', real=True) r = Symbol('r', real=True) i = Symbol('i', imaginary=True) assert re(nan) == nan assert re(oo) == oo assert re(-oo) == -oo assert re(0) == 0 assert re(1) == 1 assert re(-1) == -1 assert re(E) == E assert re(-E) == -E assert unchanged(re, x) assert re(x * I) == -im(x) assert re(r * I) == 0 assert re(r) == r assert re(i * I) == I * i assert re(i) == 0 assert re(x + y) == re(x + y) assert re(x + r) == re(x) + r assert re(re(x)) == re(x) assert re(2 + I) == 2 assert re(x + I) == re(x) assert re(x + y * I) == re(x) - im(y) assert re(x + r * I) == re(x) assert re(log(2 * I)) == log(2) assert re((2 + I)**2).expand(complex=True) == 3 assert re(conjugate(x)) == re(x) assert conjugate(re(x)) == re(x) assert re(x).as_real_imag() == (re(x), 0) assert re(i * r * x).diff(r) == re(i * x) assert re(i * r * x).diff(i) == I * r * im(x) assert re( sqrt(a + b * I)) == (a**2 + b**2)**Rational(1, 4) * cos(atan2(b, a) / 2) assert re(a * (2 + b * I)) == 2 * a assert re((1 + sqrt(a + b*I))/2) == \ (a**2 + b**2)**Rational(1, 4)*cos(atan2(b, a)/2)/2 + Rational(1, 2) assert re(x).rewrite(im) == x - S.ImaginaryUnit * im(x) assert (x + re(y)).rewrite(re, im) == x + y - S.ImaginaryUnit * im(y) a = Symbol('a', algebraic=True) t = Symbol('t', transcendental=True) x = Symbol('x') assert re(a).is_algebraic assert re(x).is_algebraic is None assert re(t).is_algebraic is False assert re(S.ComplexInfinity) == S.NaN n, m, l = symbols('n m l') A = MatrixSymbol('A', n, m) assert re(A) == (S(1) / 2) * (A + conjugate(A)) A = Matrix([[1 + 4 * I, 2], [0, -3 * I]]) assert re(A) == Matrix([[1, 2], [0, 0]]) A = ImmutableMatrix([[1 + 3 * I, 3 - 2 * I], [0, 2 * I]]) assert re(A) == ImmutableMatrix([[1, 3], [0, 0]]) X = SparseMatrix([[2 * j + i * I for i in range(5)] for j in range(5)]) assert re(X) - Matrix([[0, 0, 0, 0, 0], [2, 2, 2, 2, 2], [4, 4, 4, 4, 4], [6, 6, 6, 6, 6], [8, 8, 8, 8, 8] ]) == Matrix.zeros(5) assert im(X) - Matrix([[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4] ]) == Matrix.zeros(5) X = FunctionMatrix(3, 3, Lambda((n, m), n + m * I)) assert re(X) == Matrix([[0, 0, 0], [1, 1, 1], [2, 2, 2]])
def test_im(): x, y = symbols('x,y') a, b = symbols('a,b', real=True) r = Symbol('r', real=True) i = Symbol('i', imaginary=True) assert im(nan) == nan assert im(oo * I) == oo assert im(-oo * I) == -oo assert im(0) == 0 assert im(1) == 0 assert im(-1) == 0 assert im(E * I) == E assert im(-E * I) == -E assert unchanged(im, x) assert im(x * I) == re(x) assert im(r * I) == r assert im(r) == 0 assert im(i * I) == 0 assert im(i) == -I * i assert im(x + y) == im(x + y) assert im(x + r) == im(x) assert im(x + r * I) == im(x) + r assert im(im(x) * I) == im(x) assert im(2 + I) == 1 assert im(x + I) == im(x) + 1 assert im(x + y * I) == im(x) + re(y) assert im(x + r * I) == im(x) + r assert im(log(2 * I)) == pi / 2 assert im((2 + I)**2).expand(complex=True) == 4 assert im(conjugate(x)) == -im(x) assert conjugate(im(x)) == im(x) assert im(x).as_real_imag() == (im(x), 0) assert im(i * r * x).diff(r) == im(i * x) assert im(i * r * x).diff(i) == -I * re(r * x) assert im( sqrt(a + b * I)) == (a**2 + b**2)**Rational(1, 4) * sin(atan2(b, a) / 2) assert im(a * (2 + b * I)) == a * b assert im((1 + sqrt(a + b*I))/2) == \ (a**2 + b**2)**Rational(1, 4)*sin(atan2(b, a)/2)/2 assert im(x).rewrite(re) == -S.ImaginaryUnit * (x - re(x)) assert (x + im(y)).rewrite(im, re) == x - S.ImaginaryUnit * (y - re(y)) a = Symbol('a', algebraic=True) t = Symbol('t', transcendental=True) x = Symbol('x') assert re(a).is_algebraic assert re(x).is_algebraic is None assert re(t).is_algebraic is False assert im(S.ComplexInfinity) == S.NaN n, m, l = symbols('n m l') A = MatrixSymbol('A', n, m) assert im(A) == (S(1) / (2 * I)) * (A - conjugate(A)) A = Matrix([[1 + 4 * I, 2], [0, -3 * I]]) assert im(A) == Matrix([[4, 0], [0, -3]]) A = ImmutableMatrix([[1 + 3 * I, 3 - 2 * I], [0, 2 * I]]) assert im(A) == ImmutableMatrix([[3, -2], [0, 2]]) X = ImmutableSparseMatrix([[i * I + i for i in range(5)] for i in range(5)]) Y = SparseMatrix([[i for i in range(5)] for i in range(5)]) assert im(X).as_immutable() == Y X = FunctionMatrix(3, 3, Lambda((n, m), n + m * I)) assert im(X) == Matrix([[0, 1, 2], [0, 1, 2], [0, 1, 2]])
def test_issue_7450(): ans = integrate(exp(-(1 + I)*x), (x, 0, oo)) assert re(ans) == S.Half and im(ans) == -S.Half
def test_coth(): x, y = symbols('x,y') k = Symbol('k', integer=True) assert coth(nan) == nan assert coth(zoo) == nan assert coth(oo) == 1 assert coth(-oo) == -1 assert coth(0) == coth(0) assert coth(0) == zoo assert coth(1) == coth(1) assert coth(-1) == -coth(1) assert coth(x) == coth(x) assert coth(-x) == -coth(x) assert coth(pi*I) == -I*cot(pi) assert coth(-pi*I) == cot(pi)*I assert coth(2**1024 * E) == coth(2**1024 * E) assert coth(-2**1024 * E) == -coth(2**1024 * E) assert coth(pi*I) == -I*cot(pi) assert coth(-pi*I) == I*cot(pi) assert coth(2*pi*I) == -I*cot(2*pi) assert coth(-2*pi*I) == I*cot(2*pi) assert coth(-3*10**73*pi*I) == I*cot(3*10**73*pi) assert coth(7*10**103*pi*I) == -I*cot(7*10**103*pi) assert coth(pi*I/2) == 0 assert coth(-pi*I/2) == 0 assert coth(5*pi*I/2) == 0 assert coth(7*pi*I/2) == 0 assert coth(pi*I/3) == -I/sqrt(3) assert coth(-2*pi*I/3) == -I/sqrt(3) assert coth(pi*I/4) == -I assert coth(-pi*I/4) == I assert coth(17*pi*I/4) == -I assert coth(-3*pi*I/4) == -I assert coth(pi*I/6) == -sqrt(3)*I assert coth(-pi*I/6) == sqrt(3)*I assert coth(7*pi*I/6) == -sqrt(3)*I assert coth(-5*pi*I/6) == -sqrt(3)*I assert coth(pi*I/105) == -cot(pi/105)*I assert coth(-pi*I/105) == cot(pi/105)*I assert coth(2 + 3*I) == coth(2 + 3*I) assert coth(x*I) == -cot(x)*I assert coth(k*pi*I) == -cot(k*pi)*I assert coth(17*k*pi*I) == -cot(17*k*pi)*I assert coth(k*pi*I) == -cot(k*pi)*I assert coth(log(tan(2))) == coth(log(-tan(2))) assert coth(1 + I*pi/2) == tanh(1) assert coth(x).as_real_imag(deep=False) == (sinh(re(x))*cosh(re(x))/(sin(im(x))**2 + sinh(re(x))**2), -sin(im(x))*cos(im(x))/(sin(im(x))**2 + sinh(re(x))**2)) x = Symbol('x', extended_real=True) assert coth(x).as_real_imag(deep=False) == (coth(x), 0)
