Exemplo n.º 1
0
def test_fourier_series_square_wave():
    """Test if fourier_series approximates discontinuous function correctly."""
    square_wave = Piecewise((1, x < pi), (-1, True))
    s = fourier_series(square_wave, (x, 0, 2*pi))

    assert s.truncate(3) == 4 / pi * sin(x) + 4 / (3 * pi) * sin(3 * x) + \
        4 / (5 * pi) * sin(5 * x)
    assert s.sigma_approximation(4) == 4 / pi * sin(x) * sinc(pi / 4) + \
        4 / (3 * pi) * sin(3 * x) * sinc(3 * pi / 4)
Exemplo n.º 2
0
def test_ccode_sinc():
    from sympy import sinc
    expr = sinc(x)
    assert ccode(expr) == (
            "((x != 0) ? (\n"
            "   sin(x)/x\n"
            ")\n"
            ": (\n"
            "   1\n"
            "))")
Exemplo n.º 3
0
def test_si():
    assert Si(I*x) == I*Shi(x)
    assert Shi(I*x) == I*Si(x)
    assert Si(-I*x) == -I*Shi(x)
    assert Shi(-I*x) == -I*Si(x)
    assert Si(-x) == -Si(x)
    assert Shi(-x) == -Shi(x)
    assert Si(exp_polar(2*pi*I)*x) == Si(x)
    assert Si(exp_polar(-2*pi*I)*x) == Si(x)
    assert Shi(exp_polar(2*pi*I)*x) == Shi(x)
    assert Shi(exp_polar(-2*pi*I)*x) == Shi(x)

    assert Si(oo) == pi/2
    assert Si(-oo) == -pi/2
    assert Shi(oo) == oo
    assert Shi(-oo) == -oo

    assert mytd(Si(x), sin(x)/x, x)
    assert mytd(Shi(x), sinh(x)/x, x)

    assert mytn(Si(x), Si(x).rewrite(Ei),
                -I*(-Ei(x*exp_polar(-I*pi/2))/2
               + Ei(x*exp_polar(I*pi/2))/2 - I*pi) + pi/2, x)
    assert mytn(Si(x), Si(x).rewrite(expint),
                -I*(-expint(1, x*exp_polar(-I*pi/2))/2 +
                    expint(1, x*exp_polar(I*pi/2))/2) + pi/2, x)
    assert mytn(Shi(x), Shi(x).rewrite(Ei),
                Ei(x)/2 - Ei(x*exp_polar(I*pi))/2 + I*pi/2, x)
    assert mytn(Shi(x), Shi(x).rewrite(expint),
                expint(1, x)/2 - expint(1, x*exp_polar(I*pi))/2 - I*pi/2, x)

    assert tn_arg(Si)
    assert tn_arg(Shi)

    assert Si(x).nseries(x, n=8) == \
        x - x**3/18 + x**5/600 - x**7/35280 + O(x**9)
    assert Shi(x).nseries(x, n=8) == \
        x + x**3/18 + x**5/600 + x**7/35280 + O(x**9)
    assert Si(sin(x)).nseries(x, n=5) == x - 2*x**3/9 + 17*x**5/450 + O(x**6)
    assert Si(x).nseries(x, 1, n=3) == \
        Si(1) + (x - 1)*sin(1) + (x - 1)**2*(-sin(1)/2 + cos(1)/2) + O((x - 1)**3, (x, 1))

    t = Symbol('t', Dummy=True)
    assert Si(x).rewrite(sinc) == Integral(sinc(t), (t, 0, x))
Exemplo n.º 4
0
def _create_table(table):
    """
    Creates the look-up table. For a similar implementation
    see meijerint._create_lookup_table.
    """

    def add(formula, annihilator, arg, x0=0, y0=[]):
        """
        Adds a formula in the dictionary
        """
        table.setdefault(_mytype(formula, x_1), []).append((formula,
            HolonomicFunction(annihilator, arg, x0, y0)))