def as_real_imag(self, deep=True, **hints): from sympy import im, re if hints.get('ignore') == self: return None else: return (re(self), im(self))
# w_log = np.logspace(0, 7, N) w_lin = np.linspace(20, 20E3*6, N) w_log = np.logspace(0, 5, N) w = np.concatenate((w_lin, w_log), axis=0) f = w/(2*pi) S0_array = [0.2, 0.4, 0.6, 0.8, 1-epsilon] S0_label = [str(i) for i in S0_array] k = Symbol('k') for i in range(len(S0_array)): S0 = S0_array[i] print('Progress: ' + str(int(100*(i+1)/5)) + '%') disp_rel = longitudinal_disp(S0, w, material_mode) k_array = [list(nroots(d, maxsteps = 100))[0:3] for d in disp_rel] for j in range(3): speed_array = w[N:]/[abs(re(e[j])) for e in k_array][N:] attenuation_array = [abs(im(e[j])) for e in k_array][:N] plt.figure(j) plt.semilogx(f[N:], speed_array, label=S0_label[i]) plt.figure(j+3) if j == 2: plt.plot(f[:N], attenuation_array, label=S0_label[i]) else: plt.semilogy(f[:N], attenuation_array, label=S0_label[i]) for j in range(3): plt.figure(j) plt.legend()
def test_mellin_transform_bessel(): from sympy import Max MT = mellin_transform # 8.4.19 assert MT(besselj(a, 2*sqrt(x)), x, s) == \ (gamma(a/2 + s)/gamma(a/2 - s + 1), (-re(a)/2, S(3)/4), True) assert MT(sin(sqrt(x))*besselj(a, sqrt(x)), x, s) == \ (2**a*gamma(-2*s + S(1)/2)*gamma(a/2 + s + S(1)/2)/( gamma(-a/2 - s + 1)*gamma(a - 2*s + 1)), ( -re(a)/2 - S(1)/2, S(1)/4), True) assert MT(cos(sqrt(x))*besselj(a, sqrt(x)), x, s) == \ (2**a*gamma(a/2 + s)*gamma(-2*s + S(1)/2)/( gamma(-a/2 - s + S(1)/2)*gamma(a - 2*s + 1)), ( -re(a)/2, S(1)/4), True) assert MT(besselj(a, sqrt(x))**2, x, s) == \ (gamma(a + s)*gamma(S(1)/2 - s) / (sqrt(pi)*gamma(1 - s)*gamma(1 + a - s)), (-re(a), S(1)/2), True) assert MT(besselj(a, sqrt(x))*besselj(-a, sqrt(x)), x, s) == \ (gamma(s)*gamma(S(1)/2 - s) / (sqrt(pi)*gamma(1 - a - s)*gamma(1 + a - s)), (0, S(1)/2), True) # NOTE: prudnikov gives the strip below as (1/2 - re(a), 1). As far as # I can see this is wrong (since besselj(z) ~ 1/sqrt(z) for z large) assert MT(besselj(a - 1, sqrt(x))*besselj(a, sqrt(x)), x, s) == \ (gamma(1 - s)*gamma(a + s - S(1)/2) / (sqrt(pi)*gamma(S(3)/2 - s)*gamma(a - s + S(1)/2)), (S(1)/2 - re(a), S(1)/2), True) assert MT(besselj(a, sqrt(x))*besselj(b, sqrt(x)), x, s) == \ (4**s*gamma(1 - 2*s)*gamma((a + b)/2 + s) / (gamma(1 - s + (b - a)/2)*gamma(1 - s + (a - b)/2) *gamma( 1 - s + (a + b)/2)), (-(re(a) + re(b))/2, S(1)/2), True) assert MT(besselj(a, sqrt(x))**2 + besselj(-a, sqrt(x))**2, x, s)[1:] == \ ((Max(re(a), -re(a)), S(1)/2), True) # Section 8.4.20 assert MT(bessely(a, 2*sqrt(x)), x, s) == \ (-cos(pi*(a/2 - s))*gamma(s - a/2)*gamma(s + a/2)/pi, (Max(-re(a)/2, re(a)/2), S(3)/4), True) assert MT(sin(sqrt(x))*bessely(a, sqrt(x)), x, s) == \ (-4**s*sin(pi*(a/2 - s))*gamma(S(1)/2 - 2*s) * gamma((1 - a)/2 + s)*gamma((1 + a)/2 + s) / (sqrt(pi)*gamma(1 - s - a/2)*gamma(1 - s + a/2)), (Max(-(re(a) + 1)/2, (re(a) - 1)/2), S(1)/4), True) assert MT(cos(sqrt(x))*bessely(a, sqrt(x)), x, s) == \ (-4**s*cos(pi*(a/2 - s))*gamma(s - a/2)*gamma(s + a/2)*gamma(S(1)/2 - 2*s) / (sqrt(pi)*gamma(S(1)/2 - s - a/2)*gamma(S(1)/2 - s + a/2)), (Max(-re(a)/2, re(a)/2), S(1)/4), True) assert MT(besselj(a, sqrt(x))*bessely(a, sqrt(x)), x, s) == \ (-cos(pi*s)*gamma(s)*gamma(a + s)*gamma(S(1)/2 - s) / (pi**S('3/2')*gamma(1 + a - s)), (Max(-re(a), 0), S(1)/2), True) assert MT(besselj(a, sqrt(x))*bessely(b, sqrt(x)), x, s) == \ (-4**s*cos(pi*(a/2 - b/2 + s))*gamma(1 - 2*s) * gamma(a/2 - b/2 + s)*gamma(a/2 + b/2 + s) / (pi*gamma(a/2 - b/2 - s + 1)*gamma(a/2 + b/2 - s + 1)), (Max((-re(a) + re(b))/2, (-re(a) - re(b))/2), S(1)/2), True) # NOTE bessely(a, sqrt(x))**2 and bessely(a, sqrt(x))*bessely(b, sqrt(x)) # are a mess (no matter what way you look at it ...) assert MT(bessely(a, sqrt(x))**2, x, s)[1:] == \ ((Max(-re(a), 0, re(a)), S(1)/2), True) # Section 8.4.22 # TODO we can't do any of these (delicate cancellation) # Section 8.4.23 assert MT(besselk(a, 2*sqrt(x)), x, s) == \ (gamma( s - a/2)*gamma(s + a/2)/2, (Max(-re(a)/2, re(a)/2), oo), True) assert MT( besselj(a, 2 * sqrt(2 * sqrt(x))) * besselk(a, 2 * sqrt(2 * sqrt(x))), x, s) == (4**(-s) * gamma(2 * s) * gamma(a / 2 + s) / (2 * gamma(a / 2 - s + 1)), (Max(0, -re(a) / 2), oo), True) # TODO bessely(a, x)*besselk(a, x) is a mess assert MT(besseli(a, sqrt(x))*besselk(a, sqrt(x)), x, s) == \ (gamma(s)*gamma( a + s)*gamma(-s + S(1)/2)/(2*sqrt(pi)*gamma(a - s + 1)), (Max(-re(a), 0), S(1)/2), True) assert MT(besseli(b, sqrt(x))*besselk(a, sqrt(x)), x, s) == \ (2**(2*s - 1)*gamma(-2*s + 1)*gamma(-a/2 + b/2 + s)* \ gamma(a/2 + b/2 + s)/(gamma(-a/2 + b/2 - s + 1)* \ gamma(a/2 + b/2 - s + 1)), (Max(-re(a)/2 - re(b)/2, \ re(a)/2 - re(b)/2), S(1)/2), True) # TODO products of besselk are a mess mt = MT(exp(-x / 2) * besselk(a, x / 2), x, s) mt0 = combsimp((trigsimp(combsimp(mt[0].expand(func=True))))) assert mt0 == 2 * pi**(S(3) / 2) * cos(pi * s) * gamma(-s + S(1) / 2) / ( (cos(2 * pi * a) - cos(2 * pi * s)) * gamma(-a - s + 1) * gamma(a - s + 1)) assert mt[1:] == ((Max(-re(a), re(a)), oo), True)
def test_issue_21756(): term = (1 - exp(-2 * I * pi * z)) / (1 - exp(-2 * I * pi * z / 5)) assert term.limit(z, 0) == 5 assert re(term).limit(z, 0) == 5
def test_im(): x, y = symbols('x,y') a, b = symbols('a,b', real=True) r = Symbol('r', real=True) i = Symbol('i', imaginary=True) assert im(nan) == nan assert im(oo * I) == oo assert im(-oo * I) == -oo assert im(0) == 0 assert im(1) == 0 assert im(-1) == 0 assert im(E * I) == E assert im(-E * I) == -E assert im(x) == im(x) assert im(x * I) == re(x) assert im(r * I) == r assert im(r) == 0 assert im(i * I) == 0 assert im(i) == -I * i assert im(x + y) == im(x + y) assert im(x + r) == im(x) assert im(x + r * I) == im(x) + r assert im(im(x) * I) == im(x) assert im(2 + I) == 1 assert im(x + I) == im(x) + 1 assert im(x + y * I) == im(x) + re(y) assert im(x + r * I) == im(x) + r assert im(log(2 * I)) == pi / 2 assert im((2 + I)**2).expand(complex=True) == 4 assert im(conjugate(x)) == -im(x) assert conjugate(im(x)) == im(x) assert im(x).as_real_imag() == (im(x), 0) assert im(i * r * x).diff(r) == im(i * x) assert im(i * r * x).diff(i) == -I * re(r * x) assert im( sqrt(a + b * I)) == (a**2 + b**2)**Rational(1, 4) * sin(atan2(b, a) / 2) assert im(a * (2 + b * I)) == a * b assert im((1 + sqrt(a + b*I))/2) == \ (a**2 + b**2)**Rational(1, 4)*sin(atan2(b, a)/2)/2 assert im(x).rewrite(re) == x - re(x) assert (x + im(y)).rewrite(im, re) == x + y - re(y) a = Symbol('a', algebraic=True) t = Symbol('t', transcendental=True) x = Symbol('x') assert re(a).is_algebraic assert re(x).is_algebraic is None assert re(t).is_algebraic is False
# 0 - Air # 1 - Oil # 2 - Gas material_mode = 2 S0 = np.linspace(epsilon, 1 - epsilon, N) w_array = [10, 100, 500, 1000, 5000] w_label = [str(i) for i in w_array] k = Symbol('k') for i in range(len(w_array)): w = w_array[i] print('Progress: ' + str(int(100 * (i + 1) / 5)) + '%') disp_rel = transverse_disp(S0, w, material_mode) k_array = [list(solveset(i, k))[0] for i in disp_rel] speed_array = [w / abs(re(e)) for e in k_array] attenuation_array = [abs(im(e)) for e in k_array] plt.figure(1) plt.plot(S0, speed_array, '-', label=w_label[i]) plt.figure(2) plt.semilogy(S0, attenuation_array, '-', label=w_label[i]) plt.figure(1) plt.legend() plt.xlabel(r'initial saturation $S_0$') plt.ylabel(r'velocity / $ms^{-1}$') plt.savefig('../plots/speed_sat_s.eps') plt.clf()
def test_re(): x, y = symbols('x,y') a, b = symbols('a,b', real=True) r = Symbol('r', real=True) i = Symbol('i', imaginary=True) assert re(nan) == nan assert re(oo) == oo assert re(-oo) == -oo assert re(0) == 0 assert re(1) == 1 assert re(-1) == -1 assert re(E) == E assert re(-E) == -E assert re(x) == re(x) assert re(x * I) == -im(x) assert re(r * I) == 0 assert re(r) == r assert re(i * I) == I * i assert re(i) == 0 assert re(x + y) == re(x + y) assert re(x + r) == re(x) + r assert re(re(x)) == re(x) assert re(2 + I) == 2 assert re(x + I) == re(x) assert re(x + y * I) == re(x) - im(y) assert re(x + r * I) == re(x) assert re(log(2 * I)) == log(2) assert re((2 + I)**2).expand(complex=True) == 3 assert re(conjugate(x)) == re(x) assert conjugate(re(x)) == re(x) assert re(x).as_real_imag() == (re(x), 0) assert re(i * r * x).diff(r) == re(i * x) assert re(i * r * x).diff(i) == I * r * im(x) assert re( sqrt(a + b * I)) == (a**2 + b**2)**Rational(1, 4) * cos(atan2(b, a) / 2) assert re(a * (2 + b * I)) == 2 * a assert re((1 + sqrt(a + b*I))/2) == \ (a**2 + b**2)**Rational(1, 4)*cos(atan2(b, a)/2)/2 + Rational(1, 2) assert re(x).rewrite(im) == x - im(x) assert (x + re(y)).rewrite(re, im) == x + y - im(y) a = Symbol('a', algebraic=True) t = Symbol('t', transcendental=True) x = Symbol('x') assert re(a).is_algebraic assert re(x).is_algebraic is None assert re(t).is_algebraic is False
def _lambert(eq, x, domain=S.Complexes): """ Given an expression assumed to be in the form ``F(X, a..f) = a*log(b*X + c) + d*X + f = 0`` where X = g(x) and x = g^-1(X), return the Lambert solution, ``x = g^-1(-c/b + (a/d)*W(d/(a*b)*exp(c*d/a/b)*exp(-f/a)))``. """ eq = _mexpand(expand_log(eq)) mainlog = _mostfunc(eq, log, x) if not mainlog: return [] # violated assumptions other = eq.subs(mainlog, 0) if isinstance(-other, log): eq = (eq - other).subs(mainlog, mainlog.args[0]) mainlog = mainlog.args[0] if not isinstance(mainlog, log): return [] # violated assumptions other = -(-other).args[0] eq += other if not x in other.free_symbols: return [] # violated assumptions d, f, X2 = _linab(other, x) logterm = collect(eq - other, mainlog) a = logterm.as_coefficient(mainlog) if a is None or x in a.free_symbols: return [] # violated assumptions logarg = mainlog.args[0] b, c, X1 = _linab(logarg, x) if X1 != X2: return [] # violated assumptions # invert the generator X1 so we have x(u) u = Dummy('rhs') xusolns = solve(X1 - u, x, domain=domain) # There are infinitely many branches for LambertW # but only branches for k = -1 and 0 might be real. The k = 0 # branch is real and the k = -1 branch is real if the LambertW argumen # in in range [-1/e, 0]. Since `solve` does not return infinite # solutions we will only include the -1 branch if it tests as real. # Otherwise, inclusion of any LambertW in the solution indicates to # the user that there are imaginary solutions corresponding to # different k values. lambert_real_branches = [-1, 0] sol = [] # solution of the given Lambert equation is like # sol = -c/b + (a/d)*LambertW(arg, k), # where arg = d/(a*b)*exp((c*d-b*f)/a/b) and