    R = QQ.old_poly_ring(x_1)
    _, Dx = DifferentialOperators(R, 'Dx')

    from sympy import (sin, cos, exp, log, erf, sqrt, pi,
        sinh, cosh, sinc, erfc, Si, Ci, Shi, erfi)

    # add some basic functions
    add(sin(x_1), Dx**2 + 1, x_1, 0, [0, 1])
    add(cos(x_1), Dx**2 + 1, x_1, 0, [1, 0])
    add(exp(x_1), Dx - 1, x_1, 0, 1)
    add(log(x_1), Dx + x_1*Dx**2, x_1, 1, [0, 1])

    add(erf(x_1), 2*x_1*Dx + Dx**2, x_1, 0, [0, 2/sqrt(pi)])
    add(erfc(x_1), 2*x_1*Dx + Dx**2, x_1, 0, [1, -2/sqrt(pi)])
    add(erfi(x_1), -2*x_1*Dx + Dx**2, x_1, 0, [0, 2/sqrt(pi)])

    add(sinh(x_1), Dx**2 - 1, x_1, 0, [0, 1])
    add(cosh(x_1), Dx**2 - 1, x_1, 0, [1, 0])

    add(sinc(x_1), x_1 + 2*Dx + x_1*Dx**2, x_1)

    add(Si(x_1), x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1)
    add(Ci(x_1), x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1)

    add(Shi(x_1), -x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1)
Exemplo n.º 5
0
def test_issue_13642():
    if not numpy:
        skip("numpy not installed")
    f = lambdify(x, sinc(x))
    assert Abs(f(1) - sinc(1)).n() < 1e-15
Exemplo n.º 6
0
def test_sinc_mpmath():
    f = lambdify(x, sinc(x), "mpmath")
    assert Abs(f(1) - sinc(1)).n() < 1e-15
Exemplo n.º 7
0
def test_issue_11856():
    t = symbols('t')
    assert integrate(sinc(pi*t), t) == Si(pi*t)/pi
Exemplo n.º 8
0
def test_meijerint():
    from sympy import symbols, expand, arg

    s, t, mu = symbols("s t mu", real=True)
    assert integrate(
        meijerg([], [], [0], [], s * t) * meijerg([], [], [mu / 2], [-mu / 2], t ** 2 / 4), (t, 0, oo)
    ).is_Piecewise
    s = symbols("s", positive=True)
    assert integrate(x ** s * meijerg([[], []], [[0], []], x), (x, 0, oo)) == gamma(s + 1)
    assert integrate(x ** s * meijerg([[], []], [[0], []], x), (x, 0, oo), meijerg=True) == gamma(s + 1)
    assert isinstance(integrate(x ** s * meijerg([[], []], [[0], []], x), (x, 0, oo), meijerg=False), Integral)

    assert meijerint_indefinite(exp(x), x) == exp(x)

    # TODO what simplifications should be done automatically?
    # This tests "extra case" for antecedents_1.
    a, b = symbols("a b", positive=True)
    assert simplify(meijerint_definite(x ** a, x, 0, b)[0]) == b ** (a + 1) / (a + 1)

    # This tests various conditions and expansions:
    meijerint_definite((x + 1) ** 3 * exp(-x), x, 0, oo) == (16, True)

    # Again, how about simplifications?
    sigma, mu = symbols("sigma mu", positive=True)
    i, c = meijerint_definite(exp(-((x - mu) / (2 * sigma)) ** 2), x, 0, oo)
    assert simplify(i) == sqrt(pi) * sigma * (2 - erfc(mu / (2 * sigma)))
    assert c == True

    i, _ = meijerint_definite(exp(-mu * x) * exp(sigma * x), x, 0, oo)
    # TODO it would be nice to test the condition
    assert simplify(i) == 1 / (mu - sigma)

    # Test substitutions to change limits
    assert meijerint_definite(exp(x), x, -oo, 2) == (exp(2), True)
    # Note: causes a NaN in _check_antecedents
    assert expand(meijerint_definite(exp(x), x, 0, I)[0]) == exp(I) - 1
    assert expand(meijerint_definite(exp(-x), x, 0, x)[0]) == 1 - exp(-exp(I * arg(x)) * abs(x))