k in lambert_real_branches. # Instead of considering the single arg, `d/(a*b)*exp((c*d-b*f)/a/b)`, # the individual `p` roots obtained when writing `exp((c*d-b*f)/a/b)` # as `exp(A/p) = exp(A)**(1/p)`, where `p` is an Integer, are used. # calculating args for LambertW num, den = ((c * d - b * f) / a / b).as_numer_denom() p, den = den.as_coeff_Mul() e = exp(num / den) t = Dummy('t') real = None if p == 1: t = e args = [d / (a * b) * t] elif domain.is_real: ind_ls = [d / (a * b) * t for t in roots(t**p - e, t).keys()] args = [] j = -1 for i in ind_ls: j += 1 if not isinstance(i, int): if not i.has(I): args.append(ind_ls[j]) real = True elif isinstance(i, int): args.append(ind_ls[j]) else: args = [d / (a * b) * t for t in roots(t**p - e, t).keys()] if len(args) == 0: return S.EmptySet # calculating solutions from args for arg in args: if not len(list(eq.atoms(Symbol, Dummy))) > 1: if not domain.is_subset(S.Reals) and ( re(arg) < -1 / E or arg.has(I)) and (not LambertW(arg).is_real) and (not real): integer = Symbol('integer', integer=True) rhs = -c / b + (a / d) * LambertW(arg, integer) for xu in xusolns: sol.append(xu.subs(u, rhs)) else: if -1 / E <= re(arg) < 0 and LambertW(arg).is_real: for k in lambert_real_branches: w = LambertW(arg, k) rhs = -c / b + (a / d) * w for xu in xusolns: sol.append(xu.subs(u, rhs)) elif re(arg) >= 0 and LambertW(arg).is_real: w = LambertW(arg) rhs = -c / b + (a / d) * w for xu in xusolns: sol.append(xu.subs(u, rhs)) elif re(arg) < -1 / E: return S.EmptySet elif (arg.has(Symbol)) and not arg.has(Dummy): if (list(arg.atoms(Symbol))[0]).is_negative and (list( arg.atoms(Symbol))[0]).is_real and domain.is_subset( S.Reals): for k in lambert_real_branches: w = LambertW(arg, k) rhs = -c / b + (a / d) * w if rhs.has(I) or w.has(I): continue for xu in xusolns: sol.append(xu.subs(u, rhs)) if (list(arg.atoms(Symbol))[0]).is_positive and (list( arg.atoms(Symbol))[0]).is_real and domain.is_subset( S.Reals): w = LambertW(arg) rhs = -c / b + (a / d) * w if rhs.has(I) or w.has(I): continue for xu in xusolns: sol.append(xu.subs(u, rhs)) if (list(arg.atoms(Symbol))[0]).is_negative and (list( arg.atoms(Symbol))[0]).is_real and not domain.is_subset( S.Reals): integer = Symbol('integer', integer=True) rhs = -c / b + (a / d) * LambertW(arg, integer) for xu in xusolns: sol.append(xu.subs(u, rhs)) elif domain.is_subset(S.Reals): for k in lambert_real_branches: w = LambertW(arg, k) rhs = -c / b + (a / d) * w if rhs.has(I) or w.has(I): continue for xu in xusolns: sol.append(xu.subs(u, rhs)) elif domain.is_subset(S.Complexes): integer = Symbol('integer', integer=True) rhs = -c / b + (a / d) * LambertW(arg, integer) for xu in xusolns: sol.append(xu.subs(u, rhs)) else: if not domain.is_subset( S.Reals) and (not LambertW(arg).is_real) and (not real): integer = Symbol('integer', integer=True) rhs = Lambda(integer, -c / b + (a / d) * LambertW(arg, integer)) for xu in xusolns: sol.append(xu.subs(u, rhs)) else: w = LambertW(arg) rhs = -c / b + (a / d) * w for xu in xusolns: sol.append(xu.subs(u, rhs)) return list(set(sol))
def test_meijerint(): from sympy import symbols, expand, arg s, t, mu = symbols('s t mu', real=True) assert integrate( meijerg([], [], [0], [], s * t) * meijerg([], [], [mu / 2], [-mu / 2], t**2 / 4), (t, 0, oo)).is_Piecewise s = symbols('s', positive=True) assert integrate(x**s*meijerg([[], []], [[0], []], x), (x, 0, oo)) == \ gamma(s + 1) assert integrate(x**s * meijerg([[], []], [[0], []], x), (x, 0, oo), meijerg=True) == gamma(s + 1) assert isinstance( integrate(x**s * meijerg([[], []], [[0], []], x), (x, 0, oo), meijerg=False), Integral) assert meijerint_indefinite(exp(x), x) == exp(x) # TODO what simplifications should be done automatically? # This tests "extra case" for antecedents_1. a, b = symbols('a b', positive=True) assert simplify(meijerint_definite(x**a, x, 0, b)[0]) == \ b**(a + 1)/(a + 1) # This tests various conditions and expansions: meijerint_definite((x + 1)**3 * exp(-x), x, 0, oo) == (16, True) # Again, how about simplifications? sigma, mu = symbols('sigma mu', positive=True) i, c = meijerint_definite(exp(-((x - mu) / (2 * sigma))**2), x, 0, oo) assert simplify(i) == sqrt(pi) * sigma * (2 - erfc(mu / (2 * sigma))) assert c == True i, _ = meijerint_definite(exp(-mu * x) * exp(sigma * x), x, 0, oo) # TODO it would be nice to test the condition assert simplify(i) == 1 / (mu - sigma) # Test substitutions to change limits assert meijerint_definite(exp(x), x, -oo, 2) == (exp(2), True) # Note: causes a NaN in _check_antecedents assert expand(meijerint_definite(exp(x), x, 0, I)[0]) == exp(I) - 1 assert expand(meijerint_definite(exp(-x), x, 0, x)[0]) == \ 1 - exp(-exp(I*arg(x))*abs(x)) # Test -oo to oo assert meijerint_definite(exp(-x**2), x, -oo, oo) == (sqrt(pi), True) assert meijerint_definite(exp(-abs(x)), x, -oo, oo) == (2, True) assert meijerint_definite(exp(-(2*x - 3)**2), x, -oo, oo) == \ (sqrt(pi)/2, True) assert meijerint_definite(exp(-abs(2 * x - 3)), x, -oo, oo) == (1, True) assert meijerint_definite( exp(-((x - mu) / sigma)**2 / 2) / sqrt(2 * pi * sigma**2), x, -oo, oo) == (1, True) assert meijerint_definite(sinc(x)**2, x, -oo, oo) == (pi, True) # Test one of the extra conditions for 2 g-functinos assert meijerint_definite(exp(-x) * sin(x), x, 0, oo) == (S(1) / 2, True) # Test a bug def res(n): return (1 / (1 + x**2)).diff(x, n).subs(x, 1) * (-1)**n for n in range(6): assert integrate(exp(-x)*sin(x)*x**n, (x, 0, oo), meijerg=True) == \ res(n) # This used to test trigexpand... now it is done by linear substitution assert simplify(integrate(exp(-x) * sin(x + a), (x, 0, oo), meijerg=True)) == sqrt(2) * sin(a + pi / 4) / 2 # Test the condition 14 from prudnikov. # (This is besselj*besselj in disguise, to stop the product from being # recognised in the tables.) a, b, s = symbols('a b s') from sympy import And, re assert meijerint_definite(meijerg([], [], [a/2], [-a/2], x/4) *meijerg([], [], [b/2], [-b/2], x/4)*x**(s - 1), x, 0, oo) == \ (4*2**(2*s - 2)*gamma(-2*s + 1)*gamma(a/2 + b/2 + s) /(gamma(-a/2 + b/2 - s + 1)*gamma(a/2 - b/2 - s + 1) *gamma(a/2 + b/2 - s + 1)), And(0 < -2*re(4*s) + 8, 0 < re(a/2 + b/2 + s), re(2*s) < 1)) # test a bug assert integrate(sin(x**a)*sin(x**b), (x, 0, oo), meijerg=True) == \ Integral(sin(x**a)*sin(x**b), (x, 0, oo)) # test better hyperexpand assert integrate(exp(-x**2)*log(x), (x, 0, oo), meijerg=True) == \ (sqrt(pi)*polygamma(0, S(1)/2)/4).expand() # Test hyperexpand bug. from sympy import lowergamma n = symbols('n', integer=True) assert simplify(integrate(exp(-x)*x**n, x, meijerg=True)) == \ lowergamma(n + 1, x) # Test a bug with argument 1/x alpha = symbols('alpha', positive=True) assert meijerint_definite((2 - x)**alpha*sin(alpha/x), x, 0, 2) == \ (sqrt(pi)*alpha*gamma(alpha + 1)*meijerg(((), (alpha/2 + S(1)/2, alpha/2 + 1)), ((0, 0, S(1)/2), (-S(1)/2,)), alpha**S(2)/16)/4, True) # test a bug related to 3016 a, s = symbols('a s', positive=True) assert simplify(integrate(x**s*exp(-a*x**2), (x, -oo, oo))) == \ a**(-s/2 - S(1)/2)*((-1)**s + 1)*gamma(s/2 + S(1)/2)/2
def coeff(s, p2, q2): numerator = [re(p2.coeff(s, i)) for i in range(order, -1, -1)] denominator = [re(q2.coeff(s, i)) for i in range(order, -1, -1)] return numerator, denominator
def test_re(): x, y = symbols('x,y') a, b = symbols('a,b', real=True) r = Symbol('r', real=True) i = Symbol('i', imaginary=True) assert re(nan) == nan assert re(oo) == oo assert re(-oo) == -oo assert re(0) == 0 assert re(1) == 1 assert re(-1) == -1 assert re(E) == E assert re(-E) == -E assert re(x) == re(x) assert re(x * I) == -im(x) assert re(r * I) == 0 assert re(r) == r assert re(i * I) == I * i assert re(i) == 0 assert re(x + y) == re(x + y) assert re(x + r) == re(x) + r assert re(re(x)) == re(x) assert re(2 + I) == 2 assert re(x + I) == re(x) assert re(x + y * I) == re(x) - im(y) assert re(x + r * I) == re(x) assert re(log(2 * I)) == log(2) assert re((2 + I)**2).expand(complex=True) == 3 assert re(conjugate(x)) == re(x) assert conjugate(re(x)) == re(x) assert re(x).as_real_imag() == (re(x), 0) assert re(i * r * x).diff(r) == re(i * x) assert re(i * r * x).diff(i) == I * r * im(x) assert re( sqrt(a + b * I)) == (a**2 + b**2)**Rational(1, 4) * cos(atan2(b, a) / 2) assert re(a * (2 + b * I)) == 2 * a assert re((1 + sqrt(a + b*I))/2) == \ (a**2 + b**2)**Rational(1, 4)*cos(atan2(b, a)/2)/2 + Rational(1, 2)
def test_latex_functions(): assert latex(exp(x)) == "e^{x}" assert latex(exp(1) + exp(2)) == "e + e^{2}" f = Function('f') assert latex(f(x)) == '\\operatorname{f}{\\left (x \\right )}' beta = Function('beta') assert latex(beta(x)) == r"\beta{\left (x \right )}" assert latex(sin(x)) == r"\sin{\left (x \right )}" assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}" assert latex(sin(2*x**2), fold_func_brackets=True) == \ r"\sin {2 x^{2}}" assert latex(sin(x**2), fold_func_brackets=True) == \ r"\sin {x^{2}}" assert latex(asin(x)**2) == r"\operatorname{asin}^{2}{\left (x \right )}" assert latex(asin(x)**2, inv_trig_style="full") == \ r"\arcsin^{2}{\left (x \right )}" assert latex(asin(x)**2, inv_trig_style="power") == \ r"\sin^{-1}{\left (x \right )}^{2}" assert latex(asin(x**2), inv_trig_style="power", fold_func_brackets=True) == \ r"\sin^{-1} {x^{2}}" assert latex(factorial(k)) == r"k!" assert latex(factorial(-k)) == r"\left(- k\right)!" assert latex(factorial2(k)) == r"k!!" assert latex(factorial2(-k)) == r"\left(- k\right)!!" assert latex(binomial(2, k)) == r"{\binom{2}{k}}" assert latex(FallingFactorial(3, k)) == r"{\left(3\right)}_{\left(k\right)}" assert latex(RisingFactorial(3, k)) == r"{\left(3\right)}^{\left(k\right)}" assert latex(floor(x)) == r"\lfloor{x}\rfloor" assert latex(ceiling(x)) == r"\lceil{x}\rceil" assert latex(Min(x, 2, x**3)) == r"\min\left(2, x, x^{3}\right)" assert latex(Max(x, 2, x**3)) == r"\max\left(2, x, x^{3}\right)" assert latex(Abs(x)) == r"\lvert{x}\rvert" assert latex(re(x)) == r"\Re{x}" assert latex(re(x + y)) == r"\Re{x} + \Re{y}" assert latex(im(x)) == r"\Im{x}" assert latex(conjugate(x)) == r"\overline{x}" assert latex(gamma(x)) == r"\Gamma\left(x\right)" assert latex(Order(x)) == r"\mathcal{O}\left(x\right)" assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)' assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)' assert latex(cot(x)) == r'\cot{\left (x \right )}' assert latex(coth(x)) == r'\coth{\left (x \right )}' assert latex(re(x)) == r'\Re{x}' assert latex(im(x)) == r'\Im{x}' assert latex(root(x, y)) == r'x^{\frac{1}{y}}' assert latex(arg(x)) == r'\arg{\left (x \right )}' assert latex(zeta(x)) == r'\zeta\left(x\right)' assert latex(zeta(x)) == r"\zeta\left(x\right)" assert latex(zeta(x)**2) == r"\zeta^{2}\left(x\right)" assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)" assert latex(zeta(x, y)**2) == r"\zeta^{2}\left(x, y\right)" assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)" assert latex(dirichlet_eta(x)**2) == r"\eta^{2}\left(x\right)" assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)" assert