    # Test -oo to oo
    assert meijerint_definite(exp(-x ** 2), x, -oo, oo) == (sqrt(pi), True)
    assert meijerint_definite(exp(-abs(x)), x, -oo, oo) == (2, True)
    assert meijerint_definite(exp(-(2 * x - 3) ** 2), x, -oo, oo) == (sqrt(pi) / 2, True)
    assert meijerint_definite(exp(-abs(2 * x - 3)), x, -oo, oo) == (1, True)
    assert meijerint_definite(exp(-((x - mu) / sigma) ** 2 / 2) / sqrt(2 * pi * sigma ** 2), x, -oo, oo) == (1, True)
    assert meijerint_definite(sinc(x) ** 2, x, -oo, oo) == (pi, True)

    # Test one of the extra conditions for 2 g-functinos
    assert meijerint_definite(exp(-x) * sin(x), x, 0, oo) == (S(1) / 2, True)

    # Test a bug
    def res(n):
        return (1 / (1 + x ** 2)).diff(x, n).subs(x, 1) * (-1) ** n

    for n in range(6):
        assert integrate(exp(-x) * sin(x) * x ** n, (x, 0, oo), meijerg=True) == res(n)

    # This used to test trigexpand... now it is done by linear substitution
    assert simplify(integrate(exp(-x) * sin(x + a), (x, 0, oo), meijerg=True)) == sqrt(2) * sin(a + pi / 4) / 2

    # Test the condition 14 from prudnikov.
    # (This is besselj*besselj in disguise, to stop the product from being
    #  recognised in the tables.)
    a, b, s = symbols("a b s")
    from sympy import And, re

    assert meijerint_definite(
        meijerg([], [], [a / 2], [-a / 2], x / 4) * meijerg([], [], [b / 2], [-b / 2], x / 4) * x ** (s - 1), x, 0, oo
    ) == (
        4
        * 2 ** (2 * s - 2)
        * gamma(-2 * s + 1)
        * gamma(a / 2 + b / 2 + s)
        / (gamma(-a / 2 + b / 2 - s + 1) * gamma(a / 2 - b / 2 - s + 1) * gamma(a / 2 + b / 2 - s + 1)),
        And(0 < -2 * re(4 * s) + 8, 0 < re(a / 2 + b / 2 + s), re(2 * s) < 1),
    )

    # test a bug
    assert integrate(sin(x ** a) * sin(x ** b), (x, 0, oo), meijerg=True) == Integral(
        sin(x ** a) * sin(x ** b), (x, 0, oo)
    )

    # test better hyperexpand
    assert (
        integrate(exp(-x ** 2) * log(x), (x, 0, oo), meijerg=True) == (sqrt(pi) * polygamma(0, S(1) / 2) / 4).expand()
    )

    # Test hyperexpand bug.
    from sympy import lowergamma

    n = symbols("n", integer=True)
    assert simplify(integrate(exp(-x) * x ** n, x, meijerg=True)) == lowergamma(n + 1, x)

    # Test a bug with argument 1/x
    alpha = symbols("alpha", positive=True)
    assert meijerint_definite((2 - x) ** alpha * sin(alpha / x), x, 0, 2) == (
        sqrt(pi)
        * alpha
        * gamma(alpha + 1)
        * meijerg(((), (alpha / 2 + S(1) / 2, alpha / 2 + 1)), ((0, 0, S(1) / 2), (-S(1) / 2,)), alpha ** S(2) / 16)
        / 4,
        True,
    )

    # test a bug related to 3016
    a, s = symbols("a s", positive=True)
    assert (
        simplify(integrate(x ** s * exp(-a * x ** 2), (x, -oo, oo)))
        == a ** (-s / 2 - S(1) / 2) * ((-1) ** s + 1) * gamma(s / 2 + S(1) / 2) / 2
    )
Exemplo n.º 9
0
            expr = new_expr
        else:
            expr = optim.cheapest(expr, new_expr)
    return expr


exp2_opt = ReplaceOptim(lambda p: p.is_Pow and p.base == 2,
                        lambda p: exp2(p.exp))