latex(polylog(x, y)**2) == r"\operatorname{Li}_{x}^{2}\left(y\right)" assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)" assert latex(lerchphi(x, y, n)**2) == r"\Phi^{2}\left(x, y, n\right)" assert latex(Ei(x)) == r'\operatorname{Ei}{\left (x \right )}' assert latex(Ei(x)**2) == r'\operatorname{Ei}^{2}{\left (x \right )}' assert latex(expint(x, y)**2) == r'\operatorname{E}_{x}^{2}\left(y\right)' assert latex(Shi(x)**2) == r'\operatorname{Shi}^{2}{\left (x \right )}' assert latex(Si(x)**2) == r'\operatorname{Si}^{2}{\left (x \right )}' assert latex(Ci(x)**2) == r'\operatorname{Ci}^{2}{\left (x \right )}' assert latex(Chi(x)**2) == r'\operatorname{Chi}^{2}{\left (x \right )}' assert latex(jacobi(n, a, b, x)) == r'P_{n}^{\left(a,b\right)}\left(x\right)' assert latex(jacobi( n, a, b, x)**2) == r'\left(P_{n}^{\left(a,b\right)}\left(x\right)\right)^{2}' assert latex(gegenbauer(n, a, x)) == r'C_{n}^{\left(a\right)}\left(x\right)' assert latex(gegenbauer( n, a, x)**2) == r'\left(C_{n}^{\left(a\right)}\left(x\right)\right)^{2}' assert latex(chebyshevt(n, x)) == r'T_{n}\left(x\right)' assert latex(chebyshevt(n, x)**2) == r'\left(T_{n}\left(x\right)\right)^{2}' assert latex(chebyshevu(n, x)) == r'U_{n}\left(x\right)' assert latex(chebyshevu(n, x)**2) == r'\left(U_{n}\left(x\right)\right)^{2}' assert latex(legendre(n, x)) == r'P_{n}\left(x\right)' assert latex(legendre(n, x)**2) == r'\left(P_{n}\left(x\right)\right)^{2}' assert latex(assoc_legendre(n, a, x)) == r'P_{n}^{\left(a\right)}\left(x\right)' assert latex(assoc_legendre( n, a, x)**2) == r'\left(P_{n}^{\left(a\right)}\left(x\right)\right)^{2}' assert latex(laguerre(n, x)) == r'L_{n}\left(x\right)' assert latex(laguerre(n, x)**2) == r'\left(L_{n}\left(x\right)\right)^{2}' assert latex(assoc_laguerre(n, a, x)) == r'L_{n}^{\left(a\right)}\left(x\right)' assert latex(assoc_laguerre( n, a, x)**2) == r'\left(L_{n}^{\left(a\right)}\left(x\right)\right)^{2}' assert latex(hermite(n, x)) == r'H_{n}\left(x\right)' assert latex(hermite(n, x)**2) == r'\left(H_{n}\left(x\right)\right)^{2}' # Test latex printing of function names with "_" assert latex( polar_lift(0)) == r"\operatorname{polar\_lift}{\left (0 \right )}" assert latex(polar_lift(0)** 3) == r"\operatorname{polar\_lift}^{3}{\left (0 \right )}"
etaa, etad = frac_in(dcoeff, DE.t) A = parametric_log_deriv(alphaa, alphad, etaa, etad, DE) if A is not None: Q, m, z = A if Q == 1: n = min(n, m) elif case == "tan": dcoeff = DE.d.quo(Poly(DE.t**2 + 1, DE.t)) with DecrementLevel(DE): # We are guaranteed to not have problems, # because case != 'base'. alphaa, alphad = frac_in( im(-ba.eval(sqrt(-1)) / bd.eval(sqrt(-1)) / a.eval(sqrt(-1))), DE.t) betaa, betad = frac_in( re(-ba.eval(sqrt(-1)) / bd.eval(sqrt(-1)) / a.eval(sqrt(-1))), DE.t) etaa, etad = frac_in(dcoeff, DE.t) if recognize_log_derivative(2 * betaa, betad, DE): A = parametric_log_deriv( alphaa * sqrt(-1) * betad + alphad * betaa, alphad * betad, etaa, etad, DE, ) if A is not None: Q, m, z = A if Q == 1: n = min(n, m) N = max(0, -nb, n - nc)
def test_polygamma(): from sympy import I assert polygamma(n, nan) is nan assert polygamma(0, oo) is oo assert polygamma(0, -oo) is oo assert polygamma(0, I * oo) is oo assert polygamma(0, -I * oo) is oo assert polygamma(1, oo) == 0 assert polygamma(5, oo) == 0 assert polygamma(0, -9) is zoo assert polygamma(0, -9) is zoo assert polygamma(0, -1) is zoo assert polygamma(0, 0) is zoo assert polygamma(0, 1) == -EulerGamma assert polygamma(0, 7) == Rational(49, 20) - EulerGamma assert polygamma(1, 1) == pi**2 / 6 assert polygamma(1, 2) == pi**2 / 6 - 1 assert polygamma(1, 3) == pi**2 / 6 - Rational(5, 4) assert polygamma(3, 1) == pi**4 / 15 assert polygamma(3, 5) == 6 * (Rational(-22369, 20736) + pi**4 / 90) assert polygamma(5, 1) == 8 * pi**6 / 63 assert polygamma(1, S.Half) == pi**2 / 2 assert polygamma(2, S.Half) == -14 * zeta(3) assert polygamma(11, S.Half) == 176896 * pi**12 def t(m, n): x = S(m) / n r = polygamma(0, x) if r.has(polygamma): return False return abs(polygamma(0, x.n()).n() - r.n()).n() < 1e-10 assert t(1, 2) assert t(3, 2) assert t(-1, 2) assert t(1, 4) assert t(-3, 4) assert t(1, 3) assert t(4, 3) assert t(3, 4) assert t(2, 3) assert t(123, 5) assert polygamma(0, x).rewrite(zeta) == polygamma(0, x) assert polygamma(1, x).rewrite(zeta) == zeta(2, x) assert polygamma(2, x).rewrite(zeta) == -2 * zeta(3, x) assert polygamma(I, 2).rewrite(zeta) == polygamma(I, 2) n1 = Symbol('n1') n2 = Symbol('n2', real=True) n3 = Symbol('n3', integer=True) n4 = Symbol('n4', positive=True) n5 = Symbol('n5', positive=True, integer=True) assert polygamma(n1, x).rewrite(zeta) == polygamma(n1, x) assert polygamma(n2, x).rewrite(zeta) == polygamma(n2, x) assert polygamma(n3, x).rewrite(zeta) == polygamma(n3, x) assert polygamma(n4, x).rewrite(zeta) == polygamma(n4, x) assert polygamma( n5, x).rewrite(zeta) == (-1)**(n5 + 1) * factorial(n5) * zeta(n5 + 1, x) assert polygamma(3, 7 * x).diff(x) == 7 * polygamma(4, 7 * x) assert polygamma(0, x).rewrite(harmonic) == harmonic(x - 1) - EulerGamma assert polygamma( 2, x).rewrite(harmonic) == 2 * harmonic(x - 1, 3) - 2 * zeta(3) ni = Symbol("n", integer=True) assert polygamma( ni, x).rewrite(harmonic) == (-1)**(ni + 1) * (-harmonic(x - 1, ni + 1) + zeta(ni + 1)) * factorial(ni) # Polygamma of non-negative integer order is unbranched: from sympy import exp_polar k = Symbol('n', integer=True, nonnegative=True) assert polygamma(k, exp_polar(2 * I * pi) * x) == polygamma(k, x) # but negative integers are branched! k = Symbol('n', integer=True) assert polygamma(k, exp_polar(2 * I * pi) * x).args == (k, exp_polar(2 * I * pi) * x) # Polygamma of order -1 is loggamma: assert polygamma(-1, x) == loggamma(x) # But smaller orders are iterated integrals and don't have a special name assert polygamma(-2, x).func is polygamma # Test a bug assert polygamma(0, -x).expand(func=True) == polygamma(0, -x) assert polygamma(2, 2.5).is_positive == False assert polygamma(2, -2.5).is_positive == False assert polygamma(3, 2.5).is_positive == True assert polygamma(3, -2.5).is_positive is True assert polygamma(-2, -2.5).is_positive is None assert polygamma(-3, -2.5).is_positive is None assert polygamma(2, 2.5).is_negative == True assert polygamma(3, 2.5).is_negative == False assert polygamma(3, -2.5).is_negative == False assert polygamma(2, -2.5).is_negative is True assert polygamma(-2, -2.5).is_negative is None assert polygamma(-3, -2.5).is_negative is None assert polygamma(I, 2).is_positive is None assert polygamma(I, 3).is_negative is None # issue 17350 assert polygamma(pi, 3).evalf() == polygamma(pi, 3) assert (I*polygamma(I, pi)).as_real_imag() == \ (-im(polygamma(I, pi)), re(polygamma(I, pi))) assert (tanh(polygamma(I, 1))).rewrite(exp) == \ (exp(polygamma(I, 1)) - exp(-polygamma(I, 1)))/(exp(polygamma(I, 1)) + exp(-polygamma(I, 1))) assert (I / polygamma(I, 4)).rewrite(exp) == \ I*sqrt(re(polygamma(I, 4))**2 + im(polygamma(I, 4))**2)\ /((re(polygamma(I, 4)) + I*im(polygamma(I, 4)))*Abs(polygamma(I, 4))) assert unchanged(polygamma, 2.3, 1.0) # issue 12569 assert unchanged(im, polygamma(0, I)) assert polygamma(Symbol('a', positive=True), Symbol( 'b', positive=True)).is_real is True assert polygamma(0, I).is_real is None
equation = equation.subs(r4, 10000) elif case == 3: equation = equation.subs(r1, 25000) equation = equation.subs(r2, 2500) equation = equation.subs(r3, 25000) equation = equation.subs(r4, 100000) return simplify(equation) s = Symbol('s') aw = A0 / (1 + s / WP) #W or wp? h = -((r2 / r1) / (1 + ((r2 / r1) / a) + (1 / a) + ((r2 / r3) / a))) h = simplify(h) hMod = sqrt(re(h)**2 + im(h)**2) hMod = simplify(hMod) print("inverter: Vo/Vi=") result1 = replaceValues( h, 1, A0) #pasarle A0 o aw dependiendo de lo que quiera analizar. print("CASO 1>") print(latex(result1.evalf())) result2 = replaceValues( h, 2, A0) #pasarle A0 o aw dependiendo de lo que quiera analizar. print("CASO 2>") print(latex(result2.evalf())) result3 = replaceValues( h, 3, A0) #pasarle A0 o aw dependiendo de lo que quiera analizar.
def test_mellin_transform(): from sympy import Max, Min MT = mellin_transform bpos = symbols('b', positive=True) # 8.4.2 assert MT(x**nu*Heaviside(x - 1), x, s) == \ (-1/(nu + s), (-oo, -re(nu)), True) assert MT(x**nu*Heaviside(1 - x), x, s) == \ (1/(nu + s), (-re(nu), oo), True) assert MT((1 - x)**(beta - 1)*Heaviside(1 - x), x, s) == \ (gamma(beta)*gamma(s)/gamma(beta + s), (0, oo), re(-beta) < 0) assert MT((x - 1)**(beta - 1)*Heaviside(x - 1), x, s) == \ (gamma(beta)*gamma(1 - beta - s)/gamma(1 - s), (-oo, -re(beta) + 1), re(-beta) < 0) assert MT((1 + x)**(-rho), x, s) == \ (gamma(s)*gamma(rho - s)/gamma(rho), (0, re(rho)), True) # TODO also the conditions should be simplified assert MT(abs(1 - x)**(-rho), x, s) == (2 * sin(pi * rho / 2) * gamma(1 - rho) * cos(pi * (rho / 2 - s)) * gamma(s) * gamma(rho - s) / pi, (0, re(rho)), And(re(rho) - 1 < 0, re(rho) < 1)) mt = MT((1 - x)**(beta - 1) * Heaviside(1 - x) + a * (x - 1)**(beta - 1) * Heaviside(x - 1), x, s) assert mt[1], mt[2] == ((0, -re(beta) + 1), True) assert MT((x**a - b**a)/(x - b), x, s)[0] == \ pi*b**(a + s - 1)*sin(pi*a)/(sin(pi*s)*sin(pi*(a + s))) assert MT((x**a - bpos**a)/(x - bpos), x, s) == \ (pi*bpos**(a + s - 1)*sin(pi*a)/(sin(pi*s)*sin(pi*(a + s))), (Max(-re(a), 0), Min(1 - re(a), 1)), True) expr = (sqrt(x + b**2) + b)**a assert MT(expr.subs(b, bpos), x, s) == \ (-a*(2*bpos)**(a + 2*s)*gamma(s)*gamma(-a - 2*s)/gamma(-a - s + 1), (0, -re(a)/2), True) expr = (sqrt(x + b**2) + b)**a / sqrt(x + b**2) assert MT(expr.subs(b, bpos), x, s) == \ (2**(a + 2*s)*bpos**(a + 2*s - 1)*gamma(s) *gamma(1 - a - 2*s)/gamma(1 - a - s), (0, -re(a)/2 + S(1)/2), True) # 8.4.2 assert MT(exp(-x), x, s) == (gamma(s), (0, oo), True) assert MT(exp(-1 / x), x, s) == (gamma(-s), (-oo, 0), True) # 8.4.5 assert MT(log(x)**4 * Heaviside(1 - x), x, s) == (24 / s**5, (0, oo), True) assert MT(log(x)**3 * Heaviside(x - 1), x, s) == (6 / s**4, (-oo, 0), True) assert MT(log(x + 1), x, s) == (pi / (s * sin(pi * s)), (-1, 0), True) assert MT(log(1 / x + 1), x, s) == (pi / (s * sin(pi * s)), (0, 1), True) assert MT(log(abs(1 - x)), x, s) == (pi / (s * tan(pi * s)), (-1, 0), True) assert MT(log(abs(1 - 1 / x)), x, s) == (pi / (s * tan(pi * s)), (0, 1), True) # TODO we cannot currently do these (needs summation of 3F2(-1)) # this also implies that they cannot be written as a single g-function # (although this is possible) mt = MT(log(x) / (x + 1), x, s) assert mt[1:] == ((0, 1), True) assert not hyperexpand(mt[0], allow_hyper=True).has(meijerg) mt = MT(log(x)**2 / (x + 1), x, s) assert mt[1:] == ((0, 1), True) assert not hyperexpand(mt[0], allow_hyper=True).has(meijerg) mt = MT(log(x) / (x + 1)**2, x, s) assert mt[1:] == ((0, 2), True) assert not hyperexpand(mt[0], allow_hyper=True).has(meijerg) # 8.4.14 assert MT(erf(sqrt(x)), x, s) == \ (-gamma(s + S(1)/2)/(sqrt(pi)*s), (-S(1)/2, 0), True)
def test_issue_1985(): x = Symbol('x') assert ((x + x*I)/(1 + I)).as_real_imag() == (re((x + I*x)/(1 + I) ), im((x + I*x)/(1 + I)))