_d = Wild('d', properties=[lambda x: x.is_Dummy])
_u = Wild('u', properties=[lambda x: not x.is_number and not x.is_Add])
_v = Wild('v')
_w = Wild('w')
_n = Wild('n', properties=[lambda x: x.is_number])

sinc_opt1 = ReplaceOptim(sin(_w) / _w, sinc(_w))
sinc_opt2 = ReplaceOptim(sin(_n * _w) / _w, _n * sinc(_n * _w))
sinc_opts = (sinc_opt1, sinc_opt2)

log2_opt = ReplaceOptim(
    _v * log(_w) / log(2),
    _v * log2(_w),
    cost_function=lambda expr: expr.count(
        lambda e:
        (  # division & eval of transcendentals are expensive floating point operations...
            e.is_Pow and e.exp.is_negative  # division
            or (isinstance(e, (log, log2)) and not e.args[0].is_number)
        )  # transcendental
    ))

log2const_opt = ReplaceOptim(log(2) * log2(_w), log(_w))
Exemplo n.º 10
0
def test_rcode_sinc():
    from sympy import sinc
    expr = sinc(x)
    res = rcode(expr)
    ref = "ifelse(x != 0,sin(x)/x,1)"
    assert res == ref
Exemplo n.º 11
0
def test_sinc_mpmath():
    f = lambdify(x, sinc(x), "mpmath")
    assert Abs(f(1) - sinc(1)).n() < 1e-15
Exemplo n.º 12
0
def test_lambdify_cse():
    def dummy_cse(exprs):
        return (), exprs

    def minmem(exprs):
        from sympy.simplify.cse_main import cse_release_variables, cse
        return cse(exprs, postprocess=cse_release_variables)

    class Case:
        def __init__(self, *, args, exprs, num_args, requires_numpy=False):
            self.args = args
            self.exprs = exprs
            self.num_args = num_args
            subs_dict = dict(zip(self.args, self.num_args))
            self.ref = [e.subs(subs_dict).evalf() for e in exprs]
            self.requires_numpy = requires_numpy

        def lambdify(self, *, cse):
            return lambdify(self.args, self.exprs, cse=cse)

        def assertAllClose(self, result, *, abstol=1e-15, reltol=1e-15):
            if self.requires_numpy:
                assert all(
                    numpy.allclose(result[i],
                                   numpy.asarray(r, dtype=float),
                                   rtol=reltol,
                                   atol=abstol)
                    for i, r in enumerate(self.ref))
                return

            for i, r in enumerate(self.ref):
                abs_err = abs(result[i] - r)
                if r == 0:
                    assert abs_err < abstol
                else:
                    assert abs_err / abs(r) < reltol

    cases = [
        Case(args=(x, y, z),
             exprs=[
                 x + y + z,
                 x + y - z,
                 2 * x + 2 * y - z,
                 (x + y)**2 + (y + z)**2,
             ],
             num_args=(2., 3., 4.)),
        Case(args=(x, y, z),
             exprs=[
                 x + sympy.Heaviside(x), y + sympy.Heaviside(x),
                 z + sympy.Heaviside(x, 1), z / sympy.Heaviside(x, 1)
             ],
             num_args=(0., 3., 4.)),
        Case(args=(x, y, z),
             exprs=[x + sinc(y), y + sinc(y), z - sinc(y)],
             num_args=(0.1, 0.2, 0.3)),
        Case(args=(x, y, z),
             exprs=[
                 Matrix([[x, x * y], [sin(z) + 4, x**z]]),
                 x * y + sin(z) - x**z,
                 Matrix([x * x, sin(z), x**z])
             ],
             num_args=(1., 2., 3.),
             requires_numpy=True),
        Case(args=(x, y),
             exprs=[(x + y - 1)**2,
                    x, x + y, (x + y) / (2 * x + 1) + (x + y - 1)**2,
                    (2 * x + 1)**(x + y)],
             num_args=(1, 2))
    ]
    for case in cases:
        if not numpy and case.requires_numpy:
            continue
        for cse in [False, True, minmem, dummy_cse]:
            f = case.lambdify(cse=cse)
            result = f(*case.num_args)
            case.assertAllClose(result)
Exemplo n.º 13
0
def test_issue_13474():
    x = Symbol('x')
    assert simplify(x + csch(sinc(1))) == x + csch(sinc(1))
Exemplo n.º 14
0
def test_si():
    assert Si(I * x) == I * Shi(x)
    assert Shi(I * x) == I * Si(x)
    assert Si(-I * x) == -I * Shi(x)
    assert Shi(-I * x) == -I * Si(x)
    assert Si(-x) == -Si(x)
    assert Shi(-x) == -Shi(x)
    assert Si(exp_polar(2 * pi * I) * x) == Si(x)
    assert Si(exp_polar(-2 * pi * I) * x) == Si(x)
    assert Shi(exp_polar(2 * pi * I) * x) == Shi(x)
    assert Shi(exp_polar(-2 * pi * I) * x) == Shi(x)

    assert Si(oo) == pi / 2
    assert Si(-oo) == -pi / 2
    assert Shi(oo) is oo
    assert Shi(-oo) is -oo

    assert mytd(Si(x), sin(x) / x, x)
    assert mytd(Shi(x), sinh(x) / x, x)

    assert mytn(
        Si(x),
        Si(x).rewrite(Ei),
        -I * (-Ei(x * exp_polar(-I * pi / 2)) / 2 +
              Ei(x * exp_polar(I * pi / 2)) / 2 - I * pi) + pi / 2,
        x,
    )
    assert mytn(
        Si(x),
        Si(x).rewrite(expint),
        -I * (-expint(1, x * exp_polar(-I * pi / 2)) / 2 +
              expint(1, x * exp_polar(I * pi / 2)) / 2) + pi / 2,
        x,
    )
    assert mytn(
        Shi(x),
        Shi(x).rewrite(Ei),
        Ei(x) / 2 - Ei(x * exp_polar(I * pi)) / 2 + I * pi / 2,
        x,
    )
    assert mytn(
        Shi(x),
        Shi(x).rewrite(expint),
        expint(1, x) / 2 - expint(1, x * exp_polar(I * pi)) / 2 - I * pi / 2,
        x,
    )

    assert tn_arg(Si)
    assert tn_arg(Shi)

    assert Si(x).nseries(
        x, n=8) == x - x**3 / 18 + x**5 / 600 - x**7 / 35280 + O(x**9)
    assert Shi(x).nseries(
        x, n=8) == x + x**3 / 18 + x**5 / 600 + x**7 / 35280 + O(x**9)
    assert Si(sin(x)).nseries(
        x, n=5) == x - 2 * x**3 / 9 + 17 * x**5 / 450 + O(x**6)
    assert Si(x).nseries(
        x, 1, n=3) == Si(1) + (x - 1) * sin(1) + (x - 1)**2 * (-sin(1) / 2 +
                                                               cos(1) / 2) + O(
                                                                   (x - 1)**3,
                                                                   (x, 1))

    t = Symbol("t", Dummy=True)
    assert Si(x).rewrite(sinc) == Integral(sinc(t), (t, 0, x))
def test_rcode_sinc():
    from sympy import sinc
    expr = sinc(x)
    res = rcode(expr)
    ref = "ifelse(x != 0,sin(x)/x,1)"
    assert res == ref
Exemplo n.º 16
0
def test_meijerint():
    from sympy import symbols, expand, arg
    s, t, mu = symbols('s t mu', real=True)
    assert integrate(
        meijerg([], [], [0], [], s * t) *
        meijerg([], [], [mu / 2], [-mu / 2], t**2 / 4),
        (t, 0, oo)).is_Piecewise
    s = symbols('s', positive=True)
    assert integrate(x**s*meijerg([[], []], [[0], []], x), (x, 0, oo)) == \
        gamma(s + 1)
    assert integrate(x**s * meijerg([[], []], [[0], []], x), (x, 0, oo),
                     meijerg=True) == gamma(s + 1)
    assert isinstance(
        integrate(x**s * meijerg([[], []], [[0], []], x), (x, 0, oo),
                  meijerg=False), Integral)

    assert meijerint_indefinite(exp(x), x) == exp(x)