def get_constraint(eigenvals, vib_modes, operation): princ_rot = eigenvals[0] refl_Re, refl_Im = eigenvals[1], eigenvals[2] inver_eigenval = eigenvals[3] try: os.chdir(os.getcwd() + '/constraints') constraintfiles = os.listdir(os.getcwd()) constraintargs = [sym.sympify(i[0:i.index('_')].replace('X','*')) for i in constraintfiles] #Open refl.sym file for arg in constraintargs: if sym.simplify(princ_rot-arg) == 0: with open(replace_all(str(arg),{'*':'X',' ':''})+"_"+operation+".sym","r") as sym_file: constraint_lines = sym_file.readlines() elif sym.simplify(sym.re(princ_rot)-sym.im(princ_rot)*1j - arg) == 0: with open(replace_all(str(arg),{'*':'X',' ':''})+"_"+operation+".sym","r") as sym_file: constraint_lines = sym_file.readlines() os.chdir('..') except OSError as e: print(e) vib_modes = [i.replace("''",'"') for i in vib_modes] if operation == 'refl': eigen_req = '[' + str(refl_Re) + ',' + str(refl_Im) + ']' vib_modes = [replace_all(i,{'G':'','U':'',"'":'','"':''}) for i in vib_modes] elif operation == 'inver' or operation == 'hrefl': eigen_req = '[' + str(inver_eigenval) + ']' vib_modes = [replace_all(i,{'1':'','2':''}) for i in vib_modes] if len(vib_modes) == 1: if operation == 'refl': vib_modes.append('A1') elif operation == 'inver': vib_modes.append('AG') elif operation == 'hrefl': vib_modes.append("A'") mode_req = vib_modes max_count = len(constraint_lines) - 1 for count,line in enumerate(constraint_lines): modes_in_line = ''.join(line.split(',')[0]) modes_in_line = modes_in_line[1:-1] modes_in_line = modes_in_line.split('.') line = line.replace('\n','') if set([str(mode) for mode in mode_req]) == set(modes_in_line) and eigen_req in line: match_line = line if (count == max_count): try: match_line except NameError: #no matching constraints return {} constraints = match_line.split(': ',1)[1] constraints = constraints.split(',') constraints_dict = {} for constraint in constraints: index = constraint.split(' ')[0] restriction = ' '.join(constraint.split(' ')[1:]) constraints_dict[index] = restriction if 'all' in constraints_dict: if constraints_dict['all'] == 'nr': del constraints_dict['all'] #check if any composite cases where return constraints_dict
def test_cosh(): x, y = symbols('x,y') k = Symbol('k', integer=True) assert cosh(nan) == nan assert cosh(zoo) == nan assert cosh(oo) == oo assert cosh(-oo) == oo assert cosh(0) == 1 assert cosh(1) == cosh(1) assert cosh(-1) == cosh(1) assert cosh(x) == cosh(x) assert cosh(-x) == cosh(x) assert cosh(pi*I) == cos(pi) assert cosh(-pi*I) == cos(pi) assert cosh(2**1024 * E) == cosh(2**1024 * E) assert cosh(-2**1024 * E) == cosh(2**1024 * E) assert cosh(pi*I/2) == 0 assert cosh(-pi*I/2) == 0 assert cosh((-3*10**73 + 1)*pi*I/2) == 0 assert cosh((7*10**103 + 1)*pi*I/2) == 0 assert cosh(pi*I) == -1 assert cosh(-pi*I) == -1 assert cosh(5*pi*I) == -1 assert cosh(8*pi*I) == 1 assert cosh(pi*I/3) == S.Half assert cosh(-2*pi*I/3) == -S.Half assert cosh(pi*I/4) == S.Half*sqrt(2) assert cosh(-pi*I/4) == S.Half*sqrt(2) assert cosh(11*pi*I/4) == -S.Half*sqrt(2) assert cosh(-3*pi*I/4) == -S.Half*sqrt(2) assert cosh(pi*I/6) == S.Half*sqrt(3) assert cosh(-pi*I/6) == S.Half*sqrt(3) assert cosh(7*pi*I/6) == -S.Half*sqrt(3) assert cosh(-5*pi*I/6) == -S.Half*sqrt(3) assert cosh(pi*I/105) == cos(pi/105) assert cosh(-pi*I/105) == cos(pi/105) assert cosh(2 + 3*I) == cosh(2 + 3*I) assert cosh(x*I) == cos(x) assert cosh(k*pi*I) == cos(k*pi) assert cosh(17*k*pi*I) == cos(17*k*pi) assert cosh(k*pi) == cosh(k*pi) assert cosh(x).as_real_imag(deep=False) == (cos(im(x))*cosh(re(x)), sin(im(x))*sinh(re(x))) x = Symbol('x', extended_real=True) assert cosh(x).as_real_imag(deep=False) == (cosh(x), 0) x = Symbol('x', real=True) assert cosh(I*x).is_finite is True
def duoparam_analysis(N, subplot, alpha=_alpha, k1=_k1, k_1=_k_1, k2=_k2, k_2=_k_2, k3=_k3): xstep = np.linspace(0, 1, N) x, y, k2, k1 = sp.symbols('x y k2 k1') f1 = k1 * (1 - x - y) - k_1 * x - k3 * (1 - x)**alpha * x * y f2 = k2 * (1 - x - y) ** 2 - k_2 * y**2 - k3 * (1 - x)**alpha * x * y eq1 = sp.lambdify((x, y, k1), f1) eq2 = sp.lambdify((x, y, k2), f2) Y, X = np.mgrid[0:.5:1000j, 0:1:2000j] U = eq1(X, Y, 0.012) V = eq2(X, Y, 0.012) print("HERE") velocity = np.sqrt(U * U + V * V) plt.streamplot(X, Y, U, V, density=[2.5, 0.8], color=velocity) plt.xlabel('x') plt.ylabel('y') # plt.xlim([0.1, 0.5]) # plt.ylim([0.1, 0.5]) # plt.title('Phase portrait') plt.show() #след и определитель Якобиана A = sp.Matrix([f1, f2]) jacA = A.jacobian([x, y]) det_jacA = jacA.det() trace = sp.trace(jacA) Y = sp.solve(f1, y)[0] Det = sp.solve(det_jacA.subs(y, Y), k2)[0] Trace = sp.solve(trace.subs(y, Y), k2)[0] K2 = sp.solve(f2.subs(y, Y), k2)[0] res = Det - K2 tr = sp.solve(Trace - K2, k1)[0] print("3.5: ", res) print("tr", tr) # print("3.5: ", sp.expand(Det - K2)) # K1 = sp.solve((Det - K2), k1)[0] # print("4 ", K1) k1step_det = [] k2step_det = [] k1step_tr = [] k2step_tr = [] dots = [] for i in xstep: sol1 = sp.solve(res.subs(x, i), k1) # print("sol", sol1) if len(sol1) > 0: tmpk1_det = sol1[0] tmpk2_det = Det.subs([(k1, tmpk1_det), (x, i)]) # print("tmpk1", tmpk1_det) # print("tmpk2", tmpk2_det) k1step_det.append(sp.re(tmpk1_det)) k2step_det.append(sp.re(tmpk2_det)) tmpk1_tr = tr.subs(x, i) tmpk2_tr = Trace.subs([(k1, tmpk1_tr), (x, i)]) k1step_tr.append(sp.re(tmpk1_tr)) k2step_tr.append(sp.re(tmpk2_tr)) print(i) print("k1det", k1step_det) print("k1tr", k1step_tr) param_plot(k1step_det, k2step_det, subplot1, 'g', [0, 1], 0) param_plot(k1step_tr, k2step_tr, subplot1, 'b', [0, 1], 0)