    # TODO what simplifications should be done automatically?
    # This tests "extra case" for antecedents_1.
    a, b = symbols('a b', positive=True)
    assert simplify(meijerint_definite(x**a, x, 0, b)[0]) == \
        b**(a + 1)/(a + 1)

    # This tests various conditions and expansions:
    meijerint_definite((x + 1)**3 * exp(-x), x, 0, oo) == (16, True)

    # Again, how about simplifications?
    sigma, mu = symbols('sigma mu', positive=True)
    i, c = meijerint_definite(exp(-((x - mu) / (2 * sigma))**2), x, 0, oo)
    assert simplify(i) == sqrt(pi) * sigma * (2 - erfc(mu / (2 * sigma)))
    assert c == True

    i, _ = meijerint_definite(exp(-mu * x) * exp(sigma * x), x, 0, oo)
    # TODO it would be nice to test the condition
    assert simplify(i) == 1 / (mu - sigma)

    # Test substitutions to change limits
    assert meijerint_definite(exp(x), x, -oo, 2) == (exp(2), True)
    # Note: causes a NaN in _check_antecedents
    assert expand(meijerint_definite(exp(x), x, 0, I)[0]) == exp(I) - 1
    assert expand(meijerint_definite(exp(-x), x, 0, x)[0]) == \
        1 - exp(-exp(I*arg(x))*abs(x))

    # Test -oo to oo
    assert meijerint_definite(exp(-x**2), x, -oo, oo) == (sqrt(pi), True)
    assert meijerint_definite(exp(-abs(x)), x, -oo, oo) == (2, True)
    assert meijerint_definite(exp(-(2*x - 3)**2), x, -oo, oo) == \
        (sqrt(pi)/2, True)
    assert meijerint_definite(exp(-abs(2 * x - 3)), x, -oo, oo) == (1, True)
    assert meijerint_definite(
        exp(-((x - mu) / sigma)**2 / 2) / sqrt(2 * pi * sigma**2), x, -oo,
        oo) == (1, True)
    assert meijerint_definite(sinc(x)**2, x, -oo, oo) == (pi, True)

    # Test one of the extra conditions for 2 g-functinos
    assert meijerint_definite(exp(-x) * sin(x), x, 0, oo) == (S(1) / 2, True)

    # Test a bug
    def res(n):
        return (1 / (1 + x**2)).diff(x, n).subs(x, 1) * (-1)**n

    for n in range(6):
        assert integrate(exp(-x)*sin(x)*x**n, (x, 0, oo), meijerg=True) == \
            res(n)

    # This used to test trigexpand... now it is done by linear substitution
    assert simplify(integrate(exp(-x) * sin(x + a), (x, 0, oo),
                              meijerg=True)) == sqrt(2) * sin(a + pi / 4) / 2

    # Test the condition 14 from prudnikov.
    # (This is besselj*besselj in disguise, to stop the product from being
    #  recognised in the tables.)
    a, b, s = symbols('a b s')
    from sympy import And, re
    assert meijerint_definite(meijerg([], [], [a/2], [-a/2], x/4)
                  *meijerg([], [], [b/2], [-b/2], x/4)*x**(s - 1), x, 0, oo) == \
        (4*2**(2*s - 2)*gamma(-2*s + 1)*gamma(a/2 + b/2 + s)
         /(gamma(-a/2 + b/2 - s + 1)*gamma(a/2 - b/2 - s + 1)
           *gamma(a/2 + b/2 - s + 1)),
            And(0 < -2*re(4*s) + 8, 0 < re(a/2 + b/2 + s), re(2*s) < 1))

    # test a bug
    assert integrate(sin(x**a)*sin(x**b), (x, 0, oo), meijerg=True) == \
        Integral(sin(x**a)*sin(x**b), (x, 0, oo))

    # test better hyperexpand
    assert integrate(exp(-x**2)*log(x), (x, 0, oo), meijerg=True) == \
        (sqrt(pi)*polygamma(0, S(1)/2)/4).expand()

    # Test hyperexpand bug.
    from sympy import lowergamma
    n = symbols('n', integer=True)
    assert simplify(integrate(exp(-x)*x**n, x, meijerg=True)) == \
        lowergamma(n + 1, x)

    # Test a bug with argument 1/x
    alpha = symbols('alpha', positive=True)
    assert meijerint_definite((2 - x)**alpha*sin(alpha/x), x, 0, 2) == \
        (sqrt(pi)*alpha*gamma(alpha + 1)*meijerg(((), (alpha/2 + S(1)/2,
        alpha/2 + 1)), ((0, 0, S(1)/2), (-S(1)/2,)), alpha**S(2)/16)/4, True)

    # test a bug related to 3016
    a, s = symbols('a s', positive=True)
    assert simplify(integrate(x**s*exp(-a*x**2), (x, -oo, oo))) == \
        a**(-s/2 - S(1)/2)*((-1)**s + 1)*gamma(s/2 + S(1)/2)/2
Exemplo n.º 17
0
def test_sinc():
    assert isinstance(sinc(x), sinc)

    s = Symbol('s', zero=True)
    assert sinc(s) == S.One
    assert sinc(S.Infinity) == S.Zero
    assert sinc(-S.Infinity) == S.Zero
    assert sinc(S.NaN) == S.NaN
    assert sinc(S.ComplexInfinity) == S.NaN

    n = Symbol('n', integer=True, nonzero=True)
    assert sinc(n*pi) == S.Zero
    assert sinc(-n*pi) == S.Zero
    assert sinc(pi/2) == 2 / pi
    assert sinc(-pi/2) == 2 / pi
    assert sinc(5*pi/2) == 2 / (5*pi)
    assert sinc(7*pi/2) == -2 / (7*pi)

    assert sinc(-x) == sinc(x)

    assert sinc(x).diff() == (x*cos(x) - sin(x)) / x**2

    assert sinc(x).series() == 1 - x**2/6 + x**4/120 + O(x**6)

    assert sinc(x).rewrite(jn) == jn(0, x)
    assert sinc(x).rewrite(sin) == sin(x) / x
Exemplo n.º 18
0
def test_issue_13474():
    x = Symbol('x')
    assert simplify(x + csch(sinc(1))) == x + csch(sinc(1))
Exemplo n.º 19
0

exp2_opt = ReplaceOptim(
    lambda p: p.is_Pow and p.base == 2,
    lambda p: exp2(p.exp)
)


_d = Wild('d', properties=[lambda x: x.is_Dummy])
_u = Wild('u', properties=[lambda x: not x.is_number and not x.is_Add])
_v = Wild('v')
_w = Wild('w')
_n = Wild('n', properties=[lambda x: x.is_number])

sinc_opt1 = ReplaceOptim(
    sin(_w)/_w, sinc(_w)
)
sinc_opt2 = ReplaceOptim(
    sin(_n*_w)/_w, _n*sinc(_n*_w)
)
sinc_opts = (sinc_opt1, sinc_opt2)

log2_opt = ReplaceOptim(_v*log(_w)/log(2), _v*log2(_w), cost_function=lambda expr: expr.count(
    lambda e: (  # division & eval of transcendentals are expensive floating point operations...
        e.is_Pow and e.exp.is_negative  # division
        or (isinstance(e, (log, log2)) and not e.args[0].is_number))  # transcendental
    )
)

log2const_opt = ReplaceOptim(log(2)*log2(_w), log(_w))
Exemplo n.º 20
0
def test_issue_13642():
    if not numpy:
        skip("numpy not installed")
    f = lambdify(x, sinc(x))
    assert Abs(f(1) - sinc(1)).n() < 1e-15
Exemplo n.º 21
0
def test_issue_11856():
    t = symbols('t')
    assert integrate(sinc(pi*t), t) == Si(pi*t)/pi